Marine Oil Slicks Quantification From L-band Dual-Polarization SAR Imagery
Olivier Boisot, Sébastien Angelliaume, Charles-Antoine Guérin

To cite this version:
Olivier Boisot, Sébastien Angelliaume, Charles-Antoine Guérin. Marine Oil Slicks Quantification From L-band Dual-Polarization SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2018, pp.1-11. 10.1109/TGRS.2018.2872080. hal-01972394

HAL Id: hal-01972394
https://hal.archives-ouvertes.fr/hal-01972394
Submitted on 7 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Marine Oil Slicks Quantification From L-band Dual-Polarization SAR Imagery

Olivier Boisot, Sébastien Angelliaume, and Charles-Antoine Guérin

Abstract—We show, using simple physical models, that a quantitative estimation of the volume fraction of marine oil slicks can be achieved from dual-polarization Synthetic Aperture Radar (SAR) imagery. Volume fraction, which quantifies the proportion of seawater in oil in the case of a mixture, depends primarily on volume scattering mechanisms and is inferred from the Polarization Ratio in L-band. A quantification algorithm is derived, namely, the Volume Fraction Estimation (VFE) algorithm which is applied to two experimental datasets acquired in the Mediterranean Sea during the POLLUPROOF’2015 exercise, and in the North Sea during the NOFO’2015 experiment using the Office National d’Etudes et de Recherches Aérospatiales (ONERA) airborne L-band SETHI system. The resulting volume fraction maps of the quantification method are presented and discussed, opening new perspectives for marine oil slicks monitoring by means of dual-polarization SAR imagery.

Index Terms—ocean radar sensing, marine oil slick, quantification, volume fraction, complex effective permittivity, dual-polarization SAR, L-band

I. INTRODUCTION

AIRBORNE and spaceborne remote sensing sensors are commonly used by authorities and oil and gas companies to monitor hydrocarbons in the offshore domain [1]–[3]. The interest in remote sensing techniques lies not only in the global monitoring of the maritime environment to detect and track incidents or possible boat fuel releases, but also in the identification of the natural occurrence of crude oils (seeps) on the ocean surface, testifying to the presence of mature source rock on the seafloor [4]. Today state-of-the-art approaches for detecting oil slicks at sea are typically based on Synthetic Aperture Radar (SAR) imagery [5]–[7] which is not impacted by weather conditions as the optical imagery.

Marine oil slicks can be found under two primary forms, namely, surfactant films and crude oil slicks. Surfactant (surface-active agents) films are thin surface films made of amphiphilic organic compounds, consisting of a hydrophilic head group and a hydrophobic tail, which arrange themselves as mono-molecular films whose thickness is, typically, 2.4 - 2.7 nm [8]. Their occurrence has been observed for sea surface wind speed $w_{10} \leq 5 \text{ m.s}^{-1}$ [9], otherwise, they are mixed and dissolved in the bulk water. When originating from natural sources, which is the most frequent case, they are referred to as biogenic or natural films. These films are mostly observed in coastal and upwelling zones where marine fauna and flora activity is intense. Surfactant films can also be observed from accidental vegetable oil spills [10], [11] or at the edge of crude oil slicks due to weathering processes.

Crude oil slicks (including mineral oils, refined product of crude oils) are organic compounds constituted of alkanes, cycloalkanes and aromatics with preferentially hydrophobic character. When released at sea, crude oils are mixed with seawater under the action of wind and waves, resulting in a slick composed of a mixture of oil and water, such as emulsion, underneath an oil film. Oil and water emulsions are composed of small droplets of one medium in the background of the other, that is Water-in-Oil (W/O) or Oil-in-Water (O/W) emulsions. The most frequently encountered offshore emulsions are the W/O case, but O/W emulsions can also be found [12]. Droplets diameter of such emulsions is lower than 1 μm in the case of fine emulsion, whereas larger than 1 μm in the case of coarse emulsions [12]. In the case of W/O emulsion, the water content is generally between 50 and 75% [13]. Crude oil slicks form thick layers at the sea surface ranging typically from μm to mm, but can reach cm-range thickness in the case of fresh oil spill (accidents) and low sea state [8]. They originate mainly from anthropogenic sources, such as oil rigs, ships, and so on but also from natural seeps.

The impact of monolayer surfactants on the sea surface has been well investigated since the 1960s. Various aspects have been addressed such as physicochemical approaches [14]–[16], experimental and laboratory studies [17]–[19] and the implications in remote sensing [20]–[24]. Even though the thickness of surfactant films is far smaller than that of crude oil slicks, their impact on the sea surface damping is of the same order of magnitude, which results in a damping of Bragg-wavelength capillary-gravity waves. Oil and seawater emulsions modify the dielectric properties of the remotely sensed surface, thus impacting the scattering coefficients of the scattering process. These two combined effects result in a global attenuation of the electromagnetic (EM) backscattered signal. As a result, marine oil slicks appear as dark patches in the SAR images, compared to the surrounding sea surface.

