Conjugate prior in the Mallows model with Spearman distance
Marta Crispino, Isadora Antoniano - Villalobos

To cite this version:
Marta Crispino, Isadora Antoniano - Villalobos. Conjugate prior in the Mallows model with Spearman distance. 2018 ISBA World Meeting, Jun 2018, Edinburgh, United Kingdom. <hal-01973165>

HAL Id: hal-01973165
https://hal.archives-ouvertes.fr/hal-01973165
Submitted on 8 Jan 2019

The HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Conjugate prior in the Mallows model with Spearman distance

M. Crispino1,2 and I. Antoniano - Villalobos2
1 Université Grenoble Alpes, Inria, CNRS, LIRIS, 38000 Grenoble, France.
2 BIDSA and DEC, Bocconi University, Milan, Italy.
marta.crispino@inria.fr

1. The Mallows model with Spearman distance

The Mallows model (Mallows 1957) is a class of non-uniform distributions for \(R \in \mathcal{P}_n \), the set of \(n \)-dimensional permutations, of the form

\[
P(R|\theta, \rho) = \frac{e^{-\theta h_R(\rho)}}{Z(\theta)}
\]

- \(\rho \in \mathcal{P}_n \) consensus ranking, location parameter
- \(\theta \geq 0 \) precision parameter
- \(d(\cdot, \cdot) \), right-invariant (Diaconis 1988) distance
- \(Z(\theta) = \sum_{\rho \in \mathcal{P}_n} e^{-\theta h_R(\rho)} \), partition function (independent of \(\theta \) because of right-invariance of \(d(\cdot, \cdot) \))

Spearman distance: the squared \(l_2 \) norm on \(\mathcal{P}_n \)

\[
d_s(\rho, \sigma) = \sum_{i=1}^{n} (\rho_i - \sigma_i)^2, \quad \rho, \sigma \in \mathcal{P}_n
\]

Consider \(n \) items, ranked by \(N \) assessors.

Denote by \(R_i = (R_{i1}, R_{i2}, \ldots, R_{in}) \in \mathcal{P}_n \), the ranking of user \(i \), \(i = 1, \ldots, N \).

Under the Mallows model with Spearman distance (MDS), given \(\theta \), the likelihood can be written as

\[
P(R_1, \ldots, R_N|\theta, \rho) \propto \exp \left(-\theta \sum_{i=1}^{N} d_s(R_i, \rho_i) \right)
\]

where \(R_i = \frac{1}{N} \sum_{j=1}^{N} R_{ij}, \quad i = 1, \ldots, n \), is the sample average of the \(i \)-th rank.

2. Sufficient statistics and mle

The sufficient statistic for \(\rho = (\rho_1, \ldots, \rho_n) \), when \(\theta \) is known, is \(R = (R_1, \ldots, R_N) \).

Proposition 1. Let \(R_1, \ldots, R_N \sim \text{Mall}(\theta, \rho) \), and define the vector of sample ranks \(R \) as above.

Assume \(R_i \neq R_j \) for each \(i \neq j \), and denote by \(Y_i(R) = (Y_{i1}(R), \ldots, Y_{in}(R)) \in \mathcal{P}_n \), the rank vector of \(R_i \), \(i.e \), \(Y_i(R) = Y_i = \sum_{j=1}^{n} \mathbb{1}(R_i \leq R_j), \quad i = 1, \ldots, n \).

Then the unique mle of \(\theta \) is

\[
\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \mathbb{R}} \sum_{i=1}^{N} d_s(R_i, \hat{R}_i) = \frac{1}{N} \sum_{i=1}^{N} Y_i(R).
\]

Notice that, in general, \(R \notin \mathcal{P}_n \). However \(R \) lives in the permutohedron of order \(n \).

Definition 1. The permutohedron of order \(n \), \(\mathcal{P}_n \), is an \((n-1)\)-dimensional polytope embedded in an \(n \)-dimensional space, the vertices of which are formed by permuting the coordinates of the vector \((1, 2, \ldots, n)\). Equivalently, it is the convex hull of the points \(\rho \in \mathcal{P}_n \), the set of \(n \)-dim permutations.

