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A BAYESIAN MALLOWS APPROACH TO
NON-TRANSITIVE PAIR COMPARISON DATA:

HOW HUMAN ARE SOUNDS?

By Marta Crispino1 , Elja Arjas2,3 , Valeria Vitelli3 , Natasha
Barrett4 and Arnoldo Frigessi3,5

Inria Grenoble1⇤, University of Helsinki2, University of Oslo3, Norwegian
State Academy for Music in Oslo4, Oslo University Hospital 5

We are interested in learning how listeners perceive sounds as
having human origins. An experiment was performed with a series of
electronically synthesized sounds, and listeners were asked to com-
pare them in pairs. We propose a Bayesian probabilistic method to
learn individual preferences from non-transitive pairwise comparison
data, as happens when one (or more) individual preferences in the
data contradicts what is implied by the others. We build a Bayesian
Mallows model in order to handle non-transitive data, with a la-
tent layer of uncertainty which captures the generation of preference
misreporting. We then develop a mixture extension of the Mallows
model, able to learn individual preferences in a heterogeneous popu-
lation. The results of our analysis of the musicology experiment are of
interest to electroacoustic composers and sound designers, and to the
audio industry in general, whose aim is to understand how computer
generated sounds can be produced in order to sound more human.

1. Introduction. We consider experiments involving a set of assessors
(experts, judges, users) who express preferences about a set of items. Each
assessor is shown a predetermined sequence of pairs of items, one pair at
a time, and chooses from every pair the item that she prefers. Preference
is here interpreted in a broad sense as an order relation. The assessors act
independently, and typically di↵erent sets of pairs are presented to di↵erent
assessors, varying also their order. An assessor does not have the possibility
to go back and check the answers she gave previously, let alone change
any answer later. Under such circumstances, often some answers given by
an individual assessor, when considered afterwards jointly, do not satisfy
logical transitivity of preferences (Tversky, 1969), that is, they may contain a
pattern of the form x�y , y�z but z�x. On the other hand, neither are the
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answers given by an individual assessor independent, because conscientious
assessors will generally try to follow some logic in their expressed preferences.

Pair comparisons are preferred to ratings or full rankings of a set of items
when there are many items to be compared, or when the relative di↵erences
between them are small: in both these cases assessors are unlikely to be able
to inspect and compare all items jointly in order to perform a full ranking.
A pairwise comparison test is then often preferred, and sometimes it is the
only possible experimental procedure (Agresti, 1996).

In this paper we consider pairwise comparison data coming from an ex-
periment where each assessor was asked to hear a series of two di↵erent
abstract sounds, and to tell which one was perceived as more human. Each
subject only performed a limited number of comparisons, leading to sparse
data, where not all pairs of sounds were compared by each assessor. The
results of this test are relevant for musicologists, composers and sound de-
signers, whose aim is to understand how human performance expression
can be communicated through spatial audio, leading to computer generated
sounds appearing more life-like. Although every sound can be regarded as
‘spatial’ in that sound waves propagate through space, the term ‘spatial au-
dio’ is here used to describe the way sound captures the physical movement
in 3-D needed to produce it. The cohort of listeners who took part in the
experiment had varying backgrounds, ranging from musicologists to non-
specialized university students. Therefore we expected listeners to cluster
into groups, sharing di↵erent opinions about the degree of human causa-
tion behind sounds. In addition to the grouping of the listeners around a
shared consensus ranking of the “humanness of sounds”, we were interested
in studying the association between individual listeners’ rankings and their
own musical experience or musical background. This application is described
in detail in Section 2.

Non-transitivity can arise for many reasons, for example assessors’ inat-
tentiveness, uncertainty in their preferences, and actual confusion, even when
one specific criterion for ranking is used. These situations are so common
that most pairwise comparison data are in fact non-transitive at the indi-
vidual level, thus creating a need for methods able to predict individual
preferences from pairwise choices that lack logical transitivity, and only in-
volve a very limited number of pair comparisons. Notice that the kind of
non-transitivity that we consider in this paper regards only the individual
level preferences. A di↵erent type of non-transitivity arises when aggregat-
ing preferences across assessors, as under Condorcet (Marquis of Condorcet,
1785) or Borda (de Borda, 1781) voting rules.

We propose a new method for the analysis of pairwise comparison data
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that may contain non-transitive individual pairwise comparisons. The method
is based on the classical Mallows rank model (Mallows, 1957) and builds on
its recent extension introduced by Vitelli et al. (2018). Given pairwise data
provided by a collection of individual assessors, the method outputs Monte
Carlo samples from the joint posterior distribution for the individual full
rankings of all items and an assumed shared consensus ranking between
them. In Section 3.3, this hierarchical structure is further relaxed by intro-
ducing a mixture model allowing for clustering of the assessors.

The key ingredient, compared to Vitelli et al. (2018), is to add to the
model hierarchy one more layer of latent variables, accounting for the pos-
sibility that the assessors can make mistakes. By a mistake we mean that
the order from an assigned pairwise comparison is reported in a way which
is not consistent with the assessor’s own ‘true’ full ranking, whose existence
is assumed in the model. The rationale behind our model can be explained
as follows. In an ideal situation an assessor would be fully conscious of
her preference ordering of all items, and then simply report the consequent
ordering each time a pairwise comparison is requested. More realistically,
however, she becomes aware of her potential ranking of the items only pro-
gressively in time as more pairs are presented to her for comparison. Then
it becomes increasingly more di�cult to remember exactly what items had
been shown earlier and how they had been ordered, with the consequence
that reporting results from pairwise comparisons that do not respect transi-
tivity becomes more and more likely. Under such circumstances, particularly
when the number of items is larger, the pair comparison data will almost
inevitably contain some answers which do not satisfy the requirement of log-
ical transitivity with the rest. Technical errors, such as mistakes in typing,
or concentration errors may also occur.

To describe such imperfections in the assessments, we introduce two alter-
native variants (described in Sections 3.1 and 3.2) of the probabilistic model
for mistakes:

1. The probability of making a mistake is constant, independent of the
pairs being assessed, and independent of all other comparisons made
by the same assessor.

2. The probability of making a mistake depends on the items being com-
pared, and is higher for pairs which are more similar to each other.

The literature on inferential models for non-transitive pair data arising
at the individual level is limited and discussed in Section 5. As far as we
can see, the present paper stands out as the only approach to non-transitive
pair data, when the individual hidden rankings are of interest, the same pairs
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are not repeatedly assessed by each assessor and are few, and a Bayesian
approach is of interest. One important feature of our Mallows model is the
possibility to choose, for the considered specific application, an appropriate
distance function. Some problems require a distance able to measure only
the disorder in the given domain, while in others a distance more suited for
learning preferences in a population would be preferred. In the former case,
the Cayley distance (Cayley, 1849) would be a natural choice, while Kendall
(Kendall, 1938) and footrule (Spearman, 1904) would have advantages in
the latter. For instance, consider the two rankings �

1

= (1, 2, 3, 4, 5) and
�

2

= (5, 2, 3, 4, 1), where the top and bottom elements of �
1

are reversed in
�

2

. The normalized Cayley distance between �

1

and �

2

is 0.25, while the
normalized Kendall distance is 0.7. If �

1

and �

2

represent the rankings of
two assessors of five movies, Kendall’s distance may be more appropriate, as
these rankings represent very di↵erent profiles: one of the two assessors likes
most the movie that the other assessor likes least, and vice versa. However,
�

1

and �

2

di↵er by a unique translocation: if they represent genomes, we
could consider these rankings as very similar and be more eager to use the
Cayley distance as metric in the Mallows model. For a detailed description
of the distances mentioned and of their properties we refer to Diaconis (1988,
Chapter 6).