Essential requirements for global monitoring of oil at sea and efficient clean-up operations are the identification of the impacted area as well as its characterization (nature of oil) and its quantification (volume of oil). Many methods have been proposed in the last decades for the detection of oils on the ocean surface, many of them relying on SAR data (see e.g. [23] and [24] for a review). The most relevant radar parameters for marine oil slicks detection have been recently identified in [25] together with the most appropriate imaging mode in

O. Boisot and S. Angelliaume work within the Département d’Électromagnétisme et Radar (DEMR), ONERA, F-13661, Salon cedex Air, France.

C.-A. Guérin is with the Université de Toulon, Aix-Marseille Université, CNRS-INSU, IRD, Mediterranean Institute of Oceanography (MIO UM110), 83957 La Garde, France.
the context of marine pollution detection. Different studies have concentrated their efforts to characterize and discriminate oil spills from look-alike phenomena [26], [27] while others have investigated the mixing of oil and seawater from SAR sensors [28]–[30]. Up to now, only an oil/seawater mixing classification have been proposed, namely, the oil/seawater mixing index \(M (−1 ≤ M ≤ 1) \) [28]. This index characterizes the oil and seawater mixing type by differentiating the origin of the attenuation of the backscattered signal in presence of an oil slick. Positive values indicate an attenuation mostly due to surface roughness damping from a surface film whereas negative values indicate an attenuation mostly due to a modification of the relative complex permittivity from a mixture of oil and seawater. This index has been used later in [30] where a methodology has been proposed based on dual co-polarized (HH and VV) SAR images to detect and quantify the relative concentration of pollutant on the ocean surface.

We present in this paper a novel methodology for the quantitative retrieval of the volume fraction \(f_v \) of an oil and seawater mixture. The volume fraction estimation is mainly related to the effective complex permittivity of the underneath oil and seawater mixture and can be evaluated from the Polarization Ratio \((PR) \) in L-band together with the effective complex permittivity. The proposed methodology makes a combined utilization of models pertaining to the surface roughness, the complex permittivity and the scattering process at the sea surface. These models are reviewed in Section II. In Section III the quantification algorithm is introduced and its range of application discussed. A first application to experimental SAR data is presented in Section IV.

II. PHYSICAL MODELING

A. Sea surface

1) Spectral modeling of sea surface: One of the most popular sea surface wavenumber spectrum models today is the unified directional spectrum proposed by Elfhouhali et al. [31], which has been designed to address the complete range of wave scales and sea states. It combines various theoretical and experimental results in order to derive a directional sea wavenumber spectrum taking into account a wide range of sea wavelength, ranging from gravity to capillarity waves. The spreading function describing its azimuthal dependency is limited to the first even Fourier harmonic:

\[\Phi(k, \phi_v) = \frac{\Psi_0(k)}{2\pi k} \left[1 + \Delta(k) \cos(2(\phi_v - \phi_w)) \right] \]

(1)

where \((k, \phi_v) \) are the polar coordinates of the sea surface wavenumber, the function \(\Delta(k) \) is defined as the ratio of the upwind/crosswind directional spectrum and \(\phi_w \) is the wind direction.

2) Seawater complex permittivity: One important descriptive parameter for seawater in presence of oil is the complex relative dielectric permittivity:

\[\varepsilon = \varepsilon' + i\varepsilon'' \]

(2)

It is customary to refer to the real part \(\varepsilon' \) as the relative permittivity and to the imaginary part \(\varepsilon'' \) as the loss factor. A recent model, based on the classical Double-Debye Dielectric Model and adjusted to microwave satellite data can be found in [32], and examples are provided in table I.

3) Thermophysical properties of seawater: Thermophysical properties of seawater are quite similar to those of pure water. However, dissolved salt in water makes a difference which must be taken into account in modeling the interaction of seawater and oils mixture. A review of thermophysical properties has been provided by Sharqawy et al. [34], where many models have been updated. Examples can be found in table I.

B. Impact of oil at sea

1) Sea roughness damping model: It was the Italian physicist Marangoni [35] who first realized that wave damping from viscous surface films on seawater is due to the change in surface tension caused by waves motion. Later on, Cini and Lombardini [15] were the first to formalize the effect of resonance-type damping in the short-gravity waves region, also called as the Marangoni effect, from mono-molecular surfactant films. A review of the damping effect can be found in [36]. Denoting \(\Delta_{oil} \), the viscous coefficient of the sea surface covered by a mono-molecular surfactant film and \(\Delta_{sw} \), the film-free sea surface, the viscous damping ratio is [36]:

\[y(k) = \frac{\Delta_{oil}}{\Delta_{sw}} = \frac{1 + X(\cos \beta - \sin \beta) + XY - Y \sin \beta}{1 + 2X(\cos \beta - \sin \beta) + 2X^2} \]

