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Abstract—Augmented reality aims to enrich our real 

world by inserting 3D virtual objects. In order to 

accomplish this goal, it is important that virtual elements 

are rendered and aligned in the real scene in an accurate 

and visually acceptable way. The solution of this problem 

can be related to a pose estimation and 3D camera 

localization. This paper presents a survey on different 

approaches of 3D pose estimation in augmented reality and 

gives classification of key-points-based techniques. The 

study given in this paper may help both developers and 

researchers in the field of augmented reality. 

Keywords—Augmented Reality, Computer Vision, Pose 

Estimation, Descriptors. 

I. INTRODUCTION 

Augmented reality (AR) is the technology that enhance 
human's real-world perception with computer generated 
elements by superimposing the virtual world on the real world. 

The first AR interface was developed by Sutherland in 

the1960’s [1]. However, in 1992, Thomas Caudell and David 

Mizell [2] used the term of augmented reality to describe a 

semi-transparent helmet, used by aeronautical electricians and 

visualizing virtual information on real images. Nowadays, AR 

is becoming popular, and it is used in many applications 

[3][4][5][6].  

A lot of definitions have been then given to Augmented 

Reality. Each one defined it according to a specific aspect 

[7][8][9][10]. However, most of these definitions mentioned 

that to ensure a coherent AR system, we have to align the 

virtual and the real world which amounts to estimate the pose 

of the real camera. Thus, this issue has attracted a large 

scientific community. Therefore, many types of sensors have 

been considered: mechanical, ultrasound, magnetic, inertial, 

GPS, compass, gyroscope, and accelerometer. Nevertheless, 

the camera is the most used one.  

A lot of researches have been conducted in this field. 

However, a few many reviews and surveys have been done in 

order to list and classify the proposed techniques. Teichrieb et 

al. [11] presented a review on online monocular marker-less 

augmented reality, dividing the approaches into two 

categories: model based (edge based, optical flow based and 

texture based) and structure from motion based (real time 

SFM, Mono SLAM). More recently, Marchand et al. [12] 

presented a survey on augmented reality describing the 

mathematical aspect of pose estimation techniques. 

A survey of mobile AR is presented in [13] that describes 

the latest technologies and methods to improve runtime 

performance and energy efficiency for practical 

implementation. In the same context, we can find the history 

of mobile augmented reality in [14]. Rabbi and Ullah [15] 

presented a survey on AR challenges and tracking techniques. 

The aim of this paper is to provide a technical classification 
of most of approaches for 3D pose estimation, we also focus on 
key-points-based techniques and present a reach comparison of 
both detectors and descriptors of the state of the art. The study 
given in this paper may help developers and researchers in the 
field of augmented reality. 

The remain of this paper is organized as follow: section 2 
describe the AR principle, section 3 presents the pose 
estimation techniques according to available data (3D or 2D), 
section 4 is dealing with features detection and description 
techniques, here we present a comparison considering 
computing time, recognition rate and memory space, finally we 
give a brief conclusion of this work. 

II. AUGMENTED REALITY PRINCIPLE 

 
In order to achieve a coherent augmented scene, that 

combines both virtual and real worlds, we have to align the real 
and the virtual cameras. In other words, we have to assign to 
the virtual camera, the same properties (extrinsic and intrinsic) 
as those of the real camera. Thus, we need to determine in real 
time the position and the orientation of the camera for each 
frame in the real scene. The following figure (Fig. 1) illustrates 
the 2D-3D registration problem.  

Let Rw, RC, Rvw, Rvc and Ri respectively represent the real-
world landmark, the camera landmark, the virtual world 
landmark, the virtual camera landmark and the image 
landmark. In order to get a coherent composition of the real and 
virtual world, the two real and virtual cameras should have the 
same position and the same parameters (focal, field of view 
(FOV), etc.) according to the reference points of the two real 
and virtual worlds (Rw, Rvw). Hence, the only unknown is the 
pose of the real camera relatively to the real-world landmark. 
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 Fig. 1. General principle of registration process in augmented reality. 1) Real 
environment. 2) Virtual environment. 3) Camera. 4) Captured image. 5) Virtual 
camera. 6) Alignment of the virtual camera with the actual camera. 7) 
Projection space. 8) Augmented reality.  