Our method provides the posterior distribution of the consensus ranking,
as well as the posterior distribution of the latent individual rankings for each
assessor. The consensus ranking can be seen as a model-based Bayesian ag-
gregation of individual preferences of a group of assessors. It is analogous
to the quantities which are usually of interest in the rank aggregation liter-
ature (Negahban, Oh and Shah, 2012; Dwork et al., 2001; Kenyon-Mathieu
and Schudy, 2007; Rajkumar et al., 2015). The estimated posterior distribu-
tions of the individual rankings can be of great interest, for example, when
performing personalized recommendations, or in studying how individual
preferences change with assessor related characteristics.

This paper is organized as follows. In Section 2 we describe the application
which motivated this study, and then in Section 3 we present our model for
the statistical analysis of the consequent data. Numerical inference is based
on a Markov Chain Monte Carlo algorithm, outlined in Section 4. Section 5
gives a short overview on other methods for the description and analysis of
pairwise comparisons. Section 6 is devoted to simulations, while in Section
7 we apply our method to the sound data, showing that the model identifies
meaningful clusters of listeners, with similar perception of electroacoustic
sounds. Finally, in Section 8 we summarize the contributions of this paper.
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2. Acousmatic music experiment. Acousmatic music is a type of
electronic music composed for presentation using loudspeakers, as opposed
to live or video recorded performance. The composer manipulates digitally
recorded sounds, so that the cause of the sound, being a musical instrument
or any other sound making system, remains hidden. Indeed, when sounds
are played over loudspeakers there are no visual cues to help listeners un-
derstand how the sounds were made. On the other hand, when we hear the
sound of musical instruments or sounds from our everyday environment, we
are able to recognize their cause, since in visual music we obtain the informa-
tion that indicates the sounding object, i.e. its causation. Since the advent
of recording technology, abstract sounds (that is, sounds transformed with
computer tools) have been used in much of the sound-world we experience
over the Internet, TV and film.

The question of interest is related to the ability of listeners to identify
the presence of human causation through the spatial behavior of abstract
sounds. Spatial in this context describes the fact that the causation of sound
happens as an action in 3-D space. The starting point for the experiment
was a high-speed motion tracking recording of the physical movement used
to produce one selected sound: a cellist bowing a down-bow chord. Features
of this 3-D movement were successively subtracted, resulting in a series of
12 motion data-sets of varying proximity to the original. The motion data
were then made audible by a process called parameter-mapping sonifica-
tion (Grond and Berger, 2011), where parameters in the data are mapped
to parameters controlling computer generated sound. The mapping rules
are chosen to draw on our everyday perception of spatial motion, which
involves not only absolute 3-D spatial location but in addition changes in
volume, intensity and pitch, correlated with changes in proximity and speed.
In other words, listeners heard the physical spatial motion through sonifica-
tion, rather than hearing the sound that the motion created, which, in this
instance, was the sound of the cello. Testing how listeners perceive a sound
for which we lack a clear and commonly understood descriptive vocabulary
is problematic. Therefore pair comparisons is the most appropriate design.

2.1. Pair comparison experiment. The total number of stimuli was 12.
Test stimulus 1 (S1) was designed to most clearly sonify all features of the
data. Each of the other 11 test stimuli were sonified by modifying one or more
features of the data. This involved removing pitch and volume variation,
flattening directional changes in the motion, or slowing the overall motion
speed (as summarized in Table 1).

Each of the 46 listeners involved in the experiment was exposed to 30
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Table 1
Summary of the test sounds.

S1: Pitch, volume, grain duration and spatial variations at their most dynamic ranges.
S2: Spatial motion occurring in front.
S3: Played in mono over one speaker direct-front.
S4: Partial flattening of 3-D spatial variation leaving the main direction changes.
S5: Total flattening of 3-D spatial variation leaving the main direction changes.
S6: Removal of volume variation.
S7: Removal of pitch variation.
S8: Removal of pitch and volume variation.
S9: Partial flattening of 3-D spatial variation; removal of pitch and volume variation.
S10: Total flattening of 3-D spatial variation; removal of pitch and volume variation.
S11: S1 played 30% slower.
S12: S1 played 50% slower.

pairs of these sounds, which is ca. 45% of the total number of possible
pairs of 12 stimuli. The pairs were chosen randomly, without repetitions,
and independently for each assessor. The items in each pair were played in
randomized order.

Listeners were then asked to indicate, for each pair, which of the two
stimuli most evoked a sensation of human physical movement of any kind,
to follow their feelings, rather than imagining to watch a performance. The
listeners were not told that the source motion stemmed from a cellist, nor
were they asked to identify a specific human spatial movement. Each listener
carried out the test sitting centrally to the loudspeaker array. Prior to the
experiment, listeners were presented with a short training session of three
sounds not used in the test sequence. When the experiment began, the pairs
of sounds were played sequentially, listeners noted their answers on a chart,
selecting the first or the second from each pair of unlabeled sounds, and were
requested to always make a choice even if they found it di�cult to decide. If
needed, they could ask to hear a test pair for a second time. At the end, they
were asked to complete two questionnaires, the aim of which was to assign
a Musical Sophistication Index score (MSI) and a rating of Spatial Audio
awareness (SAA) to all the listeners. The MSI used was the Ollen musical
sophistication index (Ollen, 2006), which is an online survey that tests the
validity of 29 indicators of musical sophistication. The SAA index consisted
of five questions as indicators of how aware listeners were of spatial audio
regardless of musical background. Such a test did not exist in the literature,
and was custom designed for the experiment.

The choice to rely on a pairwise comparison experiment is crucially based
on the listeners’ lack of experience with abstract sounds. It is easier for
the participants to compare two sounds, rather than to be exposed to sev-
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eral, which could create confusion. The experiment, indeed, was di�cult as
expected: 37 listeners (80%) reported non-transitivities in their pair compar-
isons, only 9 out of 46 listeners were able to stay consistent with themselves.

A complete description of the background, hypotheses, experimental setup,
and discussion of results in Barrett and Crispino (2018).

3. Bayesian Mallows models for non-transitive pairwise com-
parisons. We consider the situation where N assessors independently ex-
press their preferences between pairs of the n items in O = {O

1

, ..., On}.
In many situations of practical interest the assessors do not decide on the
set of pairs to be considered, which are instead assigned to them by an ex-
ternal authority. In this paper we decided not to model the way in which
the pairs are chosen, and simply assume that each assessor j receives a
di↵erent subset Cj = {Cj1, ..., CjMj} of Mj  n(n � 1)/2 random pairs.
Let Bj = {Bj1, ...,BjMj} be the set of pairwise preferences given by as-
sessor j, where Bjm is the order that assessor j assigned to the pair Cjm.
For example, if Cjm = {Om1 , Om2}, it could be that Bjm = (Om1 �Om2),
m

1

,m
2

2 {1, ..., n}, meaning that item Om1 is preferred to item Om2 . Such
data can be incomplete since not all items, nor pairs, are always handled by
each assessor. We assume no ties in the data, that is, assessors are forced
to express their preference for all pairs in the list Cj assigned to them, and
indi↵erence is not permitted.

We denote a generic ranking by r = (r
1

, ..., rn) 2 Pn, where ri 2 {1, ...n}
is the rank of item Oi (the most preferred item has rank ri = 1), and Pn is the
space of n-dimensional permutations. A widely used distance-based family
of distributions for ranks is the Mallows model (Mallows, 1957; Diaconis,
1988). According to the Mallows model, the probability density of a given
ranking r = (r

1

, ..., rn), here denoted by Mal(⇢,↵), is given by

(1) fR(r |↵,⇢) := exp[�↵
nd(r,⇢)]

Zn(↵)
1Pn(r).