(3)

where:

\[X = \frac{|E|^2}{2\omega_{sw} \eta_{sw} \rho_{sw}} \quad \text{and} \quad Y = \frac{|E|^2}{4\omega_{sw} \eta_{sw}} \]

(4)

with \(E = -|E| \exp(i\beta) \) the complex dilatational elasticity modulus of the oil film (with \(|E| \) in [N.m\(^{-1}\)] and \(\beta \) the phase angle), \(k \) the wavenumber of waves, \(\omega_{sw} = \sqrt{gk + \sigma_{sw}/\rho_{sw}k^3} \) the capillarity-gravity waves dispersion relationship, \(g \) the gravity constant at sea level, \(\eta_{sw}, \rho_{sw} \), and \(\sigma_{sw} \), the dynamic viscosity, the volumetric mass and the surface tension of seawater, respectively. Table II recap some values of the complex dilatational modulus \(E \), taken from [33], for some crude oils. Other examples, in the case of biogenic slicks, can be found in [36].

Further calculations of the damping ratio induced by a viscous surface film in the case of finite thickness film have been conducted by Jenkins and Jacobs [37]. It has been shown that expression (3) is the limiting case of a zero thickness film, holding for thickness film smaller than 0.1 mm in general. Its also holds for surface layers smaller than 1 mm under the assumption that the kinematic viscosity ratio \((\nu_{oil}/\nu_{sw}) \) remains smaller than 100 [37]. However, this last assumption is not verified for the majority of known oils, due to a very large variation of viscosity values from one oil to another [13]. Nevertheless, an oil layer at sea is quickly spread and mixed by weathering processes such as natural wind stress and waves motion. One can thus assume that the condition of an oil layer smaller than 0.1 mm is satisfied in a majority of cases, except perhaps in the specific case of fresh release of crude oils by low sea state. Expression (3) of the viscous damping ratio can
Table I: Examples of seawater thermophysical properties as well as oil slick parameters and W/O mixture effective complex permittivity as function of the frequency band.

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>seawater properties (SST = 10°C ; SAL = 35 PSU)</th>
<th>crude oil slick (from [33])</th>
<th>W/O mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϵ\text{seaw}</td>
<td>η\text{seaw} [mPa.s]</td>
<td>ρ\text{seaw} [kg.m\text{-3}]</td>
</tr>
<tr>
<td>L [11]</td>
<td>74.74+73.71i</td>
<td>1.397</td>
<td>1027</td>
</tr>
<tr>
<td>C [5]</td>
<td>66.45+36.78i</td>
<td>1.397</td>
<td>1027</td>
</tr>
<tr>
<td>X [10]</td>
<td>49.81+40.44i</td>
<td>1.397</td>
<td>1027</td>
</tr>
</tbody>
</table>

Table II: Some values of complex dilatational elasticity moduli of crude oils [33].

<table>
<thead>
<tr>
<th>Oil number</th>
<th>Oil origin</th>
<th>[ε] [mN.m\text{-1}]</th>
<th>β [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>West Africa</td>
<td>12.2</td>
<td>-166</td>
</tr>
<tr>
<td>2</td>
<td>West Africa</td>
<td>9.3</td>
<td>-161.1</td>
</tr>
<tr>
<td>3</td>
<td>North Sea</td>
<td>22.9</td>
<td>-165.5</td>
</tr>
<tr>
<td>4</td>
<td>North Sea</td>
<td>32.9</td>
<td>-166.5</td>
</tr>
<tr>
<td>5</td>
<td>France</td>
<td>14.4</td>
<td>-165.6</td>
</tr>
</tbody>
</table>

Examples of W/O mixture effective complex permittivity as function of the EM band are given in Table I.

C. Surface scattering

1) Splitting rule: In order to distinguish volume and surface scattering effects, Guérin and Sentenac [42] derived a so-called splitting rule:

“The incoherent intensity of a composite medium with a rough interface is the sum of the incoherent intensity of a rough homogeneous surface with an effective permittivity and the incoherent intensity of the same composite medium below a flat interface. The coherent intensity is merely that of the rough effective homogeneous surface”.

Thus, volume effects can be associated to the effective complex permittivity of the mixture in the water column and surface effects to the roughness of the surface, considering the effective complex permittivity of the homogeneous medium at the interface.

2) The Universal Weighted Curvature Approximation: There exists a wealth of surface scattering models to describe the interaction of EM wave with the sea surface [43]. The key parameters for radar observation, which depend on the viewing angles (namely, the incidence angle θ and the azimuth angle φ) as well as the surface roughness, are the Normalized Radar Cross Section (NRCS, ς₀) and the PR, among others:

\[
PR = \frac{σ_{HH}^0}{σ_{VV}^0}, \quad 0 < PR \leq 1
\]

