Hyperelasticity Modeling for Incompressible Passive Biological Tissues
Grégory Chagnon, Jacques Ohayon, Jean-Louis Martiel, Denis Favier

To cite this version:

HAL Id: hal-01974109
https://hal.archives-ouvertes.fr/hal-01974109
Submitted on 9 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Hyperelasticity Modeling for Incompressible Passive Biological Tissues

G. Chagnon, J. Ohayon, J. L. Martiel, D. Favier

Université Grenoble-Alpes, TIMC-IMAG, F-38000 Grenoble, France.
CNRS, TIMC-IMAG, F-38000 Grenoble, France

Abstract

Soft tissues are mainly composed of organised biological media giving them an anisotropic mechanical behavior. Soft tissues also have the ability to undergo large elastic reversible deformations. Many constitutive models were developed to describe these phenomena. In this chapter, we discuss several varying models and their constitutive equations which are defined by means of strain components or strain invariants. The notion of tangent moduli will be plotted for two well-known constitutive equations, and, we will illustrate how to implement explicitly a structural kinematics constraint in a constitutive law to derive the resulting Cauchy stress tensor.

Keywords: Hyperelasticity, Anisotropy, Kinematics constraint, Lagrange multiplier, Strain-Energy density functions

1. Introduction

In the last decades there has been a significant growth in interest to characterize the passive anisotropic mechanical properties of soft incompressible biological tissues based on nonlinear continuum theory. Such constitutive approach is suitable to describe a wide variety of physical material behaviors in which the strain may be large [1, 2, 3, 4, 5].

Biological tissues are heterogeneous composite materials made of different media as epithelial, connective, muscular, neuronal... [6]. In these composite materials, the distributions of the internal constituents are assumed to be locally uniform on the continuum scale. These tissues are often regarded as oriented cells surrounded by an extra cellular matrix, the whole behaving as anisotropic continuum media reinforced by different families of fibres of distinct orientations. The proportion of matrix and fibres, as their orientations, depend on the type of soft tissues (artery, skin, cornea, muscle). All these materials present a complex mechanical behavior [7, 8], and can often support large reversible deformations and strains. They can also present some other physical phenomena as viscoelasticity [9, 10], stress softening [11, 12], strain hardening [13].

It is the aim of constitutive theories to develop mathematical models reproducing the real behavior of biological tissues. Based on the nonlinear continuum mechanics theory, the anisotropic constitutive law of the soft tissue can be derived from a strain-energy density function (SEDF) W, which is defined per unit of reference volume. Such SEDF is expressed as a function of the deformation gradient (F) or the Green-Lagrange strain tensors (E)) (i.e. $W = W(F) = W(E)$).

Email address: gregory.chagnon@imag.fr (G. Chagnon)
Two main formulations are used in the literature to express a SEDF. The first is based on the use of the Green-Lagrange strain tensor components, while in the second is expressed in term of strain invariants. For these two approaches, many constitutive models have been proposed in literature [14]. And although a thorough review and classification of all models is beyond the scope of this chapter, we will present and highlight some specific and pioneer models.

In this chapter, we will first introduce the notion of hyperelasticity. We will then present several well-known pioneer constitutive models using the two SEDF formulations. Additionally, we will exemplify how a constitutive stress-strain law can account for a kinematics constraint. And finally, by using two well-known SEDFs we will discuss the changes of the tangent elasticity moduli during uniaxial extension tests. The relationships between the parameters of these two SEDFs and the linear elasticity constant in small deformations will also be provided. Such relationships could be used to improve the identification method that needs to be conducted to quantify the material constants.

2. Mechanical formulation

2.1. Description of the deformation

The deformation of soft tissues is often described by means of the right and left Cauchy-Green tensors defined as: \(\mathbf{C} = \mathbf{F}^T \mathbf{F} \) and \(\mathbf{B} = \mathbf{FF}^T \), where \(\mathbf{F} \) is the deformation gradient. The principle components of the right or left Cauchy-Green tensors are \(\lambda_i \) with \(i = 1 \ldots 3 \); \(\lambda_i \) are called the stretches. The logarithmic strains are simply expressed as \(\epsilon_i = \ln(\lambda_i) \) in the principal basis. The Green-Lagrange strain tensor is directly defined in function of the right strain tensor by

\[
\epsilon_{ij} = \frac{1}{2} (\mathbf{C}^{ij} - \delta^{ij}),
\]

where \(\delta^{ij} \) are Kronecker's delta. The logarithmic strains are derived from the stretches. The stain invariants to express them. These invariant are defined for isotropic media as:

\[
I_1 = \text{tr}(\mathbf{C}), \quad I_2 = \frac{1}{2} [\text{tr}(\mathbf{C})^2 - \text{tr}(\mathbf{C}^2)], \quad \text{and} \quad I_3 = \text{det}(\mathbf{C})
\]

where "tr" is the trace operator, and "det" the determinant operator. It is to note that for incompressible materials \(I_3 = 1 \).

To describe the mechanical properties of a reinforced fibrous material, it is necessary to define fibre orientations. The fibres families are numbered \(i \) from 1 to \(q \). An unit vector \(\mathbf{n}^{(i)} \) is introduced to describe the initial orientation of the \(i^{th} \) fibre. An initial orientation tensor is defined as \(\mathbf{A}^{(i)} = \mathbf{n}^{(i)} \otimes \mathbf{n}^{(i)} \). During deformation process, each material direction is transformed into \(\mathbf{n}^{(i)} = \mathbf{F} \mathbf{n}^{(i)} \), it represents the orientation of the fibre in the current state but \(\mathbf{n}^{(i)} \) is not a unit vector.

The introduction of such directions leads to the definition of additional invariants related to each direction. The invariant formulation of anisotropic constitutive equations is based on the concept of structural tensors [15, 16, 17]. The invariants \(I_4 \) and \(I_5 \) can be defined for one direction \(i \) as:

\[
I_4^{(i)} = \text{tr}(\mathbf{CA}^{(i)}) = \mathbf{n}^{(i)} \cdot \mathbf{C} \mathbf{n}^{(i)}, \quad \text{and} \quad I_5^{(i)} = \text{tr}(\mathbf{C}^2 \mathbf{A}^{(i)}) = \mathbf{n}^{(i)} \cdot \mathbf{C}^2 \mathbf{n}^{(i)}.
\]

In the literature, in the case of two fibre directions (1) and (2), a notation \(I_4 \) and \(I_6 \) is often used for soft tissues [18] instead of \(I_4^{(1)} \) and \(I_4^{(2)} \) (or \(I_5 \) and \(I_7 \) instead of \(I_5^{(1)} \) and \(I_5^{(2)} \)).

These invariants depend only on one direction but it is possible to take into account the interaction between the different directions, by introducing a coupling between directions \(i \) and \(j \) by means of two other invariants:

\[
I_8^{(ij)} = (\mathbf{n}^{(i)} \cdot \mathbf{n}^{(j)})(\mathbf{n}^{(i)} \cdot \mathbf{C} \mathbf{n}^{(j)}), \quad \text{and} \quad I_9^{(ij)} = (\mathbf{n}^{(i)} \cdot \mathbf{n}^{(j)})^2.
\]
does not depend on \(C \) and therefore does not affects the stress tensor components. Its values corresponds to the value of \(I_8^{(i,j)} \) for \(C = I \), i.e. for no deformation. It is to note that other invariants were also proposed in the literature \([19, 20, 21]\) even if they are few used for the description of soft tissue mechanical behaviour.

