J. G. Drobny, Handbook of thermoplastic elastomers, 2014.

S. J. Lee, D. N. Heo, M. Heo, M. H. Noh, D. Lee et al., Most simple preparation of an inkjet printing of silver nanoparticles on fibrous membrane for water purification: Technological and commercial application, J. Ind. Eng. Chem, pp.1-6, 2016.

L. Zhu, J. Dai, L. Chen, J. Chen, H. Na et al., Design and fabrication of imidazolium ionimmobilized electrospun polyurethane membranes with antibacterial activity, J. Mater. Sci, pp.1-11, 2016.

C. Tonda-turo, M. Boffito, C. Cassino, P. Gentile, and G. Ciardelli, Biomimetic polyurethanebased fibrous scaffolds, Mater. Lett, vol.167, pp.9-12, 2016.
DOI : 10.1016/j.matlet.2015.12.117

J. Han, S. Farah, A. J. Domb, and P. I. Lelkes, Electrospun rapamycin-eluting polyurethane fibers for vascular grafts, Pharm. Res, vol.30, pp.1735-1748, 2013.
DOI : 10.1007/s11095-013-1016-5

K. Marycz, M. Mar?dziak, J. Grzesiak, R. Fryczkowski, and J. Laska, Polyurethane/polylactidebased electrospun nonwovens as carriers for human adipose-derived stromal stem cells and chondrogenic progenitor cells, Polym.-Plast. Technol. Eng, vol.55, pp.1897-1907, 2016.
DOI : 10.1080/03602559.2016.1163586

H. Ke, M. U. Ghulam, Y. Li, J. Wang, B. Peng et al., Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy, Renew. Energy, pp.1-9, 2016.

X. Peng, L. Zhou, B. Jing, Q. Cao, X. Wang et al., A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries, J. Solid State Electrochem, vol.20, pp.255-262, 2015.
DOI : 10.1007/s10008-015-3030-5

U. Dagli, Z. Guler, and A. S. Sarac, Covalent immobilization of Tyrosinase on electrospun polyacrylonitrile/polyurethane/poly(m-anthranilic acid) nanofibers: An electrochemical impedance study, Polym.-Plast. Technol. Eng, vol.54, pp.1494-1504, 2015.

J. Sheng, M. Zhang, W. Luo, J. Yu, and B. Ding, Thermally induced chemical cross-linking reinforced fluorinated polyurethane/polyacrylonitrile/polyvinyl butyral nanofibers for waterproof-breathable application, RSC Adv, vol.6, pp.29629-29637, 2016.
DOI : 10.1039/c5ra27913e

D. L. Safranski, J. M. Boothby, C. N. Kelly, K. Beatty, N. Lakhera et al.,

J. C. Guldberg and . Griffis, Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens, J. Mech. Behav. Biomed. Mater, vol.62, pp.545-555, 2016.

U. Stirna, B. Lazdin, D. Vilsone, and M. J. Lopez,

. Moreno, Structure and properties of the polyurethane and polyurethane foam synthesized from castor oil polyols, J. Cell. Plast, vol.48, pp.476-488, 2012.

T. Sunada, M. Kuriyagawa, T. Kawamura, K. -h, and . Nitta, Influence of domain structure on the mechanical properties of thermoplastic polyurethane materials, vol.7, pp.8-14, 2011.

A. Pedicini and R. J. Farris, Mechanical behavior of electrospun polyurethane, Polym, vol.44, pp.6857-6862, 2003.
DOI : 10.1016/j.polymer.2003.08.040

C. Briody, B. Duignan, S. Jerrams, and S. Ronan, Prediction of compressive creep behaviour in flexible polyurethane foam over long time scales and at elevated temperatures, Polym. Test, pp.1019-1025, 2012.

L. Marsavina, E. Linul, T. Voiconi, and T. Sadowski, A comparison between dynamic and static fracture toughness of polyurethane foams, Polym. Test, vol.32, pp.673-680, 2013.
DOI : 10.1016/j.polymertesting.2013.03.013

D. Whisler and H. Kim, Experimental and simulated high strain dynamic loading of polyurethane foam, Polym. Test, vol.41, pp.219-230, 2015.
DOI : 10.1016/j.polymertesting.2014.12.004

O. Weißenborn, C. Ebert, and M. Gude, Modelling of the strain rate dependent deformation behaviour of rigid polyurethane foams, Polym. Test, vol.54, pp.145-149, 2016.