where \(σ_{HH}^0\) and \(σ_{VV}^0\) are the co-polarized horizontal and vertical NRCS, respectively. As usual, the choice of a model results from a trade-off between simplicity and performance. Asymptotic surface scattering models, such as the classical Small Perturbation Method (SPM) [44], [45], the Kirchhoff Approximation (KA) [46] or the first-order Small Slope Approximation (SSA) [47]–[49] can be used in some specific conditions (low incidence angles, small roughness, etc) but predict a purely geometrical angular variation of the PR and thus cannot account for their roughness dependence. Non-trivial PPs and a better reproduction of the azimuthal behavior of the NRCS can be obtained with the family of Two-Scale Models, which account for the tilting effects of large scale waves onto small ripples [45], [50], [51]. Improved scattering models can also be obtained with functional or perturbative expansions with respect to an elevation, a slope or a curvature parameter such as the second-order SSA (SSA2) [48] or models taking explicitly into account the local surface curvature [52]–[58]. Among these models, which are more complex to use than the classical asymptotic models, we adopted one simple unifying model which has been found to address the

\[
eff \approx 2.25 + 0.01i
\]
variety of scales at the sea surface and to describe properly the roughness dependence of the PR while being well adapted to the inversion of oceanic parameters, namely the so-called Universal Weighted Curvature Approximation (UWCA), first introduced in [57]. This model depends only on the sensor viewing angles and the sea surface wave number spectrum. Its expression for the co-polarized NRCS is given by:

\[
\sigma_{pp}^0 = 4\pi |\mathbb{B}_{pp}|^2 \Psi(Q_H) + |K|^2 \left[I_s - 4\pi \Psi(Q_H) \right] \tag{9}
\]

where:

\[
I_s = \frac{1}{\pi Q^2} \int \frac{e^{-QH} r \left[e^{-Q^2/\rho(0)-\rho(r)} - e^{-Q^2/\rho(0)} \right]}{\|r\|} dr, \tag{10}
\]

is proportional to the classical Kirchhoff integral, \(Q_H\) and \(Q_r\) are the horizontal and vertical projections of the Ewald vector: \(Q = Q_H + Q_L\). \(\rho\) is the spatial autocorrelation function of the sea surface and \(\Psi(Q_H)\) is the sea wavenumber spectrum taken at the Bragg wavenumber:

\[
\|Q_H\| = 2 K_0 \sin \theta := K_B, \tag{11}
\]

with \(K_0\) being the EM wavenumber. The expression of the Bragg \((\mathbb{B}_{pp})\) and Kirchhoff \((K)\) kernels can be found e.g. in [43]. In the following, we introduce the relative roughness coefficient \(\Gamma\):

\[
\Gamma(\theta, \phi) = \frac{4\pi \Psi(Q_H)}{I_s}, \tag{12}
\]

which quantifies the proximity to a Bragg scattering mechanism. This coefficient varies from 0 (pure facet reflections) to 1 (pure Bragg resonance mechanisms). We may therefore rewrite eq. (9):

\[
\sigma_{pp}^0 = I_s [\Gamma|\mathbb{B}_{pp}|^2 + (1 - \Gamma)|K|^2], \tag{13}
\]

leading to the following expression for the PR (8):

\[
PR = \frac{\Gamma|\mathbb{B}_{HH}|^2 + (1 - \Gamma)|K|^2}{\Gamma|\mathbb{B}_{VV}|^2 + (1 - \Gamma)|K|^2} = PR(\theta, \phi, \varepsilon) \tag{14}
\]

In this form, the azimuthal variations of the PR are clearly controlled by the relative roughness \(\Gamma\) defined in eq. (12).

III. QUANTIFICATION METHOD

The developed quantification method aims at estimating the volume fraction \(f_v\) of an oil and seawater mixture, which quantifies the proportion of seawater in oil. The respective contributions of volume and surface modifications can be separated, owing to the aforementioned splitting rule. The estimation algorithm, referred to as Volume Fraction Estimation (VFE) algorithm, relies on the PR properties in L-band and the comparison of the slick-impacted area with the surrounding slick-free seawater, used as an absolute reference. In the case of SAR images with complete slick coverage, the method could still be applied using a sea surface wave spectrum model to estimate the slick-free seawater NRCS but would provide qualitative results only, due to the unknown actual roughness of the sea surface.

As seen in eq. (14), the PR at a given angle of incidence depends essentially on the relative roughness coefficient of the surface \((\Gamma)\) and the complex relative permittivity of the medium \((\varepsilon)\). The different PRs, depending on the configuration of the composite medium can be summarized as:

\[
\begin{align*}
PR_{sw} &= PR(\Gamma_{sw}, \varepsilon_{sw}) \\
PR_{film} &= PR(\Gamma_{film}, \varepsilon_{film}) \\
PR_{mix} &= PR(\Gamma_{mix}, \varepsilon_{eff}) \\
PR_{slick} &= PR(\Gamma_{film}, \varepsilon_{eff}) \tag{15}
\end{align*}
\]

where the “sw”, “film”, “mix” and “slick” subscripts stand for, respectively, the pure seawater, the pure viscous surface film, the pure W/O mixture and oil slick (surface film + mixture) case. \(\varepsilon_{eff}\) is the effective complex permittivity of a W/O mixture. We expect the PR of film-covered areas \(PR_{film}\) to depend explicitly on the underneath seawater complex permittivity due to the very small thickness of those surface films (from nm to mm, which is small compared to the penetration depth of the microwaves in pure oil [25]). Note also, the assumption regarding the PR of a W/O mixture \(PR_{mix}\) is not completely true as an emulsion can have some damping effects on the sea roughness. However, as measured in [33], a fresh release of a pure W/O emulsion in seawater has a quasi-negligible viscous damping effect. Stronger viscous damping effects originate from the formation of a pure viscous film above the sea surface during weathering processes, resulting in oil slick.