2.2. Strain-stress relationships

Living tissues are often considered as incompressible, thus the equations are written in a pure incompressible framework, i.e. \(I_3 = 1 \). The second Piola-Kirchhoff stress tensor can be directly calculated by derivation of the strain energy function written in function of the whole invariants:

\[
W = W_{p,i,j}(I_1, I_2, I_8^{(i,j)}, I_9^{(i,j)})
\]

with \(i,j = 1..q \):

\[
S = 2 \left([W_{1,1} + W_{2,2}]I - W_{2,2}C + \sum_{i}^{q} W_{i,i}^{(i)} N_i \otimes N_i + \sum_{i}^{q} W_{i,i}^{(j)} (N_i \otimes C N_i + N_i \otimes C N_i) \right) + pC^{-1}
\]

where \(W_{i,j} = \frac{\partial W}{\partial \varepsilon_{i,j}} \) and \(p \) is the hydrostatic pressure. The Eulerian stresses, i.e., the Cauchy stresses are directly obtained by the Push-forward operation \([3]\). To ensure that the stress is identically zero in the non-deformed configuration, it is required that for each fibre orientation:

\[
\forall i \quad W_{a,i}^{(i)} + 2W_{i,i}^{(i)} = 0,
\]

for zero deformation \([22]\).

The use of these equations in a finite element codes imposes to use a quasi-incompressible framework with a decomposition into volumetric and isochoric parts of the energy density. Details about the elasticity tensors are given in \([23, 24, 25, 26]\). A particular attention should be focused on the choice of the volumetric function in order to avoid any non-physical response \([27, 28, 29]\).

2.3. Stability

The strain energy density cannot be chosen without restriction, the strong ellipticity condition must be verified. For three-dimensional problems \([30]\), the strong ellipticity was characterised for compressible isotropic materials \([31]\), and for incompressible ones \([32]\). The generic condition to verify for the strain energy in the absence of body forces \([33, 34, 35]\) can be written as:

\[
\frac{1}{J} F_{ps} F_{qs} \frac{\partial^2 W}{\partial \varepsilon_{ps} \varepsilon_{qs}} n_p n_q m_i m_j > 0 \quad \text{with} \quad \mathbf{m} \neq 0 \quad \text{and} \quad \mathbf{n} \neq 0,
\]

where \(\mathbf{m} \) and \(\mathbf{n} \) are arbitrary two non-zero vectors. Nevertheless, this condition is always difficult to verify. Thus, some proposed another way to tackle the strong ellipticity condition. It is known that polyconvexity implies ellipticity \([36, 37, 38]\). As a consequence, the polyconvexity in the sense of Ball \([39, 40]\) is used, even if it is more restrictive than strong ellipticity.
3. Constitutive equations for soft biological tissues

Even if soft tissues are made of cells and fibres, when the quantity of fibres is weak or when their mechanical influence can be neglected, an isotropic modelling can be efficient. Most of isotropic constitutive equations were not developed for soft tissues but for rubber like materials and used for soft tissues, they are listed in [41, 42]. Nevertheless, soft tissues often present a larger strain hardening than rubber like materials. This implies to the development of specific constitutive equations, the clue for the constitutive equations is to present an important change of slope in the strain-stress curve for moderate deformations. This leads to the development of many constitutive equations with exponential form. In an isotropic point of view, Demiray et al [43] proposed:

\[
W = \frac{c_1}{c_2} \left\{ \exp \left[\frac{c_2}{2} (I_1 - 3)^2 \right] - 1 \right\}
\]

(7)

where \(c_1 \), \(c_2 \) are material parameters. Similar exponential forms can be proposed for the second invariant [44] but this invariant is very rarely used for soft tissues. Nevertheless, the use of isotropic approach is very limited, anisotropic modelling are necessary to capture the real behaviour of many soft tissues.

3.1. Introduction to anisotropy

The anisotropy of the tissues depends on the characteristics of its components i.e. fibres, matrix and the interaction between them. It exists some modelling that tend to describe the soft tissues from a statistical point of view. It relies on the study of the collagen network and it uses an upscaling method [45, 46]. A collagen molecule is defined by its length, its stiffness and its helical structure. Some studies come from approaches developed for rubber like material [47, 48, 49]. Unlike polymer chains in rubber which are uncorrelated nature, collagen chains in biological tissues have to be classified as correlated chains for a statistical point of view. It this way, different theories are considered to represent the chains, as for example wormlike chains with a slight varying curvature [50], or sinusoidal, zig-zag or circular helix representations [51, 52, 53]. This leads to the development of constitutive equations that need numerical tool for integration in space. A good use of these models necessitates specific experimental measures of the physiological properties of the soft tissues.

In this chapter, it is decided to focus more on phenomenological equations that are directly expressed by means of strain components or strain invariants. But the choice of the number of fibre directions depends on the morphology of the tissue. The easiest formulation is with one direction to represent transverse isotropic behaviour but in other cases, more directions are needed. For example, in the first modelling of arteries mechanical behaviour, two fibre directions were used [54], before being extended to four directions [55, 56] and to \(n \) directions [57] and used for example with eight directions for cerebral aneurysms [58]. The reinforced directions can also be used as equivalent mechanical behaviour without any physical meaning, this means that model directions do not correspond to real fibre directions. Even if it is possible to describe the mechanical behaviour with this representation, the physical meaning is lost.

3.2. Green-Lagrange tensor components to describe anisotropy

An easy way to create an anisotropic constitutive equation is to write it as a sum of the contribution of the components of the strain tensor. Finally a weight is chosen for each component. As previously explained, soft tissues present an important strain hardening so an exponential form
Some expressions are detailed in table 1. The term is to note that different authors proposed to write the series developments in different ways. Nevertheless, are more numerous in an anisotropic context. A good way to describe any function is to use a series development. It represents a generalisation to anisotropy of Rivlin series [70].

3.3. Strain invariants formulation

3.3.1. Classical formulation

The idea is here to express the constitutive equation by means of all the invariants which are more numerous in an anisotropic context. A good way to describe any function is to use a series development. It represents a generalisation to anisotropy of Rivlin series [70]. Nevertheless, it is to note that different authors proposed to write the series developments in different ways. Some expressions are detailed in table 1. The term $k = 2$ of Kaliske model [71] corresponds to the standard reinforcing model [72, 73, 74, 75], not initially proposed for soft tissues but which represents the most simple function in I_4 that can be used. It is to note that the use of $\sqrt{I_4}$ permits to obtain a model that represents the behaviour of a linear spring with the quadratic formulation [76, 77]. As for isotropy, the series cannot be used in a infinite version and a main point to discuss is the choice of the terms that must be kept. Some discussions about particular cases are reported in [72, 82, 22, 80]. Let us mention that few SEDFs involving the I_5 invariant have been proposed. In most of the cases, expressions limited to I_4 are preferred. But the use of only I_4 or I_5, instead of both invariants is a still questionable as it leads to the same shear modulus in direction and orthogonal to the reinforced direction [22]. Moreover today, no series development using I_8 was proposed.

Kaliske [71]	$W = \sum_k c_k \xi(2)(I_4 - 1)^k$
Ruter et al. [78]	$W = \sum_{klnm} c_{klnm}(I_1 - 3)^k (I_2 - 3)^l (I_4 - 1)^m (I_5 - 1)^n$
Horgan et al [79]	$W = \sum_{klnm} c_{klnm}(I_1 - 3)^k [(I_2 - 3)(I_1 - 3)]^l (I_4 - 1)^m (I_5 - 2I_4 + 1)^n$
Humphrey et al [80]	$W = \sum_{k} c_k (I_1 - 3)^k (\sqrt{I_4} - 1)^m$
Jemolio et al [81]	$W = \sum_{klnm} c_{klnm}(I_1 - 3)^a (I_2 - 3)^b (I_4 - 1)^c (I_5 - 1)^d$
Jemolio et al [81]	$W = \sum_{klnm} c_{klnm}(I_1^{a_k} - 3^{a_k})(I_2^{b_k} - 3^{b_k})(I_4^{c_m} - 1)(I_5^{d_m} - 1)$