In (1), ⇢2Pn is the location parameter representing the shared consensus
ranking, ↵ > 0 is the scale parameter measuring the concentration of the
data around ⇢, and d(·, ·) is a distance function between two n�dimensional
permutations that satisfies right-invariance (Diaconis, 1988), i.e., d(r,⇢) =
d(r � r0,⇢ � r0), 8r, r0,⇢ 2 Pn, where ⇢ � r0 = ⇢r0 = (⇢r01 , ..., ⇢r0n). Right-
invariance is crucial since from this property it follows that the partition
function of (1) does not depend on the location parameter, and can then be
written as Zn(↵) =

P
r2Pn

exp
��↵

nd(r,1n)
 
, where 1n = (1, ..., n) (see for

example Mukherjee (2016)). When the distance function in (1) is chosen to
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be the Kendall, the Cayley, or the Hamming distance, the partition func-
tion of the Mallows model is available in closed form (Fligner and Verducci,
1986). For this reason, most of the work on the Mallows was limited to these
distances (see, for example, Fligner and Verducci (1986), Lu and Boutilier
(2014), Irurozki, Calvo and Lozano (2016, 2014)). The Mallows with other
distance functions was less treated because of its computational complex-
ity. Recently, Vitelli et al. (2018) gave a procedure to compute Zn(↵) when
the footrule and Spearman distances are used, either exactly (up to some
moderate values of n), or approximated through an Importance Sampling
technique. The authors set the original Mallows model in a Bayesian frame-
work, also allowing for data in the form of transitive pairwise comparisons.
We generalize their model (described in Section 4.2 of Vitelli et al. (2018))
to handle non-transitive pairwise comparisons.

The main assumption is that each assessor j has a personal latent ranking,
Rj = (Rj1, ..., Rjn) 2 Pn, distributed according to the Mallows density (1),

R

1

, ...,RN |⇢,↵ i.i.d⇠ Mal(⇢,↵). We model the situation where each assessor
j, when announcing her preferences, matches the items under comparison
with her latent ranking Rj . Then, if the assessor is consistent with Rj , the
pairwise orderings in Bj are induced by Rj according to:

(Om1�Om2) () Rjm1 < Rjm2 ,(2)

where Rjmi denotes the rank of item Omi in Rj . In this case the set of
pairwise orderings Bj contains only mutually compatible (a.k.a. transitive)
preferences, since the preferences are induced from a complete ranking in Pn

that, by definition, is transitive. The transitive closure of a set of pairwise
preferences, denoted by tc(Bj), is the smallest set that consistently extends
the original preference set: it is defined as the set union of Bj and all pair-
wise preferences that are not explicitly given but are induced from Bj by
transitivity. In this case it is possible to first compute tc(Bj), and second,
to make inference on the posterior distribution of the Mallows parameters
by integrating out all the rankings r 2 Pn that are compatible with the
transitive closure of the preference sets, denoted by r  tc(Bj),

(3) ⇡(↵,⇢| B
1

, ...,BN ) / ⇡(↵)⇡(⇢)
NY

j=1

2

4
X

r tc(Bj)

fRj (r|↵,⇢)
3

5 .

This setting was described in Vitelli et al. (2018), Section 4.2.
If the assessor is not fully consistent with her latent ranking, the pairwise

orderings in Bj may not be mutually compatible. In such a case the transi-
tive closure may not exist and the previous procedure cannot be followed.
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Therefore a model able to account for non-transitive patterns in the data is
needed in this setting.

We propose a probabilistic strategy based on the assumption that non-
transitivities are due to mistakes in deriving the pair order from the latent
raking Rj . The likelihood assumed for a set of preferences Bj (analogous to
the summation of eq. (3)) is

(4) f(Bj |↵,⇢) =
X

r2Pn

f(Bj ,Rj = r|↵,⇢) =
X

r2Pn

fRj (r|↵,⇢)f(Bj |Rj = r),

where f(Bj |Rj = r) is the probability of ordering the pairs in Cj as in Bj

(possibly generating non-transitivities), when the latent ranking for assessor
j is Rj = r. It can therefore be seen as forming the error model in this
context, which will be specified below. The joint posterior of the model
parameters is then:

⇡(↵,⇢| B
1

, ...,BN ) / ⇡(↵)⇡(⇢)
NY

j=1

2

4
X

r2Pn

fRj (r|↵,⇢)f(Bj |Rj = r)

3

5 .(5)

In this paper we have assumed a gamma prior, ⇡(↵) = ��

�(�)↵
��1e��↵1R+(↵),

for ↵, and the uniform prior on Pn, ⇡(⇢) =
1Pn (⇢)

n! , for ⇢.
This strategy is able to recover possible linear orderings close (in terms

of some given distance) to the non-transitive sets of preferences. We de-
veloped two basic models for the probability of making a mistake: the
Bernoulli model (BM) and the Logistic model (LM). BM assumes that
non-transitivities arise from random mistakes while LM assumes that non-
transitivities arise from mistakes due to di�culty in ordering similar items.

3.1. Bernoulli model (BM). Assume that the pairwise comparisons given
by an assessor are conditionally independent given her latent ranking Rj ,

f(Bj |Rj = r) =
MjY

m=1

f(Bjm|Rj = r).(6)

We define here a function of a given comparison Bjm = (Om1 �Om2), and
of a given ranking r = (r

1

, ..., rn) 2 Pn, g(Bjm, r) = 1(rm1 > rm2), where
m

1

is the index of the preferred item Om1 in the m-th comparison Bjm of
assessor j, and m

2

is the index of the less preferred item. Thus g(Bjm, r) = 1
if the preference order of Bjm contradicts with that implied by the ranking
r (in the sense of eq. (2)).
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We then assume the following Bernoulli type model for modeling the
probability that an assessor j makes a mistake in a given pairwise comparison
Bjm, that is the probability that she reverses the true latent preference
implied by her latent ranking Rj :

P(Bjm mistake | ✓,Rj = r) = P(g(Bjm, r) = 1 | ✓,Rj = r) = ✓, ✓ 2 [0, 0.5).

Eq. (6) is then given by

f(Bj | ✓,Rj = r) =
✓

✓

1� ✓

◆PMj
m=1 g(Bjm,r)

(1� ✓)Mj .

We assign to ✓ the truncated Beta distribution on the interval [0, 0.5) as
prior, with given hyperparameters 

1

and 
2

: ⇡(✓) / ✓1�1(1�✓)2�11
[0,0.5)(✓),

conjugate to the Bernoulli model. We choose the truncated Beta mainly for
identification purposes, but this choice is also motivated by the fact that we
want to force the probability of making a mistake to be less than 0.5.

Let B
1:N be a shorthand for B

1

, ...,BN , and R

1:N for R
1

, ...,RN .
The posterior density of the model parameters, defined on the support

S = 1
⇣
{↵ > 0} \ {⇢ 2 Pn} \ {Rj 2 Pn}Nj=1

\ {0  ✓ < 0.5}
⌘
, has the fol-

lowing form,

⇡(↵,⇢, ✓|B
1:N )/⇡(↵)⇡(⇢)⇡(✓)

NY

j=1

2

4
X

r2Pn

fRj (r|↵,⇢)f(Bj |✓,Rj = r)

3

5 .(7)

We sample from the density of eq. (7) through an augmented sampling
scheme, by first updating ↵,⇢ and ✓ given B

1:N andR

1:N , and then updating
R

1:N given ↵,⇢, ✓ and B
1:N . The former step is performed by using the

conditional density

⇡(↵,⇢, ✓|B
1:N ,R

1:N ) = ↵��1e
�↵
⇣
�+ 1

n

PN

j=1
d(Rj ,⇢)

⌘
�N ln[Zn(↵)]

·
✓

✓

1� ✓

◆1�1+
PN

j=1

PMj
m=1 g(Bjm,Rj)

(1� ✓)
2+1�2+

PN

j=1
Mj .