K. Lee, B. Lee, C. Kim, H. Kim, K. Kim et al., Stress-strain behavior of the electrospun thermoplastic polyurethane elastomer fiber mats, Macromol. Res, vol.13, pp.441-445, 2005.

Q. Meng, J. Hu, Y. Zhu, J. Lu, and Y. Liu, Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods, Smart Mater. Struct, vol.16, pp.1192-1197, 2007.

N. J. Amoroso, A. D'amore, Y. Hong, W. R. Wagner, and M. S. Sacks, Elastomeric electrospun polyurethane scaffolds: The interrelationship between fabrication conditions, fiber topology, and mechanical properties, Adv. Mater, vol.23, pp.106-111, 2011.

I. Liao, J. B. Liu, N. Bursac, and K. W. Leong, Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers, Cell. Mol. Bioeng, vol.1, pp.133-145, 2008.

Y. Huang, C. Kuo, Y. Shu, S. Jang, W. Tsen et al., Highly aligned and single-layered hollow fibrous membranes prepared from polyurethane and silica blends through a two-fluid coaxial electrospun process, Macromol. Chem. Phys, vol.215, pp.879-887, 2014.

E. Scholten, L. Bromberg, G. C. Rutledge, and T. A. Hatton, Electrospun polyurethane fibers for absorption of volatile organic compounds from air, ACS Appl. Mater. Interfaces, vol.3, pp.3902-3909, 2011.

C. Zandén, M. Voinova, J. Gold, D. Mörsdorf, I. Bernhardt et al., Surface characterisation of oxygen plasma treated electrospun polyurethane fibres and their interaction with red blood cells, Eur. Polym. J, vol.48, pp.472-482, 2012.

S. Lee and S. K. Obendorf, Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration, Text. Res. J, vol.77, pp.696-702, 2007.

J. J. Lee, B. C. Ang, A. Andriyana, M. I. Shariful, and M. A. Amalina, Fabrication of PMMA/zeolite nanofibrous membrane through electrospinning and its adsorption behavior, J. Appl. Polym. Sci, pp.1-13, 2017.

D. Wong, A. Andriyana, B. C. Ang, Y. R. Chan, J. J. Lee et al., Surface morphology analysis and mechanical characterization of electrospun nanofibrous structure, Key. Eng. Mater, vol.701, pp.89-93, 2016.

A. Homeira-emad and H. Gholamreza, Fabrication of polyurethane and thermoplastic polyurethane nanofiber by controlling the electrospinning parameters, Mater. Res. Express, vol.4, p.105308, 2017.

D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, J. Appl. Phys, vol.87, pp.4531-4547, 2000.

W. E. Teo, M. Kotaki, X. M. Mo, and S. Ramakrishna, Porous tubular structures with controlled fibre orientation using a modified electrospinning method, Nanotechnol, vol.16, pp.918-924, 2005.

A. Theron, E. Zussman, and A. L. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnol, vol.12, pp.384-390, 2001.

D. Li, Y. Wang, and Y. Xia, Electrospinning nanofibers as uniaxially aligned arrays and layerby-layer stacked films, Adv. Mater, vol.16, pp.361-366, 2004.

W. E. Teo and S. Ramakrishna, Electrospun fibre bundle made of aligned nanofibres over two fixed points, Nanotechnol, vol.16, pp.1878-1884, 2005.

F. Bueche, Molecular basis for the mullins effect, J. App. Polym. Sci, vol.4, pp.107-114, 1960.

W. Chang, C. Wang, and C. Chen, The combination of electrospinning and forcespinning: Effects on a viscoelastic jet and a single nanofiber, Chem. Eng. J, vol.244, pp.540-551, 2014.

T. D. Stocco, B. V. Rodrigues, F. R. Marciano, and A. O. Lobo, Design of a novel electrospinning setup for the fabrication of biomimetic scaffolds for meniscus tissue engineering applications, Mater. Lett, vol.196, pp.221-224, 2017.