Table 1: Some infinite I_4, I_5 series developments proposed to model transverse isotropic soft tissues where a_k, b_k, c_k, d_k, c_m and c_{klnm} are material parameters (It is to note that $c_{0000} = 0$, $c_{0001} = 0$ for [78, 79]).
The description of a behavior with strong strain hardening using polynomial SEDFs needs too many terms. To avoid this, other forms based on exponential functions were proposed. It consists in increasing largely the strain energy for the material when stretched in fibre direction. A first exponential constitutive equation was proposed by Humphrey and Yin [83]:

\[W = c_1 (\exp(c_2(\sqrt{I_4} - 1)^2) - 1) \] \hspace{1cm} (9)

This expression was later expressed by means of \(I_4 \) instead of \(\sqrt{I_4} \) by Holzapfel et al [54]:

\[W = \mu (I_4 - 3) + \frac{c_1}{2c_2} \left[\exp(c_2(I_4 - 1)^2) - 1 \right] \] \hspace{1cm} (10)

This model was widely used for different soft tissues. Later, it has been extended to take into account the isotropic and anisotropic parts ratio by introducing a weighting factor between the contributions of \(I_1 \) and \(I_4 \) [84]. This factor \(\kappa \) represents a measure of dispersion in the fibre orientation (it is noted HGO model in the rest of the paper):

\[W = \mu (I_1 - 3) + \frac{c_1}{2c_2} \left\{ \exp \left(c_2 \left((1 - \kappa)(I_1 - 3)^2 + \kappa (I_4 - 1)^2 \right) - 1 \right) \right\} \] \hspace{1cm} (11)

In the three previous SEDFs (9,10,11), \(\mu \), \(c_1 \), \(c_2 \) and \(\kappa \) are material parameters. The form of the term/s in the exponential function has/have largely evolved and many other expressions have been proposed. The reader can refer to [85, 86, 87, 88, 89, 90, 91] for example. Recently, a general form for the SEDF was proposed by Peña et al [92]:

\[W = \frac{\gamma}{a \eta} \left[\exp(\eta(I_1 - 3)^a) - f_1(I_1, a) \right] + \frac{c_i}{b d_i} \left[\exp(d_i(I_4^{(i)} - I_4^0)^b) - g(I_4^{(i)}, I_4^0, b) \right]. \] \hspace{1cm} (12)

The choice of the functions \(f_1 \) and \(g \) permits to generalise many different models. \(\gamma \), \(\eta \), \(a \), \(b \), \(c_i \), \(d_i \) and \(I_4^0 \) are material parameters, \(I_4^0 \) represents the threshold to reach for the fibre to become loaded. To our knowledge, only few SEDF involving also \(I_5 \) was proposed for soft tissue [93]:

\[W = a(I_1 - 3) + b(I_2 - 3) + \frac{c_1}{2c_2} \left(\exp \left\{ c_2(I_4 - 1)^2 \right\} - 1 \right) + \frac{c_3}{2c_4} \left(\exp \left\{ c_4(I_5 - 1)^2 \right\} - 1 \right) \] \hspace{1cm} (13)

where \(a \), \(b \), \(c_1 \), \(c_2 \), \(c_3 \) and \(c_4 \) are material parameters. Even if this constitutive equation was initially developed for arteries [94, 95, 96], it was also used for different biological tissues, as for example human cornea [97], erythrocytes [98], the mitral valve [99], trachea [100, 101], cornea [102, 103], collagen [104], abdominal muscle [105].

Nevertheless, the constitutive equations for soft tissues could be written using other mathematical functions instead the exponential one. As for rubber like materials, several mathematical functions have been proposed. Using an exponential function supposes a strong strain hardening effect. To overcome such limitation several different constitutive equations can also be used for soft tissues as they present similar abilities. Some equations are detailed in table 2. It is to note that these equations developed for composite materials are also written with \(I_5 \). The first equations were proposed for soft tissues and use ln or tanh functions. The second part of the table lists a series of SEDFs that were proposed to describe the mechanical behaviour for fibres reinforced materials but not soft tissues. But as explained previously, many soft tissues are fibres reinforced materials as a consequence all these SEDFs could also be used for soft tissues and can bring new abilities for teh modelling.
Non classical constitutive equations with square root, tanh and ln functions.

Dorfmann et al. [106] \(W = c_2 \left[1 - c_3 \tanh \left(\frac{I_4 - 1}{c_4} \right) \right] \left[\exp(c_5(I_4 - 1)^2) - 1 \right] \)

Limbert and Middleton [107] \(W = 2c_5 \sqrt{I_4} + c_6 \ln(I_4) \)

Calvo et al. [108] \(W = 2c_5 \sqrt{I_4} + c_6 \ln(I_4) + c_7 \)

Horgan and Saccomandi [79] \(W = -c_2c_3 \left(I_4 - 1 + c_3 \ln \left(1 - \frac{I_4 - 1}{c_3} \right) \right) \)

Horgan and Saccomandi [79] \(W = -\frac{c_2}{n} c_3 \ln \left(1 - \frac{(I_4 - 1)^n}{c_3} \right) \)

Horgan and Saccomandi [79] \(W = -c_1c_2 \log \left(1 - \frac{(I_4 - 1)^2}{c_2} \right) \)

Ruter and Stein [78] \(W = c_2 (\cosh(I_4 - 1) - 1) \)

Ogden and Saccomandi [109] \(W = -\frac{c_2}{2} c_3 \ln \left(1 - \frac{(I_4 - 1)^2}{c_3} \right) \)

Markert et al. [110] \(W = \frac{c_1}{2} \left(I_4^{c_2/2} - 1 \right) - c_1 \ln(I_4^{1/2}) \)

Demirkoparan et al. [111, 112] \(W = 2 \ln \left(\frac{I_4}{c_1} + 2 \frac{c_2}{\sqrt{I_4}} - 3 \right) \)

Lurding et al. [113] \(W = c_1(I_4 - 3) + c_2(I_4 - 3)(I_4 - 1) + c_3(I_4^2 - I_5) + c_4(\sqrt{I_4} - 1)^2 + c_5 \ln(I_4) \)

Chui et al. [113] \(W = c_1 \ln(1-T) + c_5(I_4 - 3)^2 + c_6(I_4 - 1)^2 + c_7(I_4 - 3)(I_4 - 1) \)

with \(T = c_2(I_4 - 3)^2 + c_3(I_4 - 1)^2 + c_4(I_1 - 3)(I_4 - 1) \)

Table 2: Some original forms of constitutive equations using \(I_4 \) and \(I_5 \), where \(c_i \) with \(i = 1...7 \) are material parameters.
3.3.2. Coupling influence

The detailed SEDFs of the previous paragraphs do not take into account the coupling that can exist between the different fibre families. The additive decomposition that is used implies a superposition principle. A first way to create a coupling is to propose constitutive equations presenting multiplicative terms between the different directions. In this spirit, an anisotropic SEDF W with two fibre families was proposed for pneumatic membranes [114]:

$$W = c_1^{(1)} \left(I_4^{(1)} - 1 \right)^{\beta_1} + c_2^{(1)} \left(I_5^{(1)} - 1 \right)^{\beta_2} + c_1^{(2)} \left(I_4^{(2)} - 1 \right)^{\gamma_1} + c_2^{(2)} \left(I_5^{(2)} - 1 \right)^{\gamma_2}$$

$$+ c_c^{(1)} (I_1 - 3)^{\delta_1} \left(I_4^{(1)} - 1 \right)^{\delta_1} + c_c^{(2)} (I_1 - 3)^{\delta_2} \left(I_4^{(2)} - 1 \right)^{\delta_2} + c_c^{(1,2)} \left(I_4^{(1)} - 1 \right)^{\eta} \left(I_4^{(2)} - 1 \right)^{\eta}.$$ (14)

This strain energy allows coupling between the different directions, but the additive decomposition of the constitutive equation permits to fit separately the different parameters $c_c^{(j)}$, δ_1 and δ_2. The coupling between the two directions is given by the parameter $c_c^{(1,2)}$. This series development can be imagined with any terms and any powers to change the coupling. More recently and in the same spirit, Holzapfel and Ogden [115] develop an interesting structurally based orthotropic model of the passive myocardium that accounts for muscle fibre direction and the myocyte sheet structure.