(8)

The second step is performed by using the density

⇡(R
1:N |↵,⇢, ✓,B

1:N ) / ⇡(R
1:N |↵,⇢)⇡(B

1:N |✓,R
1:N ) =

=
e
�↵

n

PN

j=1
d(Rj ,⇢)

[Zn(↵)]N

✓
✓

1� ✓

◆PN

j=1

PMj
m=1 g(Bjm,Rj)

(1� ✓)
PN

j=1
Mj .

(9)
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3.2. Logistic model (LM). The idea behind the logistic model for mis-
takes is that an assessor j is more likely to be confused (and consequently
to make a mistake) if two items in a pair are more similar according to her
latent rank vector Rj . We assume the following logistic type model for the
probability of making a mistake in a given pairwise comparison

logitP
⇣
Bjm mistake

���Rj ,�0,�1
⌘
= ��

0

� �
1

dRj ,m � 1

n� 2
,

where dRj ,m is the `
1

distance of the ranks of the two items under com-
parison in Bjm, according to Rj : if Bjm = (Om1 � Om2), then dRj ,m =
|Rjm1 �Rjm2 |. We assume that �

1

and �
0

are a priori independent and dis-
tributed according to a gamma prior, �

1

⇠ �(�
11

,�
12

), and �
0

⇠ �(�
01

,�
02

).
These choices are motivated by the fact that we want to model a negative
dependence between the distance of the items and the probability of mak-
ing a mistake (�

1

> 0), and second, we want to force the probability of
making a mistake when the items have ranks di↵ering by 1 to be less than
0.5 (�

0

> 0). The posterior density of the model, defined on the support
S = 1 ({↵ > 0} \ {⇢ 2 Pn} \ {R

1:N 2 Pn} \ {�
1

> 0} \ {�
0

> 0}), is then

⇡(↵,⇢,�
0

,�
1

|B
1:N ) / ⇡(�

0

)⇡(�
1

)⇡(⇢)⇡(↵)

·
NY

j=1

2

4
X

r2Pn

fRj (r|↵,⇢)f(Bj |�0,�1,Rj = r)

3

5 .
(10)

Analogously to eq. (7), we sample from the posterior of eq. (10) by first
updating ↵,⇢,�

0

and �
1

, given B
1:N and R

1:N , i.e. from

⇡(↵,⇢,�
0

,�
1

|B
1:N ,R

1:N ) / ↵��1��01�1
0

��11�1
1

QN
j=1

QMj
m=1

"

1 + e��0��1

dRj ,m
�1

n�2

#

· e�↵
⇣
�+ 1

n

PN

j=1
d(Rj ,⇢)

⌘
�N ln[Zn(↵)]��0

h
�02+

PN

j=1

PMj
m=1 g(Bjm,Rj)

i

· e��1

h
�12+

1
n�2

PN

j=1

PMj
m=1 g(Bjm,Rj)(dRj ,m

�1)
i

.

(11)
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Secondly, we update R

1:N , given ↵,⇢,�
0

,�
1

and B
1:N , from

⇡(R
1:N |↵,⇢,�

0

,�
1

,B
1:N ) / ⇡(R

1:N |↵,⇢)⇡(B
1:N |�

0

,�
1

,R
1:N ) /

/ e
�↵

n

PN

j=1
d(Rj ,⇢)�N ln[Zn(↵)]��0

PN

j=1

PMj
m=1 g(Bjm,Rj)

· e�
�1
n�2

PN

j=1

PMj
m=1 g(Bjm,Rj)(dRj ,m

�1)

2

4
NY

j=1

MjY

m=1

 

1 + e��0��1

dRj ,m
�1

n�2

!3

5
�1

.

(12)

3.3. Clustering non-transitive assessors. So far we assumed that a unique
consensus ranking was shared by all assessors. Since in many situations this
assumption is unrealistic, we allow for clustering the assessors into separate
subsets, each sharing a consensus ranking of the items. We propose a mix-
ture model generalization of the Bernoulli model of Section 3.1 to deal with
heterogeneous assessors expressing pairwise preferences with mistakes.

Let z
1

, ..., zN 2 {1, ..., G} be the class labels indicating how individual
assessors are assigned to one of the G clusters. Each cluster is described
by a di↵erent pair of Mallows parameters (↵g,⇢g), g = 1, ..., G, so that the
likelihood has the following form:

f(B
1:N |↵

1:G,⇢1:G, ✓, ⌘1:G, z1:N )=
NY

j=1

8
<

:
X

r2Pn

fRj (r|↵zj ,⇢zj )f(Bj |✓,Rj = r)

9
=

; ,

where

fRj (r|↵zj ,⇢zj ) =
1Pn(r)

Zn(↵zj )
exp

⇢
�↵zj

n
d(r,⇢zj )

�
.

We assume that the cluster labels are a priori conditionally independent
given the mixing parameters of the clusters, ⌘

1

, ..., ⌘G, and distributed ac-
cording to a categorical distribution

⇡(z
1

, ..., zN |⌘
1

, ..., ⌘G) /
NY

j=1

⌘zj =
NY

j=1

GY

g=1

⌘
1g(zj)
g ,

where ⌘g � 0, 8g = 1, ..., G and
P

g ⌘g = 1. Finally we assign to ⌘
1

, ..., ⌘G
the Dirichlet density with parameter �. These choices lead to the following
posterior density,

⇡(↵
1:G,⇢1:G,⌘1:G, ✓, z1:N |B

1:N ) / ⇡(✓)
GY

g=1

[⇡(↵g)⇡(⇢g)⇡(⌘g)]

·
NY

j=1

2

4⇡(zj |⌘1:G)
X

r2Pn

fRj (r|↵zj ,⇢zj )f(Bj |✓,Rj = r)

3

5 .

(13)
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Similarly to the homogeneous case, we then sample from the posterior of
eq. (13) by first updating ↵

1:G,⇢1:G, ⌘1:G, z1:N and ✓, given B
1:N and R

1:N ,
and then updating R

1:N , given ↵
1:G,⇢1:G, ⌘1:G, z1:N , ✓ and B

1:N . The former
step is done by using the conditional density

⇡(↵
1:G,⇢1:G, ⌘1:G, z1:N , ✓|B

1:N ,R
1:N ) /

GY

g=1

"

↵��1
g e��↵g⌘

⇠�1+
PN

j=1
1g(zj)

g

#

·
✓

✓

1� ✓

◆1�1+
PN

j=1

PMj
m=1 g(Bjm,Rj)

(1� ✓)
2+1�2+

PN

j=1
Mj

·
NY

j=1

2

4e
�

↵zj
n d(Rj ,⇢zj )

Zn(↵zj )

3

5 .

(14)

The second step is performed by using the density

⇡(R
1:N |↵

1:G,⇢1:G, ⌘1:G, ✓, z1:N ,B
1:N ) /

/
NY

j=1

2

4e
�

↵zj
n d(Rj ,⇢zj )

Zn(↵zj )

✓
✓

1� ✓

◆PMj
m=1 g(Bjm,Rj)

(1� ✓)Mj

3

5 .
(15)

Since label switching is not handled inside our MCMC, MCMC itera-
tions are re-ordered after convergence has been achieved, by applying the
algorithm of Stephens (2000).