Let P be a point in the real world coordinate (Xw, Yw, Zw) 
T
 

in Rw and (Xc, Yc, Zc)
T
 in Rc, the transformation from Rw to Rc 

is described as follows [16] (1): 
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Where (r t) represents the transformation between the two 
landmarks (world and camera). This is defined by the 
translation vector (t) and the rotation matrix (r) of Rw to Rc. 
Let Q be the perspective projection of P on the image plane. 
The coordinates of this projection can be calculated as follows 
[16] (2): 
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Where "A" is the matrix of intrinsic parameters ( u,  v: the 
ratio between the focal length and the horizontal and vertical 
size of the pixel, u0, v_0: the intersection of the optical axis with 
the image plane) and T the matrix of extrinsic parameters. We 
assume that "A" is known, so that we obtain the following 
equation (3): 

          …………………..(3) 

As mentioned, in order to insert a virtual object in a real 

scene in a coherent way, we have to know the pose of the 

camera that we represent here by the matrix "T". Thus, if we 

have a set of points Pi(Xi, Yi, Zi) and their projections qi(xi, yi), 

we can determine the transformation T.  

We present in the following the different approaches that 

determine the pose of the camera, or in other words, to solve 

the following equation (4): 

      ……………………… (4) 

III. POSE ESTIMATION IN AR 

We illustrate in Figure 2 the different approaches allowing 

the pose estimation according to the available data (3D or 2D), 

from the P-nP problem to the SLAM [11], in addition to the 

planar scene. Fig. 2 presents a classification of pose estimation 

techniques. 

 

 
Fig. 2. Classification of the different approaches for 3D pose 

estimation in AR. 

 

A. Pose Estimation based on 3D model 

 

3D Pose can be estimated using a minimum of 3 points. 

Indeed, the pose can be represented by six parameters (3 

angles of rotation and 3 translations), therefore 3 points would 

be sufficient to solve the equation (4), which corresponds to 

the problem P-3P (Perspective 3 Points). 

Solving this problem comes down to:  

- First, we estimate the Zic for each point with respect to 

the Rc reference via the cosine law theorem [17] using 

the triangle CPiPj (with C is the origin of the reference 

Rc).  

- Second, we estimate the transformation T which 

makes it possible to carry out the passage from Rm to 

Rc. 
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As a second alternative, the least squares method can be 

used. It gives an ambiguous solution and requires a fourth 

point to have a unique solution. This one is based mainly on 

the singular value decomposition SVD [12]. 

Kneip and al. [18] proposed a new solution to P-3P 

problem which calculates T directly in one step, without 

estimating the coordinates of the points with respect to the 

reference of the camera Rc. This is made possible by 

introducing the camera landmark Rc' and the world landmark 

Rm'. Therefore, the projection of points from Rm’ to Rc’ reduces 

the problem to two conditions. 

Although, P-3P approaches give solutions to pose 

estimation problem, but P-nP approaches give more accurate 

results by using more points. Quan and Lan [19] extended their 

P-3P algorithm to P-4P and then P-5P to finally reach P-nP. In 

the EP-nP approach [20], 3D point coordinates are expressed 

as a weighted sum of four virtual control points. The pose 

problem is then reduced to the estimation of the coordinates of 

these control points in the camera reference. This approach 

reduces computational complexity. 

Direct Linear Transformation (DLT) is certainly the oldest 

one-step approaches [21]. Although not very accurate, this 

solution and its derivatives have largely been taken into 

account in AR applications. 

P-nP is a non-linear problem. Among the solutions that 

deal with the non-linearity of the system, POSIT is an iterative 

approach proposed by Dementhon and Davis [22], the main 

idea consists on the use of an orthogonal projection system so 

that the problem becomes linear, then iteratively we return to 

the basic perspective projection system. 

When N increases considerably, there is no solution with 

linear complexity for the problem P-nP. Possible solutions for 

this case include EPnP [20], OPnP [23], GPnP [24], and [25]. 

Other methods are based on tracking a model for pose 

estimation. The idea is to define a distance between the point 

of a contour in the image and the projection of the 3D line 

corresponding to the 3D model. The pose is estimated by 

minimizing the error between the selected points and the 

projected contours (Fig 3). 

 

Fig. 3. Contour tracking for the pose estimation, extracted from 

[26]. From the initial pose r0, a one-dimensional search is performed 

along the normal to the projected contour underlying the 

measurement point xi (r0). And minimizing the distance d between the 

point x'i and the line li(r). 

Comport and associates [27] have proposed a tracking 

algorithm based on a 3D model. A nonlinear estimation of the 

pose is formulated using a virtual visual servoing approach. 

The previous approaches are based on available 3D model. 

Other ones estimate at the same time the structure of the scene, 

and the pose of the camera. These approaches are called 

VSLAM (Vision based Simultaneous Localization and 

Mapping) [28] [29] [30]. 

Davison [28] used the extended Kalman filter for data 

integration. On the other hand, Eade and Drummond [29] used 

the particle filter. In such approaches, the data is sequentially 

integrated into the filter. The updates (camera position, speed, 

scene structure) are made sequentially. So, the number of 

estimated parameters increases with the map size. 