Another method consists in coupling invariants from different directions [37], a new quantity is created taking into account the contribution of the different parameters. Few constitutive equations were proposed in the literature, but one example was proposed for oesophageal tissues where a quadratic function was added [120]:

$$\alpha^2 I_4^{(1)2} + 2\lambda(1 - \alpha)I_4^{(1)}I_4^{(2)} + (1 - \alpha)^2 I_4^{(2)2}$$ with $\alpha \in [0, 1]$. (15)

α represents a material parameter. This expression permits to measure the deformation in two directions with only one invariant. Nevertheless, this has not yet been used in constitutive equations. A simple additive decomposition of the invariants in a same function can create the coupling [116] and can be used [117] as in the exponential form:

$$W = \frac{c_1}{c_2} \left[\exp \left(c_2 \left(I_4^{(1)} + I_4^{(2)} - 2 \right) \right) - c_2 \left(I_4^{(1)} + I_4^{(2)} \right) + 2c_2 - 1 \right].$$ (16)

A generalised weighted expression of the constitutive equation was also developed [118, 119]:

$$W = \frac{1}{4} \sum_r \mu_r \left[\frac{1}{\beta_r} \left(\exp \left(\alpha_r \left(\sum_i \gamma_i I_4^{(i)} - 1 \right) \right) - 1 \right) + \frac{1}{\beta_r} \left(\exp \left(\beta_r \left(\sum_i \gamma_i P_5^{(i)} - 1 \right) \right) - 1 \right) \right].$$ (17)

with $P_5 = \text{tr} \left(\text{Cof} \left(\text{C} \right) \text{A}^{(i)} \right)$ where Cof is the cofactor operator, μ_r, β_r, γ_i and α_r are material parameters.

These models are coupling the stretches of the different fibres but do not take into account the shear in the matrix due to the presence of fibres. To handle such limitation we need to account for $I_8^{(i,j)}$ and $I_9^{(i,j)}$. The idea is thus to add terms in the strain energy taking into account these invariants. Few constitutive equations were proposed in the literature, but one example was proposed for oesophageal tissues where a quadratic function was added [120]:

$$W = \frac{c_1}{c_2} \left[\exp \left(c_3 (I_1 - 3) \right) + c_3 \exp \left(c_5 (I_2 - 3) \right) \right]$$

$$+ \frac{c_1}{c_2} \left\{ \exp \left(c_7 (I_4^{(1)} - 1) \right) - c_7 (I_4^{(1)} - 1) - 1 \right\}$$

$$+ \frac{c_1}{c_2} \left\{ \exp \left(c_8 (I_4^{(2)} - 1) \right) - c_8 (I_4^{(2)} - 1) - 1 \right\} + c_9 \left[I_8^{(1,2)} - I_9^{(1,2)} \right]^2,$$ (18)
where \(c_i \) with \(i = 1...9 \) are material parameters. For annulus fibrous tissues, the influence of the interaction between the layers was modelled \([121]\) with a term taking into account \(I_4^{(1)} \), \(I_4^{(2)} \) and \(I_8^{(1,2)} \):

\[
W = \frac{c_1}{2c_2} \left(\exp \left(c_2 \left(\frac{I_8^{(1,2)}}{\left(I_4^{(1)}I_4^{(2)}I_9^{(1,2)} \right)^{1/2} - \sqrt{I_9^{(1,2)}}} \right)^2 \right) - 1 \right). \tag{19}
\]

A similar form from exponential model was proposed also for \(I_8 \) \([122]\):

\[
W = \frac{c_1}{c_2} \left[\exp \left(c_2 \left(\frac{I_8^{(1,2)}}{I_9^{(1,2)}} \right)^2 \right) - 1 \right]. \tag{20}
\]

In the two previous models \(c_1 \) and \(c_2 \) are material parameters. Few invariant-coupling models were used for biological tissues, but they are proposed for composite material \([123, 124]\). In comparison with other models, these approaches take into account the shear strain in the material whereas the first models couple the deformations of the different fibres.

In a classical approach, as in plasticity or viscoelasticity, one proposes to decompose the strain energy into three parts \(W = W^m + W^f + W^{fm} \) \([125]\), where the three terms are the strain energy of the matrix, of the fibres and of the interactions between fibres and matrix, respectively. The decomposition of the strain energy function into different parts permits to analyse the loading states and to propose constitutive equations reproducing the strain endured by the fibre, the matrix and the interface. This leads to the construction of different function families \([126]\):

\[
\begin{align*}
W^m &= \frac{1}{2} c_1 f(I_4)(I_4 - 3), \\
W^f &= c_1 g_1(I_4) \left(\frac{I_5 - I_2}{I_4} \right), \\
W^{fm} &= c_1 g_2(I_4) \left(I_1 - \frac{I_5 + 2\sqrt{I_4}}{I_4} \right). \tag{21}
\end{align*}
\]

Another basic form was also proposed for the interaction between the fibres and the matrix \([125]\):

\[
W^{fm} = g_2(I_4) \left(\frac{I_4}{I_3}(I_5 - I_1I_4 + I_2) - 1 \right)^2, \tag{22}
\]

where \(f, g_1 \) and \(g_2 \) are functions to define and \(c_1 \) is a material parameter. The first function corresponds a generalisation of the neo-Hookean model \([127]\). Few functions for \(f, g_1 \) and \(g_2 \) have been proposed for the moment, the first propositions are based on exponential functions \([126, 128, 129]\).

4. About some specific constitutive equations

In this section, two well known constitutive equations, one expressed in term of strain components \([63]\) and the other in term of strain invariants \([84]\) are detailed on classical uniaxial mechanical tests.
4.1. Transversely isotropic model of Guccione et al.

For this first example, a soft tissue with one reinforcement fibre orientation is considered as presented in figure 1(a). The fibres are oriented along direction 1. The equation of the model is presented in eq (8). Three uniaxial tensile tests are simulated in each direction of the framework (i.e. 1, 2 and 3). The stress-strain relationships are directly obtained by derivation of the energy density by each Green-Lagrange component. The uniaxial tension in direction 1 is easy to obtain as the behaviour of directions 2 and 3 are identical, the strain in these two directions is imposed by the incompressibility and the Lagrange multiplier unknown (which ensures incompressibility) is obtained to impose zero stress in these directions. For tension tests in direction 2 (or 3), the problem is slightly more complicated, as the strain in the two other directions are not identical due to the presence of fibres. A minimizing problem is written to ensure incompressibility and to impose zero stress in the two other directions.

The parameters used for the simulations are those proposed in [63], i.e. \(c = 0.876 \text{kPa}, \ b_f = 18.48, \ b_t = 3.58 \) and \(b_{fs} = 1.627 \). The three curves corresponding to an uniaxial tensile test in each direction are presented in figure 2 (a). The curves present the Cauchy stress in function of the logarithmic strain. To highlight the strain hardening of the material, the slopes of the curve, i.e. the tangent moduli are also plotted in figure 2 (b). The tangent modulus is calculated by the slope of the Cauchy stress, logarithmic strain curve. It strongly appears that the moduli and especially the one in fibre direction are rapidly evolving with the strain. A linearization of the stress-strain relationships allows us to obtain the analytical expressions of whole initial material constants:

\[
E_1 = \frac{c}{2} (2b_f + b_t),
\]

\[
E_2 = E_3 = \frac{cb_f (2b_f + b_t)}{b_f + b_t}.
\]

By calculating the ratio between the different strains, the initial Poisson ratios can be obtained:

\[
\nu_{12} = \nu_{13} = 0.5,
\]

\[
\nu_{31} = \nu_{21} = \frac{b_t}{(b_f + b_t)},
\]

\[
\nu_{12} = \nu_{13} = \frac{b_f}{(b_f + b_t)}.
\]
By simulating shear tests, the initial shear moduli can also be obtained:

$$\mu_{12} = \mu_{13} = \frac{c_l}{2}$$

(28)

$$\mu_{23} = \frac{c_l}{2}$$

(29)

It is important to notice that these initial material parameters are no longer constant values in large strains and these relationships (cf. Eq 23-29) are only valid for strain amplitudes lower than approximately 2%. However, one can take advantage of such relationships, to improve the performance of the identification method that needs to be conducted to obtain the material parameters from experimental data. Two steps are necessary to obtain the material constants. In a first step, one can use these linear relationships to quantify some material constants based on the small strain experimental responses. In the second step, the previous determined set of initial material constants can be used to partially initiate the optimization process conducted on the entire experimental responses including in the large strain domains.