4. MCMC for non-transitive pairwise preferences. We develop
a Markov Chain Monte Carlo (MCMC) algorithm which, at convergence,
samples from the posterior density of eq. (7). As explained in Section 3.1,
the MCMC iterates between two main steps:

1. Update ↵,⇢ and ✓ given B
1:N and R

1:N (using eq. (8)):

(a) Metropolis update of ⇢

(b) Metropolis update of ↵

(c) Gibbs update of ✓

2. Update R

1:N given ↵,⇢, ✓ and B
1:N (using eq. (9)).

In step 1(a), we propose a new consensus ranking ⇢

p according to a sym-
metric proposal which is centered around the current consensus ranking ⇢

t.

Definition 1. Swap proposal. At step t, denote the current version of
the consensus ordering vector by x

t = (⇢t)�1, which is the vector whose n
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components are the items in O ordered from best to worst according to ⇢

t,
i.e., xti = Ok () ⇢tk = i. Let L⇤ 2 {1, .., n}. Sample uniformly an integer l
from {1, 2, ..., L⇤} and draw a random number u uniformly in {1, 2, ..., n�l}.
The proposal xp has components

(16) xpi =

8
>><

>>:

xti if i 6= {u, u+ l}
xtu+l if i = u

xtu if i = u+ l

and the proposed ranking is ⇢

p = (xp)�1.

The parameter L⇤ is the maximum allowed distance between the ranks of
the swapped items, and is used for tuning the acceptance probability in the
Metropolis-Hastings step. The transition probability of the Swap proposal is
symmetric, and given by q(⇢p ! ⇢

t) = 1

L⇤
PL⇤

l=1

1

n�l1(|⇢p � ⇢

t| = 2l). The
ranking is then accepted with probability ✏ = min{1, a⇢}, where

ln(a⇢) = �↵

n

NX

j=1

h
d(Rj ,⇢

p)� d(Rj ,⇢
t)
i
.

In step 1(b) we propose ↵p from a log-normal density lnN (ln(↵t),�2

↵),
and accept it with probability ✏ = min{1, a↵}, where

ln(a↵) = �
h
ln(↵p/↵t)

i
�

�+

1

n

NX

j=1

d(Rj ,⇢)
�
(↵p�↵t)�N


ln[Zn(↵

p)/Zn(↵
t)]
�
.

This acceptance probability takes into account the asymmetric transition
probability of the chain, that results from the log-normal proposal. The
partition function Zn(↵) can be computed exactly or approximated by the
importance sampling scheme proposed by Vitelli et al. (2018), depending on
the distance function chosen and on the number n of items considered.

In step 1(c) we sample ✓ from the beta distribution, truncated to the
interval [0, 0.5), with updated hyper-parameters,

0
1

= 
1

+
NX

j=1

MjX

m=1

g(Bjm,Rj), 0
2

= 
2

+
NX

j=1

MjX

m=1

[1� g(Bjm,Rj)].

Step 2 is a Metropolis-Hastings for the individual rankings. Here we ex-
ploit the fact that, when fixing all other parameters and the data B

1

, ...,BN ,
R

1

, ...,RN are conditionally independent, and that each Rj only depends on
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the corresponding data Bj . We thus sample a proposed individual ranking
r

p
j from the Swap proposal, separately for each j = 1, ..., N . The Swap pro-

posal is here advantageous because it perturbs locally not only the current
individual ranking r

t
j , but also the function g(Bjm, rtj).

Remark. The Swap proposal always gives a proposed individual ranking
r

p
j 6= r

t
j . However, it may happen that g(Bjm, rpj ) = g(Bjm, rtj), 8m =

1, ...,Mj .

This is important for what concerns the acceptance probability of rpj . If
g(Bjm, rpj ) = g(Bjm, rtj), 8m = 1, ...,Mj , the acceptance probability depends
only on the ratio of the Mallows likelihoods of rpj and r

t
j , and is equal to

✏ = min{1, a
1

}, where

ln(a
1

) = �↵

n

h
d(rpj ,⇢)� d(rtj ,⇢)

i
.

If g(Bjm, rpj ) 6= g(Bjm, rtj) for some m = 1, ...,Mj , the acceptance prob-
ability depends also on the mistake model, and is equal to ✏ = min{1, a

2

}
where

ln(a
2

) = ln(a
1

) +
MjX

m=1

h
g(Bjm, rpj )� g(Bjm, rtj)

i
ln [✓/(1� ✓)] .

Example. To illustrate this step of the algorithm, suppose that an assessor
expresses the following set of preferences,

Bj = {(O2�O1), (O5�O4), (O5�O3), (O5�O2), (O5�O1), (O3�O2), (O1�O3)}.

This set contains the non-transitive pattern O
2

�O
1

�O
3

�O
2

. For the
illustration, suppose that the current value of the individual ranking vec-
tor is r

t
j = (5, 4, 3, 2, 1), which corresponds to the ordering vector x

t
j =

(O
5

, O
4

, O
3

, O
2

, O
1

), and for which
P

7

m=1

g(Bjm, rpj ) = 1. If we sample
the proposal xp

j = (O
5

, O
3

, O
4

, O
2

, O
1

), this gives g(Bjm, rpj ) = g(Bjm, rtj),
8m = 1, ..., 7, and r

p
j = (5, 4, 2, 3, 1) 6= r

t
j. However, if we sample x

p
j =

(O
4

, O
5

, O
3

, O
2

, O
1

), then r

p
j = (5, 4, 3, 1, 2) 6= r

t and also
P

7

m=1

g(Bjm, rpj ) =

2 6= P
7

m=1

g(Bjm, rtj) since, according to the sampled r

p
j , the preference

O
5

�O
4

is reversed.

Appropriate convergence of the MCMC must in practice be checked by
inspecting the trace plots of the parameters, and by monitoring for example
the integrated autocorrelation. In Supplement A we explain in detail how
the algorithm is adapted to the case of the logistic mistake model, and to
the mixture extension.
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5. Other approaches to pairwise preference data. In the classical
Bradley-Terry model (BT) for pair comparisons (Bradley and Terry, 1952)
the probability that item Oi is preferred to item Ok is expressed as the ratio

(17) Pr(Oi � Ok|µ) = µi

µi + µk
,

where µ = (µ
1

, . . . , µn), is a vector of item-specific consensus ratings shared
by all assessors, forming a linear scale of score parameters. From this fol-
lows that the odds for (Oi � Ok) against (Ok � Oi) are given by µi/µk.
In addition, it is assumed that all pairwise comparisons are conditionally
independent given µ. Therefore, the likelihood expression of the BT model
corresponding to data consisting of several pair comparisons is the product,
across all considered pairs, of terms of the form (17). For this reason, all
pairwise data, even when they may have come from a number of individual
assessors, are e↵ectively merged when performing inference on µ.

The work of Bradley and Terry was preceded by two important earlier
papers, by Thurstone (1927) and Zermelo (1929). Thurstone considered a
similar preference data context as BT, but the work was based on a Gaussian
error model. Zermelo (1929), in contrast, proposed exactly the same model
as Bradley and Terry, but it was presented as a statistical model for the
results from a chess tournament, without the presence of individual asses-
sors. After these pioneering works, several extensions of the basic BT model
have been presented, mostly in the econometric and psychometric literature.
Often these papers apply the logarithmic transformation ui = logµi of the
parameters, with the e↵ect that the probabilities (17) get the familiar lo-
gistic form. The logit of the odds for (Oi � Ok) against (Ok � Oi) is then
equal to the contrast ui � uk between the corresponding logarithmic scores.
Extensions to regression models that account for the influence of item spe-
cific covariates on the comparison results are then readily available; for more
comments on this, see below.

