Tuning HeidelTime for identifying time expressions in clinical texts in English and French

Abstract : We present work on tuning the Heideltime system for identifying time expressions in clinical texts in English and French languages. The main amount of the method is related to the enrichment and adaptation of linguistic resources to identify Timex3 clinical expressions and to normalize them. The test of the adapted versions have been done on the i2b2/VA 2012 corpus for English and a collection of clinical texts for French, which have been annotated for the purpose of this study. We achieve a 0.8500 F-measure on the recognition and normalization of temporal expressions in English, and up to 0.9431 in French. Future work will allow to improve and consolidate the results.
Type de document :
Communication dans un congrès
International Workshop on Health Text Mining and Information Analysis, Jan 2014, Gothenburg, Sweden
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01972761
Contributeur : Limsi Publications <>
Soumis le : lundi 7 janvier 2019 - 20:52:58
Dernière modification le : mercredi 13 février 2019 - 01:26:49

Identifiants

  • HAL Id : hal-01972761, version 1

Citation

Thierry Hamon, Natalia Grabar. Tuning HeidelTime for identifying time expressions in clinical texts in English and French. International Workshop on Health Text Mining and Information Analysis, Jan 2014, Gothenburg, Sweden. 〈hal-01972761〉

Partager

Métriques

Consultations de la notice

30