Figure 1: Left: The permutohedron of order 3 is a regular hexagon, filling a cross section of a 2 x 2 x 2 cube. Right: The permutohedron of order 4 is a truncated icosahedron.

3. Bayesian Mallows

Vitelli et al. (2018) proposed a framework for performing Bayesian inference on the Mallows model.

They assume that \(\rho \) is a priori uniformly distributed, \(\rho \sim \text{Unif}(\mathcal{P}_n) \).

Contribution: the objective prior in the sense of Villa & Walker (2015) is the uniform prior density on the space of permutations \(\rho \sim \text{Unif}(\mathcal{P}_n) \).

Can we go further? How to put an informative prior on \(\rho \)?

A. \(\rho \) given: conjugate prior for \(\rho \)
B. \(\theta \) not given: conjugate conditioned on \(\theta \) + clever prior on \(\theta \mapsto \text{MH sampling scheme to approximate the posterior} \)

3.A Conjugate prior for \(\rho \)

(given \(\theta \))

Proposition 2. Keeping \(\theta \) fixed, the conjugate prior for \(\rho \in \mathcal{P}_n \) is

\[
\pi(\rho|\theta, \mathcal{N}_0) = \frac{1}{Z(\theta)} \left[-\theta \mathcal{N}_0 \sum_{i=1}^{n} (\rho_i - \rho_0)^2 \right]
\]

where \(\rho_0 \in \mathcal{P}_n \), and \(\mathcal{N}_0 \in \mathbb{N} \). We call \(\pi(\rho|\theta, \mathcal{N}_0) \) the Mallows extended distance; it is a Mallows model where the consensus \(\rho_0 \) belongs to \(\mathcal{P}_n \).

Posterior: weighted average of prior parameter and observed mean (recall Diaconis et al. 1979):

\[
\rho_N = \frac{N_0}{N_0 + N} \mathcal{N} + \frac{N}{N_0 + N} \rho_0 \in \mathcal{P}_n
\]

Then \(\mathcal{N}_0 \) can be interpreted as an equivalent sample size (recall the Gaussian).

Remark 1. When \(\mathcal{N}_0 = 0 \), the conjugate prior reduces to the uniform, for all \(\rho_0 \). When \(\rho_0 = (\frac{1}{n}, \ldots, \frac{1}{n}) \) the conjugate prior reduces to the uniform, for all \(\theta \).

3.A.1 Toy example 1

Sample \(N = 30 \) rankings from the MMS with \(\rho = (3, 1, 2) \), and \(\theta = 0.18 \). Conjugate prior with \(\rho_0 = (1, 2, 3) \), and varying \(\mathcal{N}_0 = 0 \).

3.A.2 Toy example 2

Same model. Increasing sample size \((N) \). Conjugate prior with \(\rho_0 = (1, 2, 3) \) and \(\mathcal{N}_0 = 3 \) (i.e. \(\mathcal{N}_0 \approx 16 \)).

3.B Prior when \(\theta \) not given

When \(\theta \) is unknown, the partition function of \(\pi(\rho|\theta, \mathcal{N}_0) \) depends on the model parameters and cannot be avoided.

Solution: Let \(\pi(\theta) \propto Z(\mathcal{N}_0, \rho_0) \), so that the posterior full conditional is treatable.

3.B Prior when \(\theta \) not given

Same model. Increasing sample size \((N) \). \(\rho_0 = (1, 2, 3) \) and \(\mathcal{N}_0 = 16 \).

Figure 3: The balls have radius proportional to the frequency of rankings in the posterior sample.

Figure 4: The balls have radius proportional to the frequency of rankings in the posterior sample.

Ongoing work

- Can we say something about the convergence rate?
- Can we say something about \(Z(\cdot, \cdot) \)?
- Applications?
- Interesting data to test our methods on? Please take contact!

References