Data generated from the BT model are often not transitive, and this is
the case particularly when some contrasts ui�uk are close to 0. In situations
in which the actual data come from a number of individual assessors, as was
the case in our musicology experiment, it is a natural idea to try to account
in the modeling separately for the two sources that may have created non-
transitivity in the combined data: One the one hand, the di↵erences in the
assessment profiles of the assessors, and on the other, possible lack of tran-
sitivity in the pairwise comparisons coming from each individual assessor.
This distinction was made fully explicit in the structure of our BM and BL
models of Sections 3.1 and 3.2.
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As an alternative to our approach, an anonymous referee suggested a
hierarchical two-layer structure based on the BT model. In that suggestion,
data coming from an individual assessor would be described by a BT model,
but with score parameters µj = (µj1, ..., µjn) specific to each assessor j.
On the lower level of model hierarchy, the referee suggested that, for each
item i, the score parameters µji for di↵erent assessors j would be sampled
independently from a Gaussian distribution centered at a common value µi.

We developed such a model, which we call HBT (with H for hierarchi-
cal), work in progress (Crispino and Frigessi, 2018). There, we discuss (i)
the suitability of the HBT model for data in the form of repeated pairwise
comparisons performed by each assessor, and (ii) the poor performance of
HBT compared to our Bayesian Mallows approach when data are such that
each assessor only performs a limited number of comparisons without repe-
titions, so that not all pairs of items are compared by every assessor. Such
a small incomplete example, with no intransitivities, is considered in Liu
et al. (2018), where further di↵erences between the HBT and the Bayesian
Mallows model are discussed. One important reason for the di↵erence in
the case of incomplete and sparse data is that often they do not satisfy the
strong connection condition (Ford, 1957). This condition is fulfilled if, for
any partition of all items into two non-empty sets, both subsets contain at
least one item that was preferred to some item in the other set by at least
one assessor, see Yan (2016). If this condition is not satisfied, the maximum
likelihood estimator does not exist and the posterior inferences based on the
HBT model will be highly sensitive to the specification of the prior and will
require corresponding sensitivity analyses.

The BT model was represented and fitted as a log-linear model (Dittrich,
Hatzinger and Katzenbeisser, 1998, 2002). In these works, the authors in-
troduced assessor specific covariates into their framework, and extended it
to the case of dependent pair comparisons. Building on Dittrich, Hatzinger
and Katzenbeisser (1998), Francis, Dittrich and Hatzinger (2010) further
introduced random e↵ects for each assessor in order to account for residual
heterogeneity that is not included in individual-specific covariates. However,
their method is applied to pair preferences derived from full rankings. As
such, the pair preferences are complete, that is, n(n�1)/2 pairs are assessed
by each assessor, and transitive. Their method cannot be used on our data
where each assessor provides a limited number of pairwise preferences, typ-
ically smaller than the maximum n(n � 1)/2, and is allowed to contradict
herself, thus leading to non-transitive patterns in the data.

An interesting literature that builds on the Thurstone’s model is the psy-
chometric one (Bockenholt, 1988; Böckenholt, 2001; Böckenholt and Tsai,
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2001; Böckenholt, 2006). In these works, the authors develop di↵erent gen-
eralizations of the Thurstone model, accounting for instance for multidimen-
sional parameters, in case the items are evaluated with respect to multiple
aspects, or introducing dependency among the observed pairs, by the inclu-
sion of random e↵ects in the model. However inference is performed when
the data include repeated comparisons for each assessor, and all items are
compared by each assessor.

Pair comparison data were also recently handled within the Mallows rank-
ing models by Lu and Boutilier (2014) and Vitelli et al. (2018). However,
both papers deal only with transitive pairs, explicitly ruling out the non-
transitive patterns in the data.

Volkovs and Zemel (2014) propose a score-based method, called Multi-
nomial Preference model (MPM), that generalizes the Plackett Luce model
(Luce, 1959; Plackett, 1975). The main di↵erence between their MPM and
our model is in the data generating mechanisms, which Volkovs and Zemel
(2014) assumed to be a multinomial score based process, while our method
builds on considering distances between ranking vectors. In addition, their
goal is to learn a single consensus ranking of the items, or multiple consensus
rankings in case of clustering. Our method instead has the ability to further
learn the individual latent rankings for each assessor.

Ding, Ishwar and Saligrama (2015) proposed a model for noisy pairwise
ranking data, based on a mixed membership of Mallows models (M4), which
generalizes the mixture model of Lu and Boutilier (2014). Their proposal is
near to ours, in that both postulate the existence of latent linear orderings.
However, Ding, Ishwar and Saligrama (2015) assume a basic separability
property, which would be di�cult to justify in contexts similar to our data
application. Furthermore, they model the presence of non-transitive patterns
in the data as arising because each assessor has multiple latent linear order-
ings, while we propose a mistake model. Moreover, they consider only the
Kendall distance, while our model handles every right-invariant distance.

There is a large body of literature on mixture models for ranking data
(e.g Murphy and Martin, 2003; Gormley and Murphy, 2006; Caron, Teh
and Murphy, 2014; Meilǎ and Chen, 2010; Jacques and Biernacki, 2014).
Although related to our mixture model extension, all these papers are based
on data in the form of rankings, and they do not directly apply, or extend,
to non-transitive pairwise comparison data. Apart from this di↵erence, the
work of Jacques and Biernacki (2014), which presents a mixture extension
of the model developed in Biernacki and Jacques (2013), has some similari-
ties with ours. These authors assume the existence of a consensus ranking,
and of individual rankings, and they model stochastic errors between these
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permutations of the items, to explain the variability of the individual rank-
ings around the consensus. In this way, the pairwise comparisons are always
complete and transitive, in contrast to our setting.

6. Simulation study. The aim of the experiments was to validate the
method and to evaluate its performance in some test situations. The data
were simulated from the Mallows model with the Bernoulli mistake model,
varying parameters ✓, ↵, n, N , and Mj , j = 1, ..., N , while always using the
footrule distance. The number of items n was always kept below 50, thus
enabling us to use the exact partition function (Vitelli et al., 2018). For a
detailed description of the data generation, see Supplement B.

Various point estimates can be deduced from the posterior distribution
of ⇢, one being the maximum a posteriori (MAP). We prefer the following
sequential construction, called the cumulative probability (CP) consensus
ordering in Vitelli et al. (2018): first we select the item which has the largest
marginal posterior probability of being ranked 1st; then, excluding this first
choice, we select the item which has the largest marginal posterior proba-
bility of being ranked 1st or 2nd among the remaining ones, and so on.

In order to assess the performance of our methods, in Figure 1 we plot
the posterior distribution of the normalized footrule distance between the
estimated consensus ⇢ and the true consensus, df (⇢,⇢true) = 1

n

Pn
i=1

|⇢i �
⇢truei |, for varying parameters ↵, ✓, �M (the average number of pairs given
to each assessor) and N , while keeping fixed n = 10.

As expected, the performance of the method improves as the number of
assessors N increases (Figure 1a), as the probability of making mistakes ✓
decreases (Figure 1b), as the dispersion of the individual latent rankings
R

true

j around ⇢

true decreases, that is when ↵ increases (Figure 1c), and
when the average number of pairwise comparisons becomes larger (Figure
1d). Interestingly, in the last case, the method performs generally well also
when the average number of pairs is �M = 15, being only 1/3 of the maximal
number of pairs possible.

In Figure 2 we plot the posterior distribution of df (⇢,⇢true) corresponding
to simulation experiments with n 2 {15, 25}, when increasing the number
of assessors N . Note that the number of pairs assessed by each assessor in
the case n = 25 is around 50, which is 1/6 of all the possible pairs.