4.2. HGO orthotropic model

In this section, a material presenting two reinforced directions is used. A representation of the material is presented in figure 1(b). The two fibre families are in the plane (1-3), they are symmetric with respect to the plane (2-3) and present an angle ϕ relative to axe 1. The equation of the HGO model was presented previously (eq 11). The parameters identified for media artery are used, $\mu = 1.27$ kPa, $k_1 = 21.6$ kPa, $k_2 = 8.21$, $\phi = 20.61$, $\rho = 0.25$ [84]. Different hypotheses exist in the literature about the contribution of the fibres in compression; some consider that they act whereas some consider that they do not contribute to the stress. In this example, it is considered that the fibres can be compressed and have the same parameters as in tension. The
same simulations as in the previous section are performed, i.e., three uniaxial tensile tests in the three axes 1, 2, and 3. Due to the orientation of the fibres, a minimizing scheme is necessary for each test (the transverse strains should verify the incompressibility hypothesis and the stress null in the transverse directions). A simulation of the three tensile tests is presented in figure 3(a). Moreover, the tangent moduli are also presented in figure 3(b). The conclusions are similar to the

\[
E_1 = 2\mu \frac{3\mu + 4k_1 \rho (\sin^4 \phi + \cos^4 \phi - \sin^2 \phi \cos^2 \phi)}{\mu + k_1 \rho (\sin^2 \phi - \cos^2 \phi)^2}, \tag{30}
\]

\[
E_2 = 2\mu \frac{3\mu + 4k_1 \rho (\sin^4 \phi + \cos^4 \phi - \sin^2 \phi \cos^2 \phi)}{\mu + k_1 \rho \sin^4 \phi} \tag{31},
\]

\[
E_3 = 2\mu \frac{3\mu + 4k_1 \rho (\sin^4 \phi + \cos^4 \phi - \sin^2 \phi \cos^2 \phi)}{\mu + k_1 \rho \cos^4 \phi}, \tag{32}
\]

\[
\nu_{12} = \frac{\mu - 2k_1 \rho \sin^2 \phi (\cos^2 \phi - \sin^2 \phi)}{2 \left(\mu + k_1 \rho (\sin^2 \phi - \cos^2 \phi)^2 \right)}, \tag{33}
\]

\[
\nu_{23} = \frac{\mu + 2k_1 \rho \sin^2 \phi \cos^2 \phi}{2 \left(\mu + k_1 \rho \sin^4 \phi \right)}, \tag{34}
\]

\[
\nu_{32} = \frac{\mu + 2k_1 \rho \sin^2 \phi \cos^2 \phi}{2 \left(\mu + k_1 \rho \cos^4 \phi \right)}. \tag{35}
\]

In the same way as tangent moduli, the Poisson ratios are evolving with the strain and are affected by the energy to compress the fibres. As previously pointed out at the end of the section 4.1, the performance of the identification method that needs to be conducted to obtain the material parameters from experimental data could be improved by taking advantage of such relationships.
4.3. About the two models

These two constitutive equations, even if they are not written in the same formalism, present very similar tendencies. It is to note that these models are elaborated to present an important strain hardening leading to a large increase of the tangent moduli when the material is stretched. Even if links with the initial moduli exists, these links should be used very carefully. They cannot be used to fit the model, these values are not constant for the models. They represent a linearization at the starting point. Moreover, it is often very difficult to obtain the experimental data near zero deformation due to experimental errors and due to the difficulty to identify the zero configuration of the samples. Nevertheless, the values of these linearized parameters highlight that the parameters of the models act on every components of the elasticity tensor and thus on the tangent elastic tensor.

A key point in the modelling is to define when the fibres start to resist when stretched. Many authors considered that the fibres must reach a threshold before opposing a stress. In this way, a threshold parameter can be introduced in all the constitutive equations presented in this review. It consist in replacing \(I_4 - 1 \) by \(I_4 - I_4^0 \), or \(\sqrt{T_4} - 1 \) by \(\sqrt{T_4} - \sqrt{I_4^0} \) into the constitutive equations. \(I_4^0 \) corresponds to the needed deformation to generate stress, see for example [84, 92, 108, 130]. This new parameter permits to control easily the beginning of the strain hardening. Its value strongly depends on the choice of the reference on the zero state of the experimental data. This zero state is always difficult to identify and vary between post-mortem and in-vivo states and can depend on the person who performs the test. The addition of such parameter can strongly influence the figures presented in this paragraph.

According to the hypothesis that is used with the fibres in compression (they generate or not stresses), some strong changes of slopes can also be observed when the fibres change of loading (tension to compression or compression to tension). This phenomenon can appear even in monotonic loadings due to the rotation of the fibres during the deformation process.

5. How to account for a kinematics constraint in a constitutive law?

In this example, we illustrate how a kinematics constraint may be explicitly included in a passive stress-strain constitutive law. Extrapolations from cardiac muscle fibre arrangement to myocardial stress are realistic when we also account for the effects of the connective tissue. It is hypothesized that a part of that connective tissue, surrounding group of myocytes, affects the stress in the perpendicular direction of the muscle fibres running on the tangential plane of the ventricular wall. Based on the previous scanning electron microscope observations [131], we proposed a connective tissue organization illustrated in Fig. 4. We assumed that the myocytes are roughly cylindrical and that two oriented groups of myocytes (idealized as two cardiac fibres) are surrounded by inextensible collagen networks. So, during the passive compression in the fibre direction of an incompressible myocardial sample, the myocyte diameters increase and because the surrounding "belts" of collagen are inextensible, the adjacent muscle cells become closer. Such kinematic relation between the muscle fibre and cross-fibre extension ratios (named \(\lambda_{f_0} \) and \(\lambda_{f_0}^K \), respectively) is given by:

\[
h(\lambda_{f_0}, \lambda_{f_0}^+) = 1 - \lambda_{f_0}^+ + \frac{a}{D} (\pi - 2) \left(\frac{1}{2} \left(1 - \lambda_{f_0}^{-1/2} \right)^2 \right) = 0
\]

with \(D = 4a + d \) where \(a \) is the initial myocyte radius and \(d \) is the initial distance between the two cells (Fig. 4). Notice that this kinematics constraint exists only if the cardiac fibre is under
compression (i.e. if $\lambda_{f0} < 1$). In terms of strain invariants, this kinematics constraint becomes:

$$h \left(I_{4f0}, \dot{I}_{4f0} \right) = 1 - I_{4f0}^{1/2} + \frac{a}{D} \left(\pi - 2 \right) \left(1 - I_{4f0}^{-1/4} \right) = 0 \text{ if } I_{4f0} < 1$$ \hspace{1cm} (37)

with

$$I_{4f0} = f_0 \cdot \left(C f_0 \right) \text{ and } \dot{I}_{4f0} = \dot{f}_0 \cdot \left(C f_0 \right)$$ \hspace{1cm} (38)

where f_0 and \dot{f}_0 are two unit vectors given in the reference configuration. These vectors are parallel and perpendicular to the muscle fibres, respectively. Both vectors are running on the tangential plane of the ventricular wall. To satisfy this kinematic constraint the SEDF of the passive incompressible tissue needs to be split into a material term $W_{mat}(E)$ and a kinematics contribution $W_{kin}(E)$:

$$W(E) = W_{mat}(E) + W_{kin}(E)$$ \hspace{1cm} (39)

with:

$$W_{kin}(E) = -\frac{1}{2} q h \left(I_{4f0}, \dot{I}_{4f0} \right)$$ \hspace{1cm} (40)