Bundle Adjustment (BA) approaches estimate the 

movement of the camera by minimizing the error between the 

predicted points and the observed points, thus to build the map 

[31] [32]. 

Although some studies [33][31] have demonstrated the 

possibility of using SLAMs in AR, nevertheless this kind of 

approaches is lacking in terms of absolute localization and 

remains complex and expensive in computing time. 

PTAM (Parallel Tracking and Mapping) [34] [35] 

dissociates tracking from mapping. Its main idea is to compute 

in parallel the map using BA technique and the pose using a 

tracking method. This approach is used in various application 

areas, particularly in AR [36] [37]. 

There are several works that are based on the use of a lot of 

cameras or other types of sensors, such as Kinect, like 

KinectFusion [38]. These kinds of systems make possible to 

directly determine the 3D position of the points. However, 

they require a slow learning and reconstruction step. 

B. Pose Estimation based on coplanar informations 

Considering a planar scene simplifies the pose estimation 

problem. It’s amount to camera motion estimation process. In 

this section we present the approaches based on extraction of 

2D information from the image and the geometric information 

of a planar scene. The objective is to estimate camera move 

between two images instead of estimating the pose; the 3D 

model is therefore replaced by a reference image. 

 

1) Geometric Approaches 

 

The objective is to estimate the camera 3D movement 

between two acquisitions using only the 2D information 

extracted from the two images. The homography between the 

two images is often used in this case [39], [40]. 

Let x1 be a point of the image I1 and x2 a point of the image 

I2 (I1, I2 two images of the same scene with a different view 

point). The two points (x1, x2) are related by the homography 

  
   as follows (5) [12]: 

      
     …………………….(5) 



   
 

 can be estimated using the Direct Linear 

Transformation (DLT) algorithm [21]. The pose is then 

calculated by a homography decomposition [41]. 

The simplicity of this approach made its use in AR a 

standard. Thus, several coded target identification systems are 

based on this approach. The idea is to place different markers 

by their colors or shapes in the real environment. Based on the 

fact that the markers are known a priori we can estimate the 

3D camera pose. 

More recently, DeTone et al. [42] have considered the 

homography estimation problem between two images as a 

learning problem. They applied a convolutional neural 

network (CNN) to solve it. However, this type of neural 

network is not relevant in term of computation time. 

2)  Appearance based Approaches 

 

Considering the 2D model as a reference image, the 

objective is to estimate the movement between the captured 

image and the reference image in pixel scale. Since the model 

is defined by a set of pixels, we must find their new positions 

in the image. Instead of using homography to determine pose, 

alignment can be defined directly as a minimization problem 

of dissimilarities or maximization of similarities between the 

appearance of the area of interest in the reference image and 

the area of interest in the captured image. 

For example, if the appearance is defined as the pixels 

intensity belonging to a patch, the dissimilarity is considered 

as the SSD (Sum of Squared Differences) differences. 

The tracking algorithm proposed by Benhimane & Malis 

[43] is based on the minimization of the SSD (Sum of Squared 

Differences) between a given model and the current image by 

applying the ESM algorithm (Efficient Second Order 

Minimization) which has the same convergence properties as 

Newton's method, but with a faster computation time. 

IV. FEATURES DETECTION AND DESCRIPTION 

Recent advances in computer vision and the development 

of key-points matching methodologies make AR reaching a 

new level maturity. We present in the following the different 

techniques for image feature description.  

A descriptor is a function applied to the patch in order to 

describe it, in an invariant way for any changes to the image 

(eg, rotation, lighting, noise, etc.). 

The common pipeline for using descriptors is: 

1. Select regions (patches) around the detected key-points in 

the image. These patches are square or circular shapes 

depending on the properties of the descriptor to be applied. 

2. Describe each region (the patch) as a feature vector, using 

this descriptor. 

3. Calculate the distance between vectors using a similarity 

measure.  

In the state of the art, most of works focuses on the 

description of key-points. Those description techniques 

(descriptors) have been grouped into two main families, 

Floating Point Descriptors, and Binary Descriptors. We 

present in the following two comparative tables of the most 

known descriptors. 

The first table (Table 2) illustrates the computing time of 

some known descriptors, we calculated the average time of a 

description of a patch for each of these descriptors. Thus, we 

noticed that the binary ones are more suitable for real-time 

applications (at least 15 frames per second), than the floating-

point descriptors.  

We note that the description is made on 500 points / frame 

and the number of frames per second is calculated according to 

the time of the description only (without adding the time of 

detection and matching).  

TABLE 2. Description mean time of a patch (ms) and the number 

of frames / sec. 