C. A. Bashur, R. D. Shaffer, L. A. Dahlgren, S. A. Guelcher, and A. S. Goldstein, Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells, Tissue Eng.: Part A, vol.15, pp.2435-2445, 2009.

S. Haider, Y. Al-zeghayer, F. A. Ali, A. Haider, A. Mahmood et al.,

M. O. Aijaz, Highly aligned narrow diameter chitosan electrospun nanofibers, J. Polym. Res, vol.20, pp.1-11, 2013.

Z. X. Meng, Y. S. Wang, C. Ma, W. Zheng, L. Li et al., Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering, Mater. Sci. Eng. C, vol.30, pp.1204-1210, 2010.

H. Tong and M. Wang, An investigation into the influence of electrospinning parameters on the diameter and alignment of poly(hydroxybutyrate-co-hydroxyvalerate) fibers, J. Appl. Polym. Sci, vol.120, pp.1694-1706, 2011.

M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase et al., Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers, J. Am. Chem. Soc, vol.129, pp.2777-2782, 2007.

D. Wong, A. Andriyana, B. C. Ang, and E. Verron, Surface morphology and mechanical response of randomly oriented electrospun nanofibrous membrane, Polym. Test, vol.53, pp.108-115, 2016.
DOI : 10.1016/j.polymertesting.2016.05.020

J. Lu, Z. Zhang, X. Ren, Y. Chen, J. Yu et al., High-elongation fiber mats by electrospinning of polyoxymethylene, Macromol, vol.41, pp.3762-3764, 2008.
DOI : 10.1021/ma702881k

URL : https://pubs.acs.org/doi/pdf/10.1021/ma702881k

P. Kumar and R. Vasita, Understanding the relation between structural and mechanical properties of electrospun fiber mesh through uni-axial tensile testing, J. Appl. Polym. Sci, pp.1-11, 2017.

F. Guo, N. Wang, L. Hou, J. Liu, L. Wang et al., Mechanical enhancement of bi-phasic electrospun nanofibrous films by optimizing composition and configuration, Mater. Chem. Phys, vol.193, pp.220-226, 2017.
DOI : 10.1016/j.matchemphys.2017.02.038

L. Li, A. Andri, A. B. Chin, H. Bertrand, and V. Erwan, Electrospun PMMA polymer blend nanofibrous membrane: Electrospinability, surface morphology and mechanical response, Mater. Res. Express, vol.5, p.65311, 2018.

R. Inai, M. Kotaki, and S. Ramakrishna, Deformation behavior of electrospun poly(L-lactide-coe-caprolactone) nonwoven membranes under uniaxial tensile loading, J. Polym. Sci.: Part B: Polym. Phys, vol.43, pp.3205-3212, 2005.

D. Papkov, Y. Zou, M. N. Andalib, A. Goponenko, S. Z. Cheng et al., Simultaneously strong and tough ultrafine continuous nanofibers, ACS Nano, vol.7, pp.3324-3331, 2013.
DOI : 10.1021/nn400028p

M. K. Shin, S. I. Kim, S. J. Kim, S. Kim, H. Lee et al., Size-dependent elastic modulus of single electroactive polymer nanofibers, Appl. Phys. Lett, vol.89, pp.1-4, 2006.

E. P. Tan and C. T. Lim, Physical properties of a single polymeric nanofiber, Appl. Phys. Lett, vol.84, pp.1603-1605, 2004.
DOI : 10.1063/1.1651643

K. Chen, T. L. Yu, Y. Chen, T. Lin, and W. Liu, Soft-and hard-segment phase segregation of polyester-based polyurethane, J. Polym. Res, vol.8, pp.99-109, 2001.

G. Gallagher, A. Padsalgikar, E. Tkatchouk, C. Jenney, C. Iacob et al., Environmental stress cracking performance of polyether and PDMS-based polyurethanes in an in vitro oxidation model, J. Biomed. Mater. Res. B: Appl. Biomater, pp.1-15, 2016.

R. Erdem, M. Usta, O. Akalin, M. Atak, A. Yuksek et al., The impact of solvent type and mixing ratios of solvents on the properties of polyurethane based electrospun nanofibers, Appl. Surf. Sci, vol.334, pp.227-230, 2015.