The scalar function q introduced in Eq. 40 serves as an additional indeterminate Lagrange multiplier to insure the kinematics condition given by Eq. 37. As a result, the expression of the Cauchy stress tensor σ, is given by (see Chapter 2 of this book):

$$\sigma = F^{\cdot}W_{mat}(E) F^{T} + \sigma_{kin} - pI$$ \hspace{1cm} (41)
with

\[\sigma_{kin} = \mathbf{F} \frac{\partial W_{kin}(\mathbf{E})}{\partial \mathbf{E}} \mathbf{F}^T = -q \left[\frac{\partial h \left(I_{4f_0}f^+ \right)}{\partial I_{4f_0}} f \otimes f + \frac{\partial h \left(I_{4f_0}f^+ \right)}{\partial I_{4f_0}^\perp} f^\perp \otimes f^\perp \right] \] (42)

and

\[\frac{\partial h \left(I_{4f_0}f^+ \right)}{\partial I_{4f_0}} = \frac{a}{4D} (\pi - 2) I_{4f_0}^{-5/4} \] (43)

\[\frac{\partial h \left(I_{4f_0}f^+ \right)}{\partial I_{4f_0}^\perp} = -\frac{1}{2} I_{4f_0}^{-1/2} \] (44)

where \(f = \mathbf{F}f_0 \), \(f^\perp = \mathbf{F}f_0^\perp \), \(p \) is a second Lagrange multiplier associated with the kinematics incompressibility constraint \(\det(\mathbf{F}) = 1 \), and \(\mathbf{I} \) is the identity matrix. An extended active version of this model has been proposed to explain the observed left ventricular wall thickening during the ejection phase of the cardiac cycle [132, 133].

6. Passive hyperelastic SEDFs used in the book chapters

In this book, several strain energy density functions (SEDFs) were used to model biological tissues. For compressible and quasi-incompressible media the SEDF can be given in decoupled form as:

\[W(C) = W_{iso}(\mathcal{C}) + W_{vol}(J) \]

where \(W_{vol} \) and \(W_{iso} \) are SEDFs describing the volumetric and isochoric response of the material, respectively, \(J \) is the volume ratio (\(J = \det \mathbf{F} \), where \(\mathbf{F} \) is the deformation gradient), \(\mathcal{C} = \mathbf{F}^T \mathbf{F} \) is the right Cauchy-Green strain tensor and \(\mathcal{C} = J^{-2/3} \mathcal{C} \) is the modified right Cauchy-Green strain tensor. Once we know the form of the SEDF, the 2nd Piola-Kirchhoff stress tensor can be derived [134] as:

\[\mathbf{S} = \mathbf{S}_{iso} + \mathbf{S}_{vol}, \]

with \(\mathbf{S}_{vol} = 2 \frac{\partial W_{vol}}{\partial \mathcal{C}} \frac{\partial \mathcal{J}}{\partial \mathcal{C}} \) and \(\mathbf{S}_{iso} = 2 \frac{\partial W_{iso}}{\partial \mathcal{C}} \frac{\partial \mathcal{C}}{\partial \mathcal{C}} \). For purely incompressible material (\(J = 1 \)), the 2nd Piola-Kirchhoff stress tensor adopts the following form:

\[\mathbf{S} = 2 \frac{\partial W_{iso}}{\partial \mathcal{C}} - p \mathcal{C}^{-1} \]

where \(p \) is the Lagrange multiplier introduced to enforce incompressibility. In the Table 3 one lists the main passive hyperelastic SEDFs \(W_{iso}(\mathcal{C}) \), used in this book to model the biomechanical behavior of living organs, when assuming purely incompressible biological tissues. The SEDFs for quasi-incompressible biological tissues are, in general, given as function of the invariants referred to \(\mathcal{C} \) (here denoted \(I_k, k = 1, \ldots, 5 \) and \(k = 8 \)). However, in literature some SEDFs are given with the help of the invariants referred to \(\mathcal{E} \) (here denoted \(\mathcal{E}_k, k = 1, \ldots, 5 \) and \(k = 8 \)). The relationship between these two families of invariants is:
\[I_1^* = \text{Tr}(E) = \frac{1}{2}(I_1 - 3) \]
\[I_2^* = \frac{1}{2} \left(\text{Tr}(E)^2 - \text{Tr}(E^2) \right) = \frac{1}{4} (-2I_1 + I_2 + 3) \]
\[I_3^* = \text{det } E = \frac{1}{8} (I_1 - I_2 + I_3 - 1) \]
\[I_4^* = E : f \otimes f = \frac{1}{2} (I_4 - 1) \text{ with } f \cdot f = 1 \]
\[I_5^* = E^2 : f \otimes f = \frac{1}{4} (I_5 - 2I_4 + 1) \]
\[I_8^* = E : f \otimes s = \frac{1}{2} I_8, \text{ with } f \cdot s = 0 \]
<table>
<thead>
<tr>
<th>Organs/Chapters</th>
<th>Orthotopic SEDFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aorta/8</td>
<td>$W = \mu (I_1 - 3) + \sum_{i=1}^{2} \frac{k_i}{2k_2} { \exp { k_2 \left((1 - \rho) (I_1 - 3)^2 + \rho (I_4i - 1)^2 \right) } - 1 }$</td>
</tr>
<tr>
<td>Skin/16</td>
<td>Holzapfel et al., 2001, J. Elasticity 61:1-48</td>
</tr>
<tr>
<td></td>
<td>$W = \frac{\alpha}{2} (I_1 - 3) + \mu \sum_{i=1}^{2} \frac{k_i}{2k_2} { \exp { k_2 (tr(H_i \cdot C) - 1)^2 } - 1 }$</td>
</tr>
<tr>
<td></td>
<td>with $H_i = \kappa_i I + (1 - 3\kappa_i) e_1 \otimes e_2$</td>
</tr>
<tr>
<td>Aorta/8</td>
<td>$W = \frac{C}{2} { \exp { Q } - 1 }$ with $Q = a_1 E_{\theta \theta}^2 + a_2 E_{zz}^2 + a_3 E_{rr}^2 + 2a_4 E_{\theta \theta} E_{zz}$</td>
</tr>
<tr>
<td></td>
<td>$+ 2a_5 E_{zz} E_{rr} + 2a_6 E_{\theta \theta} E_{rr} + a_7 E_{\theta \theta} E_{z\theta} + a_8 E_{rr} E_{z\theta} + a_9 E_{z\theta} E_{\theta \theta}$</td>
</tr>
<tr>
<td>Small intestine/13</td>
<td>$W = \frac{C_0}{2} { \exp { b_0 (I_1 - 3) } - 1 } + \frac{a_f}{2k_2} { \exp { b_f (I_{4f} - 1)^2 } - 1 }$</td>
</tr>
<tr>
<td></td>
<td>$+ \frac{a_{fs}}{2k_2} { \exp { b_{fs} (I_{4fs} - 1)^2 } - 1 }$</td>
</tr>
<tr>
<td></td>
<td>$W = \mu (I_1 - 3) + W_{ani}$ with $W_{ani} = \frac{k_1}{2k_2} \sum_{i=1}^{2} { \exp { k_2 (I_{4i} - 1)^2 } - 1 }$</td>
</tr>
<tr>
<td>Esophagus/7</td>
<td>Sommer et al., 2013, Acta Biomater. 9:9379-9391</td>
</tr>
<tr>
<td></td>
<td>$W = \mu (I_1 - 3) + W_{ani}$ with $W_{ani} = \frac{k_1}{2k_2} \sum_{i=1}^{2} { \exp { k_2 (I_{4i} - 1)^2 } - 1 }$</td>
</tr>
<tr>
<td></td>
<td>$W = c_0 (I_1 - 3) + \sum_{i=1}^{N} c_1 { \exp { c_2 E_{i}^2 } - 1 }$ with $E_{i} = (\kappa I + (1 - 3\kappa) f_i \otimes f_i) : C - 1$</td>
</tr>
<tr>
<td></td>
<td>$W = c_0 (I_1 - 3) + \sum_{i=1}^{N} c_1 { \exp { c_2 (I_{4i} - 1)^2 } - 1 }$</td>
</tr>
<tr>
<td></td>
<td>$W = c_0 (I_1 - 3) + \sum_{i=1}^{2} c_1 (I_{4i} - 1)^6$</td>
</tr>
<tr>
<td>Aorta/8</td>
<td>Celi and Berti, 2012, in Biomechanics and modeling of aneurysm, Murai Y. Ed. in Tech</td>
</tr>
<tr>
<td>Organs/Chapters</td>
<td>Transversely isotropic SEDFs</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
\begin{align*}
Q &= c_2 E_{ff}^2 + c_3 \left(E_{ss}^2 + E_{nn}^2 + 2 E_{sn} E_{ns} \right) + 2 c_4 \left(E_{fs} E_{sf} + E_{fn} E_{nf} \right) \\
&= c_3 \left(I_1^2 + 2 I_2^2 \right) + (c_2 - c_3) I_4^2 + 2(c_4 - c_3) I_5^2
\end{align*}
\]
\begin{align*}
Q &= a_1 \left(E_{ss}^2 + E_{nn}^2 \right) + (a_1 + a_2) E_{ff}^2 + 2a_1 \left(E_{fs} E_{sf} + E_{sn} E_{ns} + E_{fn} E_{nf} \right) \\
&= a_1 \left(I_1^2 + 2 I_2^2 \right) + a_2 I_4^2
\end{align*}
\]
| Abdomen/12 | Calvo et al., 2009. *J. Biomech*. 42:642-651 \[
W = c_1 (I_1 - 3) + W_{ani} \\
W_{ani} = \begin{cases} \\
0 & I_4 < I_{40} \\
\frac{c_3}{c_4} \{\exp [c_4 (I_4 - I_{40})] - c_4 (I_4 - I_{40}) - 1\} & I_{40} < I_4 < I_{4ref} \\
c_5 \sqrt{I_4 + \frac{c_6}{2} \ln I_4 + c_7} & I_4 > I_{4ref}
\end{cases}
\]
W = c_0 \{\exp [c_1 (I_1 - 3)] - 1\} + c_2 \{\exp [c_3 (I_4 - 1)] - 1\}
\]
W &= a_0 \left(\exp Q - 1 \right) + a_3 \left(\exp \left\{ a_4 E_{ff}^2 \right\} - 1 \right) \quad \text{with } E_{ff}^2 = I_5^2 \\
Q &= a_1 \left(E_{ff}^2 + E_{ss}^2 + E_{nn}^2 \right) + 2 a_1 E_{sn} E_{ns} + \left(2 a_1 + a_2 \right) \left(E_{fs} E_{sf} + E_{fn} E_{nf} \right) \\
&= a_1 \left(I_1^2 + 2 I_2^2 \right) + a_2 I_4^2
\]
| Breast/10 | Han et al., 2014. *IEEE Transactions on Medical Imaging* 33(3): 682-694 \[
W = \frac{\mu_2}{2} (I_1 - 3) + \frac{\mu_4}{2} (I_4 - 1)^2
\]
| Skeletal muscle/17 | Blemker et al. this book \[
W = G_1 \left(\frac{I_4}{I_3} - 1 \right) + G_2 \left(\cosh^{-1} \left\{ \frac{I_4 - I_3}{2 \sqrt{I_3}} \right\} \right)^2
\]