 
Descriptors 

Description 
mean time 
of a patch 
(ms)  

Number of frames per 
second (description of 
500 points per frame) 

SIFT [44] 3.121 0.64 

SURF [45] 1.488  1.34 

LDA-HASH [46] 4.21 0.47 

BRISK [47] 0.072 27.77 

FREAK [48] 0.094 21.27 

ORB [49] 0.146  13.69 

LDB [50] 0.139 14.38 

LATCH [51] 0.437 4.57 

MOBIL [52] 0.127 15.74 

MOBIL_2B [53] 0.136 14.70 

POLAR_MOBIL [54] 0.107 18.68 

 

We present in Table 3, a comparison of more than 30 

descriptors from the state of the art with their detectors. We 

have classified these descriptors according to certain criteria 

that we judged necessary for the implementation of an 

augmented reality application.  

We evaluated the descriptors according to each criterion, 

namely computation time, recognition rate and memory space, 

using a scale from 1 to 5 (from + to +++++) shown as follows: 

Computing time: Recognition rate: Memory: 

+: Very slow.   

+++++: Very speed. 

+: Less robust. 

+++++: Robust. 

+: Voluminous.  

+++++: Lightweight. 

According to Table 3, we noticed that new descriptors 

based on deep learning such as [55], [56] and [57] give better 

results in terms of recognition rate. However, their major 

disadvantage is the calculation time, similarly to traditional 

floating-point descriptors such as SIFT [44], GLOH [58], LDE 

[59] or DAISY [60]. 



 
TABLE 3. Descriptors Comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Descriptor Suggested Detector Type  Computing time  
Recognition 

rate 
Memory space 

SIFT [44] DoG Float + +++++ ++ 

PCA-SIFT [61] DoG (SIFT) Float  ++ ++++ +++ 

GLOH [58] DoG (SIFT) Float + +++++ ++ 

SURF [45] Determinant of Hessian Float + ++++ ++ 

LDE [59] DoG Float  ++ +++++ +++ 

Daisy [60] DoG (SIFT) Float  + +++++ ++ 

BRIEF [62] SURF Detector Binary +++ +++ ++++ 

ORB [48] FAST Binary ++++ ++++ ++++ 

BRISK [47] AGAST+FAST Binary +++++ ++++ ++++ 

FREAK [48] BRISK Detector Binary +++++ ++++ ++++ 

ALOHA [63] SURF  Detector Binary +++ ++++ +++ 

LDA-HASH [46] DoG (SIFT) Binary + +++++ + 

KAZE [64] Hessian Matrix + Scharr filter Float  ++ +++ +++ 

BinBoost [65] DoG Binary ++ ++++ ++ 

A-KAZE [66] KAZE  Detector Binary ++++ ++++ +++ 

LDB [50] DoG (SIFT) Binary +++ ++++ +++ 

OSRI [67] DoG  / Hessian /Harris-Affine Binary +++ ++++ ++++ 

USB [68] DoG Binary +++ ++++ ++++ 

MOBIL [52] FAST Binary ++++ ++++ ++++ 

BSIFT [70] SIFT Binary +++ ++++ +++ 

BOLD [71] Haris-Laplace Binary ++++ ++++ ++++ 

MOBIL_2B [53] FAST Binary ++++ ++++ ++++ 

Deep Hashing [72] Full Image Binary ++ +++++ +++ 

LATCH [51] Multi-scale Harris Binary ++ ++++ +++ 

MatchNet [55] Convolutional neural network Float ++ +++++ +++ 

 [56] Convolutional neural network Float + +++++ ++ 

3D ConvNets [57] Convolutional neural network Float ++ +++++ + 

POLAR_MOBIL [54] MOBIL_DETECTOR Binary ++++ ++++ ++++ 



On the other hand, we noticed that the binary descriptors 

are better than the other two families in terms of memory and 

computing time. However, their robustness and their 

discriminative and distinctive powers are considerably limited. 

Except, some robust binary descriptors such BRISK, FREAK, 

POLAR_MOBIL and BOLD, which are suitable for using in 

real-time augmented reality applications. 

V. CONCLUSION 

This paper presents a global vision of the pose estimation 

problem used in augmented reality. We first presented the 

geometrical aspect of the pose estimation by presenting the 

different methods that make it possible to geometrically 

answer this problem, then we approached the approaches that 

integrate motion estimation. We classified these approaches 

according to the available information: 3D model or planar 

scene. 

Then, we presented the extraction and description of 

features and we presented a comparison of different 

descriptors. According to the conducted comparison, we found 

that the recent binary descriptors are the most suitable for such 

augmented reality applications, thanks to their low computing 

time and memory consumption.  
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