Sea roughness damping by a surface film tends to decrease the PR while on the contrary a W/O mixture tends to increase it [25]. However, in L-band, the former effect is negligible since the PR is dominated by the Bragg mechanism at a resonant wavelength which is little affected by the small-scale damping process. This is illustrated in Figure 1 where calculations of the PR have been carried out in the upwind direction with the UWCA scattering model (eq. (14)) and an Elfouhaily spectrum for a wind speed \(u_{10} = 7 \text{ m.s}^{-1}\). In both X and L-band, the W/O mixture has a significant impact on the PR while a surface viscous film only affects the X-band. Hence, the L-band relative roughness parameter of the surface film can be assumed unchanged with respect to its seawater counterpart,

\[
\Gamma_{film} \approx \Gamma_{sw} \tag{16}
\]

and the same holds for the corresponding PRs:

\[
PR_{slick} \approx PR(\Gamma_{sw}, \varepsilon_{eff}) = PR_{mix} \tag{17}
\]

This shows that volume scattering taken into account by the effective complex permittivity has the dominant impact on the PR in L-band while roughness damping effects are negligible. In the case of a seawater area impacted by a pure viscous surface film, the observed PR in L-band \(PR_{film}\) will thus appear similar to that of the surrounding seawater area \(PR_{sw}\). An illustration of this phenomenon can be seen on [Figure 13 (d), [25]] for real L-band SAR images recorded during the POLLUPROOF’2015 exercise developed later in this paper (see section IV-A). With the use of L-band co-polarized SAR data, the VFE algorithm runs as follows:

1) Estimation of the seawater complex permittivity \((\varepsilon_{sw})\) from external data of sea surface temperature (SST) and salinity (SAL),
2) Estimation of the mean seawater relative roughness parameter (Γ_m) from the mean seawater polarization ratio (PR_{sw}) and the seawater complex permittivity (ε_{sw}) on the largest available area, as a function of the sensor incidence angle:

$$\Gamma_m = \left[1 + \frac{PR_{sw}[|B_{HH}(\varepsilon_{sw})|^2 - |B_{VV}(\varepsilon_{sw})|^2]^{-1}}{|K(\varepsilon_{sw})|^2(1 - PR_{sw})} \right], \quad (18)$$

3) Joint estimation of the effective complex permittivity (ε_{eff}) and volume fraction (f_v) of the W/O mixture by solving the system:

$$\begin{Bmatrix}
PR[\varepsilon_{eff}, e_{sv}] = PR_{data} \\
\text{Re}[\varepsilon_{eff}] = \text{Re}[\varepsilon_{Brug}^{\text{Brug}}(\varepsilon_{sw}, \varepsilon_{oil}, f_v)] \\
\text{Im}[\varepsilon_{eff}] = \text{Im}[\varepsilon_{Brug}^{\text{Brug}}(\varepsilon_{sw}, \varepsilon_{oil}, f_v)]
\end{Bmatrix}, \quad (19)$$

where the effective complex permittivity used in the first line of (19) is constrained by the mixing rule of Bruggeman (eq. (7)). This leads to a nonlinear system of 3 equations with 3 unknown parameters, which can be solved numerically with classical solvers. The solution is unique in view of the monotonic behavior of $PR[\varepsilon_{eff}]$, $\text{Re}[\varepsilon_{eff}(f_v)]$, and $\text{Im}[\varepsilon_{eff}(f_v)]$.

IV. APPLICATION TO EXPERIMENTAL DATA

A. Data sets presentation

The methodology presented in this paper has been applied to experimental SAR data collected with SETHI (the airborne remote sensing system developed by ONERA [59]) during two offshore oil-on-water exercises: POLLUPROOF’2015 and NOFO’2015 experiments.

Figure 2: SETHI L-band instrument noise floor (NESZ) as function of the radar range and sensor incidence angle for POLLUPROOF’2015 and NOFO’2015 experiments.