Next, we studied the performance of the method in terms of the precision
of the individual ranking estimation. We quantified the results by the proba-
bility of getting at least 3 items right, among the top-5, defined as follows. For
each assessor j = 1, ..., N , we found the triplet of items Dj

3

= {Oi1 , Oi2 , Oi3}
that had maximum posterior probability of being ranked jointly among the
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Fig 1: Results of the simulated data. Posterior CDFs of df (⇢,⇢true) as a
function of N for ↵ = 3, �M = 25, ✓ = 0.1 (a); as a function of ✓ for ↵ = 3,
N = 40, �M = 25 (b); as a function of ↵ for ✓ = 0.1, N = 40, �M = 25 (c);
as a function of �M for ↵ = 3, N = 40, ✓ = 0.1 (d).

top�3 items, i.e. the triplet that maximized
P

�2P3
P({Rji1 , Rji2 , Rji3} =

� | data), where � denotes a permutation of the set {1, 2, 3}. This posterior
quantity was estimated along the MCMC trajectory. We defined Hj

5

to be
the set of 5 highest ranked items in R

true

j , for each assessor j. We then

checked whether Dj
3

⇢ Hj
5

(that is, if the top-3 estimated items were all
among the top-5 of each assessor). The percentages of assessors for which
this is true are reported in Table 2. We notice that the results are overall
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Fig 2: Results of the simulated data. Posterior CDFs of df (⇢,⇢true) as a
function of N , for ✓ = 0.1, ↵ = 3.5, �M = 25, n = 15 (a), and for ✓ = 0.1,
↵ = 4.5, �M = 50, n = 25 (b).

very good: in the cases where n is set to 10 (first 4 sub-tables from the left in
Table 2), we consistently learn 3 out of the top�5 items in more than 70%
of the assessors (with a peak of 100%). Also in the more di�cult cases of
n = 15 and n = 25 (first 2 sub-tables from the right in Table 2) the results
are very good, especially considering that this percentage does not include
the cases where only 2 (or 1) items where correctly estimated in the top
positions.

Table 2
Results of the simulated data. Percentage of assessors for which the estimated top-3

items belong to the true top-5. Data correspond to simulations with the same parameter
settings as the results shown in Figures 1 and 2: from left to right, same parameters as

in Figure 1a, Figure 1b, Figure 1c, Figure 1d, Figure 2a and Figure 2b.

N % ✓ % ↵ % �M % N % N %
20 88 0.05 92.5 2 82.5 15 85 50 65 100 44
30 83 0.1 87.5 4 95 25 97.5 100 58 150 46
60 83 0.15 75 6 92.5 35 100 150 60 300 45
120 75 0.2 72.5

We then chose randomly one of the simulated data cases and computed the
posterior probabilities of correctly predicting the preference order of all pairs

not assessed by the assessors, i.e. P
h
g(Bj,new,Rj) = g(Bj,new,Rtrue

j )
��� data

i
.

Figure 3 shows the boxplots for these predictive probabilities, (left) stratified
according to the number of pairs each assessor assessed in the data, and
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(right) stratified according to the footrule distance between the individual
ranking R

true

j and the consensus ⇢true, d(⇢true,Rtrue

j ) =
Pn

i=1

|⇢truei �Rtrue

ji |.

Fig 3: Results of the simulated data. Posterior probabilities of correctly
predicting the preference order of all pairs not assessed by the assessors,
(left) stratified according to the number of pairs each assessor assessed in
the data, and (right) stratified according to d(⇢true,Rtrue

j ).

In the case considered, the model had a very good predictive power, es-
pecially considering that the simulated data had many mistakes (around
10%). We also notice a slight increase of the predictive probabilities as Mj

increases (left panel) and as d(⇢true,Rtrue

j ) decreases (right panel). These
results are not surprising: it is easier to predict correct orderings of new
pairs when (i) the assessor assesses more pairs, and (ii) the assessor’s own
ranking resembles more the shared consensus.

In Supplement C we report an analysis of data generated by the logistic
model LM. The results were very similar to those obtained above. In fact,
the posterior distribution of �

1

was highly concentrated around 0, which is
when LM collapses to BM.

7. Human causation in sounds. We analyzed the data using the
mixture model explained in Section 3.3 with footrule distance. With n = 12
sounds we can use the exact expression of the partition function (Vitelli
et al., 2018). In the Dirichlet prior for ⌘, we set � = 20, which favors high-
entropy distributions, thus reflecting our inability to express precise prior
knowledge. In the Beta prior for ✓, we set the hyperparameters at 

1

=

2

= 1, that is, the uniform distribution on the interval [0, 0.5), and the
hyperparameters of the prior for ↵ at � = 1 and � = 1/10, as discussed in
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Vitelli et al. (2018). We run the MCMC sampler for 106 iterations, after a
burn-in of 2 · 105. Separate analyses were performed for G 2 {1, . . . , 7}.

In order to choose an appropriate number of clusters, we plot in Figure
4 two quantities: on the left, the within-cluster sum of footrule distances
between the individual rankings and the consensus ranking of that cluster,PG

g=1

P
j:zj=g df (Rj ,⇢g); on the right, the within-cluster indicator of mis-fit

to the data,
PG

g=1

P
j:zj=g

PMj
m=1

g(Bjm,⇢g). Both these measures are defined
in Vitelli et al. (2018), and tested as good measures to select G.

More traditional information criteria, such as the deviance information
criterion (Spiegelhalter et al., 2002), were considered, however their perfor-
mance was quite unstable, possibly attributable to the sparsity of the data.
Inference on the number of clusters could have been alternatively performed
via a reversible jump MCMC.

Fig 4: Acousmatic data. Boxplots of the within-cluster sum of footrule dis-
tances between the individual rankings and the consensus ranking of that
cluster (left), and of the within-cluster indicator of mis-fit to the data (right),
for di↵erent choices of G.

There appears to be an elbow in the figures at G = 3, to guide us in the
choice of the number of clusters. We decided on G = 3, also motivated by
the relatively small sample size of the experiment (N = 46).

Table 3 shows the results for G = 3: the maximum a posteriori (MAP)
estimates for ⌘ and ↵, together with their 95% highest posterior density
(HPD) intervals, are shown at the top of the table. The table also shows
the estimated cluster-specific consensus lists of sounds, estimated by the CP
procedure. We observe the di↵erences in the three consensus lists. S1, the
stimulus with the most dynamic spatial motion, is on top in cluster 3, but
at the bottom in cluster 1; S8, the test stimulus that has maximum spatial
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details but no volume nor pitch change, is on top in cluster 1, but second to
the last in clusters 2 and 3. Finally, S5, the stimulus that contains the least
movement variation but has pitch and volume suppressed, is ranked third
and first in clusters 1 and 2, but towards the bottom of the list in cluster 3.

Table 3
Acousmatic data. Sounds are ordered according to the CP consensus ordering, obtained

from the posterior distribution of ⇢g, g = 1, 2, 3.

Rank 1 2 3 4 5 6 7 8 9 10 11 12

G1
↵1 = 2.66
(1.14,4.96) S8 S10 S5 S9 S6 S4 S7 S11 S12 S2 S3 S1
⌘1=0.31
(0.21,0.41)

G2
↵2 = 5.16
(3.15,9.29) S5 S4 S12 S2 S11 S3 S6 S1 S7 S9 S8 S10
⌘2=0.33
(0.22,0.43)

G3
↵3 =5.32
(3.61,7.66) S1 S7 S11 S2 S4 S12 S6 S3 S5 S9 S8 S10
⌘3=0.37
(0.27,0.48)

Listeners in cluster 1 found variation in volume or pitch as a negative
or distracting feature. They rated S8 at the top, a test stimulus that has
maximum spatial details but no volume nor pitch change. Also, S10, S5 and
S9, which were ranked next, lack volume and pitch details. The bottom 4
stimuli contain maximum pitch and volume variation. Among them was S3
(mono sound, no space at all), forming a strong contrast to the top ranked
S8 (maximum spatial movement). Evidently, space was important for these
listeners, while pitch and volume variation was a negative or distracting
feature.