18
<table>
<thead>
<tr>
<th>Organs/Chapters</th>
<th>Isotropic SEDFs</th>
</tr>
</thead>
</table>
| **General form of the polynomial model**
(including Neo-Hookean Yeoh and Mooney-Rivlin models)
\[W = \sum_{i+j>0} C_{ij} (I_1 - 3)^i (I_2 - 3)^j \] |
| Skin/16 | Hendriks et al., 2003. *Skin Research and Technology*, 9:274-283
\[W = C_{10} (I_1 - 3) + C_{01} (I_2 - 3) + C_{11} (I_1 - 3) (I_2 - 3) + C_{20} (I_1 - 3)^2 + C_{30} (I_1 - 3)^3 \] |
\[W = C_{10} (I_1 - 3) + C_{01} (I_2 - 3) + C_{11} (I_1 - 3) (I_2 - 3) + C_{20} (I_1 - 3)^2 \] |
| Brain/6 | Laskari et al., 2012. *J. Biomech.*, 45:642-646
\[W = C_{10} (I_1 - 3) + C_{01} (I_2 - 3) + C_{11} (I_1 - 3) (I_2 - 3) \] |
| Tongue/19 | Schiavone et al., 2009. *Medical Image Analysis*, 13:673-678
\[W = C_{10} (I_1 - 3) + C_{30} (I_1 - 3)^3 \] |
| Calf/24 (deep tissue) |
| Tongue/20,19 |
| Face/20,18 |
| Larynx/20 |
| Liver/11 | N=2, Fu et al., 2013. *J. Mech Behav Biomed Mater.* 20:105-112
\[W = c_0 \left\{ \exp \left[c_1 (I_1 - 3)^2 + c_2 (-2I_1 + I_2 + 3) \right] - 1 \right\} \] |
<table>
<thead>
<tr>
<th>Organs/Chapters</th>
<th>Isotropic SEDFs, continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast/10 - Uterus/15 - Foot/25 (heel, skin, fat, muscle) - Calf/24 (surface tissue) Spine/22 (Ground substance of annulus bulk, nucleus pulposus)</td>
<td>Neo-Hookean: (W = C_{10} (I_1 - 3))</td>
</tr>
<tr>
<td>Thigh/23 Face/18 - Tongue/19 Spine/22 (Ground substance of annulus bulk, nucleus pulposus)</td>
<td>Mooney-Rivlin (W = C_{10} (I_1 - 3) + C_{01} (I_2 - 3))</td>
</tr>
<tr>
<td>Liver/11 Spine/22 (ground substance of annulus bulk) Aorta/8</td>
<td>Yeoh model (W = \sum_{k=1}^{N} C_k (I_1 - 3)^k)</td>
</tr>
<tr>
<td>Skin/16 - Liver/11 - Rectum/14 - Bladder/14 - Spine/22 (Ligaments)</td>
<td>Ogden model (W = \sum_{k=1}^{N} \mu_{\alpha_k} (\lambda_1^{\alpha_k} + \lambda_2^{\alpha_k} + \lambda_3^{\alpha_k} - 3))</td>
</tr>
<tr>
<td>Aorta/8</td>
<td>Ogden, 1972. Proc. R. Soc. Lond. A 326:565-584 (W = c_0 \sum_{k=1}^{3} (\lambda_k^4 - 1))</td>
</tr>
<tr>
<td>Liver/11</td>
<td>Bogen model (special case of the Ogden model) (W = \frac{b}{a} (\lambda_1^a + \lambda_2^a + \lambda_3^a - 3))</td>
</tr>
<tr>
<td>Liver/11 Aorta/8 Tongue/19</td>
<td>Demiray, 1981. J. Biomech. Eng. 103:73-78 (W = \frac{C_1}{2c^2} { \exp [C_2 (I_1 - 3)] - 1 })</td>
</tr>
<tr>
<td>Organs/Chapters</td>
<td>Isotropic SEDFs, continued</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
\[W = c_0 \left(\exp \left[c_1 (J_1 - 3)^2 + c_2 (-2I_1 + I_2 + 3) \right] - 1 \right) \] |
| Liver/11 | Logarithmic model
\[W = -C_1 \ln \left\{ 1 - C_2 \left(\lambda_1^{\alpha_1} + \lambda_2^{\alpha_2} + \lambda_3^{\alpha_3} - 3 \right) \right\} \] |
| Liver/11 | Exponential model
\[W = C_1 \left\{ \exp \left[C_1 \left(\lambda_1^{\alpha_1} + \lambda_2^{\alpha_2} + \lambda_3^{\alpha_3} - 3 \right) \right] - 1 \right\} \] |
\[W = C_1 \left\{ \exp \left[C_3 (I_1 - 3) \right] - 1 \right\} + C_2 \left(I_2 - 3 \right) \] |
| Skin/16 | Gambarotta et al., 2005. J. Biomech. 38:2237-2247
\[W = a_1 I_1^{*2} + a_2 I_2^{*} + a_3 \exp \left[a_1 I_1^{*2} + a_3 I_2^{*} \right] \] |