The POLLUPROOF’2015 experiment (18 and 22 May 2015) was conducted over the Mediterranean Sea (off the French coast, near 42°45.5’ N, 5°48.5’E) and focused on the release and subsequent observation of several Hazardous and Noxious Substances (HNS). The main goal of this experiment was to establish a procedure for collecting evidence of illegal
Table III: Environmental conditions and properties of released substance.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Time of release (UTC)</th>
<th>Amount of release [m3]</th>
<th>Released substance</th>
<th>Time of imaging (UTC)</th>
<th>Wind speed (10m) u_w [m.s$^{-1}$]</th>
<th>Wind direction (from) ϕ [$^\circ$]</th>
<th>Radar look direction ϕ [$^\circ$]</th>
<th>SST [°C</th>
<th>SAL [PSU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLLUPROOF</td>
<td>15:01-15:28</td>
<td>1</td>
<td>Rapeseed oil</td>
<td>16:07</td>
<td>8.2</td>
<td>270</td>
<td>181</td>
<td>15.1</td>
<td>38.08</td>
</tr>
<tr>
<td>NOFO</td>
<td>06:30-08:00</td>
<td>45</td>
<td>Mineral oil</td>
<td>10.01</td>
<td>5.1</td>
<td>270</td>
<td>22</td>
<td>9.49</td>
<td>35.16</td>
</tr>
</tbody>
</table>

Figure 3: L-band VV-polarization intensity images recorded during the (a) POLLUPROOF’2015 and (b) NOFO’2015 experiments. A 7x7 multilook processing has been applied. Thumbnails of corresponding images in an orthonormal basis are superimposed showing the geographical North (black arrow), the radar look direction (blue arrow) and the wind blowing direction (green arrow). (a) The yellow and red ellipses correspond to the successive spills of rapeseed oil and FAME, respectively. In between, a mixture of both products is formed and delimited by a blue ellipse. (b) The magenta and cyan arrows show the relatively clean sea left behind the MOS Sweeper mechanical recovery boom and the wake left behind the crossing of a ship through the slick, respectively.

marine pollution by HNS from airborne sensors [30]. In the following, we will focus on the 22 May exercise where 1 m3 of rapeseed oil (colza oil) and 1 m3 of Fatty Acid Methyl Esters (FAME, biofuel directly added in conventional fuels) were released at sea within a small time lag (see Table III). Rapeseed oil is classically used to simulate biogenic films on the sea surface and has already been imaged by SAR sensors [26], [60], [61] whereas FAME forms a cloud of microdroplets in the water column [30].

The NOFO’2015 experiment (8-14 June 2015) is an oil spill cleanup exercise managed by the Norwegian Clean Seas Association for Operating Companies (NOFO). It was carried out in the North Sea (230 km NorthWest of Stavanger, Norway) within 10 Nautical Miles of position (59° 59’N, 02° 27’E). In the following, we will focus on the 09 June exercise during which the MOS Sweeper mechanical recovery boom [62] was tested at sea [25]. For this experiment, the released product was an emulsion of water in mineral oil with a water content of 60%. It consisted of a mixture of water, Oseberg crude oil and a small addition of IFO 380 (Intermediate Fuel Oil or marine diesel oil, with viscosity of 380 mm2.s$^{-1}$). For the trial, 45 m3 of emulsion were discharged at sea. Assuming the
entire volume of hydrocarbon was spread on the surface, the upper limit of the average thickness of the slick is about 1 µm [25].

Meteorological informations were obtained from Météo-France, the French national meteorological center (POLLUPROOF’2015) and the Norwegian Meteorological Institute (NOFO’2015) while sea surface thermophysical characteristics were obtained from Copernicus Marine website (see Table III).

During both exercises, quad-polarimetric SAR (POLSAR) data were collected with SETHI at L-band with a range resolution of 1 m (bandwidth from 1.25 to 1.4 GHz). Images were processed with an azimuth (along-track) resolution equal to the range resolution. The imaged area was about 9.2 km in azimuth and 1.1 km in range, with incidence angles spanning from 34° to 52°. The L-band SAR sensor which operated onboard SETHI is characterized by a very low instrument noise floor, allowing a sufficiently high Signal-to-Noise Ratio (SNR) over both slick-free and slick-covered areas for valid analysis of surface characteristics.

The SNR is a crucial parameter in the context of marine oil slicks sensing with SAR and its impact must be carefully taken into account. As a matter of fact, the co-polarized coherency has been claimed to decrease rapidly over slick-covered surface [24] but it was later suggested in [61] and demonstrated in [25] that this is mainly due to instrumental noise decorrelation. However, providing a sufficiently high SNR, it has been shown that the co-polarized coherency parameter is not impacted by oil slicks [25], [29] and is therefore a useful parameter to eliminate ships and/or SAR processing artifacts, as was done with the present data sets.

For the SETHI instrument, the Noise Equivalent Sigma Zero (NESZ) estimated using the method proposed in [63] is very low, ranging from about -53.5 to -51 dBm²/m² (see Figure 2). High-resolution VV intensity images collected by SETHI during the two experiments are shown on Figure 3. In the following, the range axis of images and maps has been dilated compared to the azimuth axis for clarity. Figure 3 (a) depicts the image acquired during the POLLUPROOF’2015 experiment in which the two successive spills are marked off by a yellow ellipse for the rapeseed oil and a red ellipse for the FAME. In between, a mixture of both products is formed and delineated by a blue ellipse [30]. Figure 3 (b) depicts the image acquired during the NOFO’2015 exercise where a feathered structure along the front of the slick and a smooth edge on its back side is observed, which is consistent with the wind direction (green arrow). The crossing of the MOS Sweeper mechanical recovery boom through the slick appears to leave behind a relatively clean sea surface (magenta arrow) and a wake is visible behind the crossing of a ship through the slick (cyan arrow).