L. Sun, R. P. Han, J. Wang, and C. T. Lim, Modeling the size-dependent elastic properties of polymeric nanofibers, Nanotechnol, vol.19, pp.1-8, 2008.

A. E. Brown, R. I. Litvinov, D. E. Discher, P. K. Purohit, and J. W. Weisel, Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water, vol.325, p.741, 2009.

S. E. Szczesny, T. P. Driscoll, H. Tseng, P. Liu, S. Heo et al., Crimped nanofibrous biomaterials mimic microstructure and mechanics of native tissue and alter strain transfer to cells, ACS Biomater. Sci. Eng, 2016.

G. A. Johnson, D. M. Tramaglini, R. E. Levine, K. Ohno, N. Choi et al., Tensile and viscoelastic properties of human patellar tendon, J. Orthop. Res, p.12, 1994.

J. S. Shah, M. I. Jayson, and W. G. Hampson, Mechanical implications of crimping in collagen fibres of human spinal ligaments, IMechE, vol.8, 1979.

H. J. Qi and M. C. Boyce, Stress-strain behavior of thermoplastic polyurethanes, Mech. Mater, vol.37, pp.817-839, 2005.

L. Mullins, Softening of rubber by deformation, Rubber Chem. Technol, vol.42, pp.339-362, 1969.

J. T. Fan, J. Weerheijm, and L. J. Sluys, High-strain-rate tensile mechanical response of a polyurethane elastomeric material, Polym, vol.65, pp.72-80, 2015.

J. Yi, M. C. Boyce, G. F. Lee, and E. Balizer, Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes, Polym, vol.47, pp.319-329, 2006.

C. P. Buckley, C. Prisacariu, and C. Martin, Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure, Polymer, pp.3213-3224, 2010.

M. Cheng and W. Chen, Experimental investigation of the stress-stretch behavior of EPDM rubber with loading rate effects, Int. J. Solid Struct, vol.40, pp.4749-4768, 2003.

E. M. Christenson, J. M. Anderson, A. Hiltner, and E. Baer, Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers, Polym, vol.46, 2005.

J. S. Bergstrom and M. C. Boyce, Constitutive modeling of the large strain time-dependent behavior of elastomers, J. Mech. Phys. Solids, vol.46, pp.931-954, 1998.

K. K. Kar and A. K. Bhowmick, High-strain hysteresis of rubber vulcanizates over a range of compositions, rates, and temperatures, J. Appl. Polym. Sci, vol.65, pp.1429-1439, 1997.

J. Gorce, J. W. Hellgeth, and T. C. Ward, Mechanical hysteresis of a polyether polyurethane thermoplastic elastomer, Polym. Eng. Sci, vol.33, pp.1170-1176, 1993.

A. B. Chai, A. Andriyana, E. Verron, and M. R. Johan, Mechanical characteristics of swollen elastomers under cyclic loading, Mater. Des, vol.44, pp.566-572, 2013.

D. E. Hanson, M. Hawley, R. Houlton, K. Chitanvis, P. Rae et al., Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect, Polym, vol.46, pp.10989-10995, 2005.

G. Kraus, C. W. Childers, and K. W. Rollmann, Stress softening in carbon black-reinforced vulcanizates. Strain rate and temperature effects, J. App. Polym. Sci, vol.10, pp.229-244, 1966.

J. Diani, B. Fayolle, and P. Gilormini, A review on the Mullins effect, Eur. Polym. J, vol.45, pp.601-612, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00773015

T. Sui, N. Baimpas, I. P. Dolbnya, C. Prisacariu, and A. M. Korsunsky, Multiple-length-scale deformation analysis in a thermoplastic polyurethane, Nat. Commun, vol.6, 2015.

H. Xia, M. Song, Z. Zhang, and M. Richardson, Microphase separation, stress relaxation, and creep behavior of polyurethane nanocomposites, J. App. Polym. Sci, vol.103, pp.2992-3002, 2007.

S. Abouzahr and G. L. Wilkes, Structure property studies of polyester-and polyether-based MDI-BD segmented polyurethanes: Effect of one-vs. two-stage polymerization conditions, J. App. Polym. Sci, vol.29, pp.2695-2711, 1984.