In cluster 2 listeners did not like fast movements as a sign of human
feature, but they did like correlated pitch and volume (the top 4 sounds
feature a low amount of spatial variation, but also correlated pitch and
volume, while the bottom 3 sounds are the same as the top 3 but lack
correlated pitch and volume variation). Listeners in this cluster prioritized
pitch and volume variations above spatial variation, and preferred low spatial
variation (slower, or more relaxed movements).

Cluster 3 consists of subjects who, in their evaluation of the test stimuli,
appear to include all spatial cues that adhere to our everyday perception
of spatial motion. The stimuli with most dynamic spatial motion, enhanced
by spatially correlated pitch and volume variations, are in the top-3, while
stimuli with the least of these features are in the bottom-3. These listeners
prioritize high levels of spatial detail above all other features, and their
perception of these details are enhanced by correlated pitch and volume
variations. This is indicated in (i) S1 being at the top; (ii) S7, which is the
same as S1 but lacks pitch variation, being second; (iii) S11, which is the
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same as S1 but played 30% slower, being third (i.e. space, volume and pitch
variations are just a bit slower); (iv) S8, S9, S10 are in the bottom, and all
lack pitch, volume variation, and spatial movement details.

We investigate the stability of the clustering in Figure 5, that shows the
heatplot of the posterior probabilities, for all the listeners (shown on the
x-axis), for being assigned to each of the clusters identified in Table 3. Most
of the probabilities are concentrated on some particular value of c among
the three possibilities, indicating a reasonably precise behavior in the cluster
assignments.

Fig 5: Acousmatic data. Heatplot, for all the listeners (on the x-axis), of the
posterior probabilities of being assigned to each of the three clusters (on the
y-axis).

We then computed, fixing these cluster assignments, the marginal pos-
terior probability that each sound is among the top-4 in ⇢

1:G and in Rj ,
j = 1, ..., 46, respectively. The results are shown in Figure 6. Each heatplot
refers to a cluster (G1 (left), G2 (center) and G3 (right)) and represents
the marginal posterior probabilities for each sound (y-axis) being ranked
among the top-4 in the consensus of that cluster (first column), and in the
individual rankings of listeners in that cluster (remaining columns, asses-
sors on the x-axis). As Figure 6 shows, there is considerable variation in the
estimated rankings of the sounds between individual listeners even when
they are included in the same cluster. For example, looking at Figure 6 left,
we see that S8, S10, and S5 have high (> 0.8) posterior probability of be-
ing ranked among the top-4 stimuli in the consensus ranking (column 1).
However, looking at the estimates for the listeners in cluster 1, we see that
the variation is very high: For example, listener 30 (column with label 30)
has a very high posterior probability of ranking S3 and S6 among the top-4
stimuli. This aspect is important for what concerns individual estimates.

Here we consider the relationship between the probability of placing some
given stimuli in the top (bottom) ranks and the musical sophistication index
(MSI), or the spatial audio awareness index (SAA). Figure 7 shows the
relationship between listeners’ SAA and the probability of sounds S1 and S7
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Fig 6: Acousmatic data. Heatplot of the marginal posterior probabilities for
all the stimuli (y-axis) of being ranked among the top-4 for cluster 1 (left),
2 (center) and 3 (right).

Fig 7: Acousmatic data. Boxplot of the posterior probabilities for sounds S1
(left), S7 (middle), S1 and S7 jointly (right), of being ranked among the top-
4 in the individual ranking Rj , stratified by the SAA index. The horizontal
dotted line is the threshold in the case of random assignment. Scale of SAA:
from 0 to 3, the largest, the more aware of spatial dimension of sounds.

being ranked in the top-4 (both marginally and jointly). Recall that S1 was
the original sound, while S7 was identical to S1, but without pitch variation.
The plot suggests that spatial listening is a skill that is enhanced through
training.

Figure 8 shows the relationship between listeners’ MSI and the probability
of sounds S8 and S10 being ranked among the bottom-4 (both marginally
and jointly). Respondents with a score greater than 500 were classified as mu-
sically more sophisticated, and those with a score less than 500 as less sophis-
ticated, as suggested in http://marcs-survey.uws.edu.au/OMSI/omsi.php.
Both S8 and S10 suppress pitch and volume variations, which are expected
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Fig 8: Acousmatic data. Boxplot of the posterior probabilities for sounds
S8 (left), S10 (middle), S8 and S10 jointly (right), of being ranked among
the bottom-4 in the individual ranking Rj , stratified by the MSI index. The
horizontal dotted line is the threshold in the case of random assignment.

to enhance the implication of human causation. These two stimuli are more
likely to be ranked in the last 4 positions by listeners with high MSI. Inter-
estingly, this suggests that musically sophisticated listeners find pitch and
volume variations to be qualities for a stimulus to sound human.

8. Conclusions and discussion. The main contribution of this paper
is to introduce a new Bayesian method for non-transitive pairwise prefer-
ence data. The principal advantage of the Bayesian approach comes from
its ability to combine di↵erent types of uncertainty in the reported data,
coming from di↵erent sources, and from being able to convert such data
into the form of meaningful probabilistic inferences. Our method provides
the posterior distribution of the consensus ranking, based on pairwise as-
sessment data from a pool of assessors who may have individually violated
logical transitivity in their reporting. The method is also able to produce
the posterior distributions of the latent individual rankings of the assessors.
Such rankings can be used in the construction of personalized recommenda-
tions, or in studying how individual preferences change with assessor related
covariates. We also developed a mixture model generalization of the main
model, able to handle heterogeneity in pairwise and non-transitive prefer-
ence data. The model was then used to investigate how individual listeners
perceive human spatial causation in acousmatic sounds. The data came from
a di�cult experiment, that involved human perceptions. For this reason, pair
comparison of sounds was the only feasible design. The data were noisy, and
in particular often logically non-transitive at the individual level. We used
our approach to estimate individual rankings, and sub-groups of assessors.
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The results revealed how di↵erently people listen to and interpret abstract
sounds. We related individual musicological scores to individual rankings,
leading to an interesting correspondence between spatial sound feelings and
sound expertise.

Sometimes pairwise comparison data contain draws, or ties. A tie occurs
when a pairwise comparison between two items does not result in a de-
fined preference of an item towards the other. This situation has been much
considered in the literature on pairwise comparisons (e.g. Rao and Kupper,
1967; Davidson, 1970). Our method does not model probabilistically the
presence of ties, but it is possible to handle them directly in the MCMC
procedure: apply the proposed model, and simply break each tie by tossing
a symmetric coin inside the MCMC.

Another extension of the model would be to allow for the possibility of
including covariates of subjects and/or items in the analysis. For instance,
the probability of making a mistake could depend on some characteristics
of the items, so that, the more similar two items are in terms of such char-
acteristics, the more likely it is to make a mistake in reporting the pairwise
preference. In our application relevant covariates could be the variation in
pitch and volume, or the overall motion speed that characterizes each sound.

The time complexity of our algorithm is linear in terms of the number of
assessorsN . The increase of the number of items n does not a↵ect computing
time of a single MCMC step. However, the larger n is, the longer the chain
must be in order to reach convergence.
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