B. Results of the quantification method

The VFE algorithm was applied on both datasets presented in the following section. Following the steps described in section III, the seawater complex permittivity was estimated from the environmental conditions in Table III and from the central frequency of the SETHI system (f EM = 1.325 GHz) for both experiments:

\[\varepsilon_{sw}^{\text{POLLUPROOF’2015}} \approx 72.26 + 68.71i \]
\[\varepsilon_{sw}^{\text{NOFO’2015}} \approx 74.59 + 58.26i \]

The reference PR of seawater (PR sw) was estimated by means of a slick-free detection mask and averaged over the maximum of available azimuth pixels. The slick detection mask was estimated by thresholding the Normalized Polarization Difference (NPD) (see [30] for a more detailed description) allowing to separate slick-free and slick-impacted areas. A morphological image processing method (binary opening: binary erosion followed by binary dilatation) was applied on the mask in order to remove the last isolated points. The resulting PRs are shown on Figure 4 (a) as a function of the radar range. The corresponding relative roughness parameters on seawater (Γ sw) have been estimated through equation (18) and are depicted on Figure 4 (b).

The different shapes of Γ sw parameters (Figure 4 (b)) depend directly on the different shapes of the corresponding PRs (Figure 4 (a)), which themselves depend on the acquisition geometry and sea state. The seawater PRs are found of the same order of magnitude as the predicted one on Figure 1 (a), ranging from about 0.35 to 0.4 in the near range (θ = 34°) to about 0.12 in the far range (θ = 52°). A small inflection of the PR is observed at about 3.7 km and 3.9 km in range for the POLLUPROOF’2015 and NOFO’2015 experiments, correspondingly. This effect on the PR is assumed to come from the asymmetrical nature of the observed sea surface, as could be modeled qualitatively by adding a small percentage of asymmetrical wedges to the sea surface slopes distribution [64].

The different locations of the inflection originate from the slightly different azimuth look directions and the different sea states between the two experiments. This inflection is reproduced on the relative roughness parameter Γ sw (Figure 4 (b)) as a dip around the same range values. Nevertheless, the high value of the relative roughness parameter (Γ sw > 0.8), which is a measure of the deviation from the first order Bragg scattering mechanisms, ensures that Bragg scattering is the dominant mechanism and validates the assumption made in eq. (16) and (17), thus ensuring the enforceability of the VFE algorithm.

The numerical inversion of both the effective complex permittivity (ε Ef) and the W/O volume fraction (f s) has been performed by solving system (19) pixel by pixel on the entire image (avoiding pure seawater areas through the detection mask). The numerical inversion algorithm has been written in Python 3 and executed on the ONERA computational server THOR equipped with 4 x Intel Xeon E7-8867 V3 @ 2.50 GHz and 16 cores, for a total of 64 available computational cores. Parallelization of the code has improved the computation time from about 30 hours to about 25 minutes on this server, in the NOFO’2015 data case. The resulting W/O volume fraction maps and real part of the effective complex permittivity of the two experiments are pictured on Figure 5. Dark gray area represents the slick detection mask and light gray area the ships and SAR processing artifacts removal by means of the co-polarized coherency.
Figure 4: (a) Estimated mean polarization ratio on seawater from detection mask and (b) the corresponding relative roughness parameter on seawater from POLLUPROOF’2015 (blue curves) and NOFO’2015 (orange curves) L-band SETHI data (see Figure 3).

Figure 5: Resulting W/O volume fraction maps from VFE algorithm applied to (a) POLLUPROOF’2015 and (b) NOFO’2015 L-band SETHI data (see Figure 3). Dark gray area represents the slick detection mask and light gray area the removal of ships and SAR processing artifacts.
Figure 5 (a) depicts the resulting W/O volume fraction map estimated from the POLLUPROOF’2015 data. The left part of the slick (FAME release) shows a relatively low W/O volume fraction (yellow color, elevated oil concentration) while the rest of the slick (rapeseed oil release) exhibits a W/O volume fraction close to 1 (black color, very low oil concentration), indicating quasi no mixing of rapeseed oil with seawater, which is consistent with the biogenic behavior of the rapeseed oil. Nevertheless, the very right part of the slick (the beginning of the rapeseed oil release) shows shaded values of W/O volume fraction (blue color), indicating the onset of mixing of the rapeseed oil with seawater, likely due to weathering processes induced by wind. Indeed, during the POLLUPROOF’2015 experiment, a 8.2 m.s⁻¹ wind speed was recorded (see Table III) which is greater than 5 m.s⁻¹, the observed upper limit of existence of biogenic slick related to wind speed [9]. Thus indicating that the beginning of the rapeseed oil release is probably being mixed and dissolved in the bulk water. This W/O volume fraction map can be compared to the M_a map pictured on [Figure 10 (b), [30]] calculated on the same dataset. Indeed, the estimation of the mixing index M introduced in [28], characterizing the origin of the attenuation of the backscattered signal by the presence of a slick, depends on the difference between two parameters:

$$M = M_W - M_a,$$ \hspace{1cm} (21)

where the normalized damping factor $M_W(0 \leq M_W \leq 1)$ is a measure of the surface roughness damping by the slick (0 indicates no damping, 1 a total damping) and the normalized power attenuation factor $M_a(0 \leq M_a \leq 1)$ is a measure of the attenuation of the backscattered signal due to a modification of the effective complex permittivity from a mixture (0 indicates no attenuation, 1 a total attenuation) [28]. The areas of the impacted backscattered signal from a W/O mixture calculated with the M_a parameter depicted on [Figure 10 (b), [30]] are very consistent with the values of the estimated W/O volume fraction shown on Figure 5 (a), with the difference that here, a quantitative proportion of W/O is provided.

Figure 5 (b) depicts the resulting W/O volume fraction map estimated from the NOFO’2015 data. This map shows an important variation of W/O volume fraction within the entire slick. A W/O volume fraction close to 1 (null oil concentration) is seen right behind the MOS Sweeper mechanical recovery boom (around range 4.2 km and between 3 to 4.5 km in azimuth) whereas a more graduated variation is observed far behind it, showing the re-forming of the slick due to weathering processes. An increasing value of W/O volume fraction is seen in the drag of the slick (top of the image, from yellow to black color) showing a decrease of oil concentration originating from weathering processes.

The resulting W/O volume fraction density functions, calculated from Figure 5 and plotted on Figure 6 show a non-Gaussian distribution of W/O volume fractions within both slicks. The density function calculated with the NOFO’2015 data (orange curve) has a narrow peak around about 43% whereas the density function calculated with the POLLUPROOF’2015 data (blue curve) is much wider. In both cases, the distributions decrease for low value and vanish for W/O volume fractions lower than about 20%. At large values, the NOFO’2015 distribution slightly decreases to the pure seawater case ($f_r = 100\%$), while on the contrary, the POLLUPROOF’2015 distribution remains elevated in the pure seawater case, which is consistent with the presence of the rapeseed oil film in the slick.

V. Conclusion

We presented a marine oil slicks quantification method to estimate the volume fraction, together with the complex effective permittivity, of a water-in-oil mixture from L-band dual-polarization SAR imagery. The quantification method is based on the physical modeling of both oil/seawater and electromagnetic waves/sea surface interactions. The Universal Weighted Curvature Approximation scattering model was chosen as a good trade-off between a relevant description of the polarimetric parameters and simple and versatile formulation well adapted to the inversion of oceanic features. An inversion algorithm has been derived, namely, the Volume Fraction Estimation (VFE) algorithm, for the study of volume scattering effects. It uses the L-band Polarization Ratio properties and allows one to estimate the effective complex permittivity of the observed surface in addition to the W/O volume fraction. The enforceability of the algorithm is ensured through the high value of the relative roughness parameter ($\Gamma > 0.8$), showing that Bragg scattering is the dominant mechanism. Therefore, this algorithm can solely be applied to L-band SAR data which also have very low noise level. These requirements are reached by actual airborne sensors such as the American UAVSAR or the French SETHI systems but the use with satellite data, such as the Japanese L-band ALOS system, would be limited by the instrument noise level. A first application of the VFE algorithm has been made to L-band dual-polarized experimental data recorded during the POLLUPROOF’2015 and NOFO’2015 experiments with the ONERA airborne SETHI system, leading to a very consistent map of the W/O volume fraction. This kind of oil concentration map could be used in different manners and for different field of applications. For instance,
in environmental monitoring, it could be used to concentrate cleaning efforts to the most oil-concentrated area in the case of accidental oil spill. Oil concentration map could also be used for temporal monitoring of oil concentration in the survey of natural oil seeps or other marine oil slicks.

ACKNOWLEDGMENT

Research presented in this paper is part of the NAOMI (New Advanced Observation Method Integration) Project funded by Total (the French petroleum company) and ONERA (the French Aerospace Lab). The authors would like to thank all people involved in this project, and especially Pierre-Yves Foucher, Véronique Miegebille and Dominique Dubucq for supporting this work. A special thank goes to ONERA’s engineer Joseph Martinot-Lagarde for his very useful help in Python code parallelization. The authors are very grateful to the NOFO (Norwegian Clean Seas Association for Operating Companies) for allowing us to participate in the Oil-on-Water exercise, which was carried out during the period 8-14 June, 2015.

REFERENCES