Table 3: Non exhaustive list of passive hyperelastic SEDFs presented in this book to model the biomechanics of living organs.
\(I_i(C), i = 1, 2, 3 \) are the invariants of the right Cauchy-Green tensor;
\(I_{4i} = C : (f_i \otimes f_i) \) is the 4th invariant given by the contraction of
\(C \) and the structural tensor
\(f_i \otimes f_i \) where
\(f_i \) is the direction of the
i-th
family of fibers in the reference configuration; similarly, we define the 5th invariant as
\(I_{5i} = C^2 : (f_i \otimes f_i) \); finally, we also define
\(I_{8ij} = C : (f_i \otimes f_j) \) with
\(i \neq j \).
\(\lambda_i, i = 1, 2, 3 \) are the principal stretches;
\(E_{ij} \) denote the components of the Green-Lagrange strain tensor
\(E \).
Subscript used in the expression of the
\(E_{ij} \) refer either (i) to the cylindrical coordinate system \((r, \theta, z)\), (ii) to the global coordinate frame \((1, 2, 3)\) or (iii) to the locally orthogonal frame \((f, s, n)\) where
\(f \) is the fiber direction and
s is the direction orthogonal to
\(f \) but in the fiber plane.
\(I_{8k}, k = 1, 2, 3 \) are the invariants of the Green-Lagrange tensor
\(E \).
\(I_{8f}^* \) and
\(I_{8f}^{**} \) are, respectively,
\(E : (f_i \otimes f_i) \) and
\(E^2 : (f_i \otimes f_i) \).
7. Discussion

The number of constitutive equations is quite large, some interesting equations were listed in this chapter. A more exhaustive review can be found in [14]. Moreover, it exists other modelling approaches with a new class of elastic solids with implicit elasticity [135] that can also describe the strain limiting characteristics of soft tissues [136]. These theories are also elastic as they do not dissipate energies even if they are written in terms of strain rate and stress rate.

The question of the choice of the constitutive equation is a key point as it has large consequences on the simulations that can be performed. The links between the initial material constants with the hyperelastic SEDF parameters are presented in this chapter for two classical models, but it is important to keep in mind that these relationship can only be used to initiate the identification optimization process.

Even today, for some applications, isotropic constitutive equations are abusely used to describe the mechanical behaviour of different soft tissues. In most of the cases, this simplified models are misleading and inappropriate as most of soft tissues present a fibre structure that must be taken into account.

The use of anisotropic strain energy necessitates introducing fibre directions to model the mechanical properties of the soft tissue. Two ways of thinking exist, some consider that the fibre orientation should be physically motivated, i.e. that it represents the real orientation of fibres in the material, whereas some consider that the orientation of the fibre is one material parameter more. In this case the angle is just a mathematical parameter in a phenomenological model and the best fit is not necessarily obtained for the angle having a physical meaning.

In practise, the invariants I_2 and I_5 are often neglected. Their role in the strain energy is always difficult to identify [80]. Nevertheless, in some cases, their role can be very important [137]. A main difficulty relies on the fact that with only one mechanical test (for example only uniaxial test, or only equibiaxial test...), these invariants are linked to I_1 and I_4. That means that it is impossible to separate the contribution of each invariant. An important problem of the different constitutive equations is that it is difficult (or impossible) to separate the contribution of the matrix, the fibres and the interactions. The form of the equations does not present those parameters. Nevertheless, some authors try to separate the contribution of the isotropic and anisotropic parts [138]. To avoid such representations, physical approaches try to represent the repartition of fibres in space, but two difficulties must be considered, the knowledge of the distribution function of the fibres in space and the mechanical properties of a single fibre.

Nevertheless, the main difficulty is maybe not to have the best constitutive equation but to have experimental data in which one can be confident. One important problem is that the dispersion is often very large due to different patients, because of the age, the illness or other parameters. Another difficulty is that the definition of the boundary conditions is always very complicated and generates important errors on experimental data. As a consequence, one can wonder if the key point is to obtain the best fit for a very specific experimental database, or if the most important is to represent globally the mechanical behaviour keeping in mind the physics of the soft tissues. Anyway to correctly fit experimental data, it is crucial to have the maximum of different loading conditions to analyse the role of the different parameters of the constitutive equation. The equations are often implemented in finite element codes to describe any loading conditions. These conditions can be very far from uniaxial or biaxial loadings. In this case, it is important to choose a constitutive equation that can be fitted with few experimental data that do not simulate non-physical response for any loading. Generally, it is better to limit the number of invariants and
of material parameters. Moreover, the simplest functions are often the less risky as they cannot create non-physical responses even if their fitting is not the best. Another limitation is that, very few in vivo experimental data are available, they would be a benefit to the experimental fit [139].

8. Conclusion

It is difficult to compare two constitutive equations, the comparison depends on the studied soft tissues and the conclusions will strongly depend on the chosen experimental data. Nevertheless, some comparisons between anisotropic strain energies were realised in particular cases, see for example [54, 62, 66, 140, 141, 142].

This chapter presents only the basis of the hyperelasticity modelling, but soft tissues present a lot of other phenomena, that should be taken into account in the modelling according to the medical problem that is simulated, one can quote the activation of muscle (see chapter II of this book) or the viscoelasticity of the tissues (see chapter III of this book) [143, 9, 144, 145, 146] or the stress softening [12, 26] for example. Nevertheless, the hyperelasticity representation remains the starting point in a modelling and should be described as well as possible before introducing other phenomena.
References

[1] R.W. Ogden, Non-Linear elastic deformation, Dover, 1984
[38] J. Schröder, P. Neff, Poly-, quasi- and rank-one convexity in applied mechanics, CISM International Centre for Mechanical Sciences 516.
[60] Y. C. Fung, K. Fronk, P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression,
[64] R. N. Vaishnav, J. T. Young, D. J. Patel, Distribution of stresses and of strain-energy density through the wall
[65] K. Rajagopal, C. Bridges, K. R. Rajagopal, Towards an understanding of the mechanics underlying aortic
[67] M. P. Nash, P. J. Hunter, Computational mechanics of the heart: from tissue structure to ventricular function,
[68] J. P. Wilber, J. R. Walton, The convexity properties of a class of constitutive models for biological soft tissues,
deformation of rubber, Philos. Trans. R. Soc. A243 (1951) 251–288.
[71] M. Kaliske, A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite
[73] M. Destrade, M. D. Gilchrist, D. A. Prikazchikov, G. Saccomandi, Surface instability of sheared soft tissues.,
J. Biomech. Eng. 130.
[74] X. Ning, Q. Zhu, Y. Lanir, S. S. Margulies, A transversely isotropic viscoelastic constitutive equation for
[75] C. O. Horgan, G. Saccomandi, A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic
[77] J. A. Weiss, B. N. Maker, S. Govindjee, Finite implementation of incompressible, transversely isotropic hyper-
[78] P. Ciarletta, I. Izzo, S. Micera, F. Tendick, Stiffening by fiber reinforcement in soft materials: A hyperelastic
[79] P. M. Pinsky, D. van der Heide, D. Chernyak, Computational modeling of mechanical anisotropy in the cornea

