C. Ambroise and G. Govaert, Convergence proof of an EM-type algorithm for spatial clustering, Pattern Recognition Letters, vol.19, pp.919-927, 1998.

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, pp.839-851, 2005.

J. D. Banfield and A. E. Raftery, Model-based Gaussian and non-Gaussian clustering, Biometrics, vol.49, pp.803-821, 1993.

M. J. Beal and Z. Ghahramani, The variational Bayesian EM algorithm for incomplete data: With application to scoring graphical model structures, 2003.

C. Beecks, M. S. Uysal, and T. Seidl, Content-based image retrieval with Gaussian mixture models, MultiMedia Modeling: 21st International Conference, MMM 2015, pp.294-305, 2015.

D. Benboudjema and W. Pieczynski, Unsupervised image segmentation using triplet Markov fields, Computer Vision and Image Understanding, vol.99, pp.476-498, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01347961

J. Besag, Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society, Series B, vol.36, pp.192-236, 1974.

J. Besag, On the statistical analysis of dirty pictures, Journal of the Royal Statistical Society, Series B, vol.48, pp.259-302, 1986.

J. Blanchet and F. Forbes, Triplet Markov fields for the classification of complex structure data, IEEE Transactions on Pattern Analysis Machine Intelligence, vol.30, pp.1055-1067, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00168621

C. Bouveyron, S. Girard, and C. Schmid, High-dimensional discriminant analysis, Communications in Statistics Theory and Methods, vol.36, pp.2607-2623, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00548516

R. Boyles, On the convergence of EM algorithms, Journal of the Royal Statistical Society, Series B, vol.45, pp.47-50, 1983.

W. Byrne and A. Gunawardana, Convergence theorems of generalized alternating minimization procedures, Journal of Machine Learning Research, vol.6, pp.2049-2073, 2005.

G. Celeux, F. Forbes, and N. Peyrard, EM procedures using mean field-like approximations for model-based image segmentation, Pattern Recognition, vol.36, pp.131-144, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00072526

G. Celeux, F. Forbes, and N. Peyrard, Modèle de Potts avec champ externe et algorithme de type EM pour la segmentation d'images, RFIA, 14th French Meeting AFRIF-AFIA Reconnaissance des Formes & Intelligence Artificielle, 2004.

G. Celeux and G. Govaert, Gaussian parsimonious clustering models, Pattern Recognition, vol.28, pp.781-793, 1995.
URL : https://hal.archives-ouvertes.fr/inria-00074643

L. Chaari, T. Vincent, F. Forbes, M. Dojat, and P. Ciuciu, Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach, IEEE Transactions on Medical Imaging, vol.32, pp.821-837, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00753873

B. Chalmond, An iterative Gibbsian technique for reconstruction of m-ary images, Pattern Recognition, vol.22, pp.747-761, 1989.

D. Chandler, Introduction to Modern Statistical Mechanics, 1987.

D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani et al., Design and construction of a realistic digital brain phantom, IEEE Transactions on Medical Imaging, vol.17, pp.463-468, 1998.

I. Csiszar and G. Tusnady, Information geometry and alternating minimization procedures, Statistics & Decisions, vol.1, pp.205-237, 1984.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B, vol.39, pp.1-38, 1977.

L. R. Dice, Measures of the amount of ecologic association between species, Ecology, vol.26, pp.297-302, 1945.

J. Fessler, Comments on "The convergence of mean field procedures for MRF's, IEEE Transactions on Image Processing, vol.7, p.917, 1998.

F. Forbes, M. Charras-garrido, L. Azizi, S. Doyle, and D. Abrial, Spatial risk mapping for rare disease with hidden Markov fields and variational EM, Annals of Applied Statistics, vol.7, pp.1192-1216, 2013.
URL : https://hal.archives-ouvertes.fr/inria-00577793

F. Forbes and G. Fort, Combining Monte Carlo and mean field like methods for inference in hidden Markov random fields, IEEE Transactions on Image Processing, vol.16, pp.824-837, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00846640

F. Forbes, B. Scherrer, and M. Dojat, Bayesian Markov model for cooperative clustering: Application to robust MRI brain scan segmentation, Journal de la Société Française de Statistique, vol.152, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00752896

O. François, S. Ancelet, and G. Guillot, Bayesian clustering using hidden Markov random fields in spatial genetics, Genetics, vol.174, pp.805-816, 2006.

I. Gebru, X. Alameda-pineda, F. Forbes, and R. Horaud, EM algorithms for weighted-data clustering with application to audio-visual scene analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, pp.2402-2415, 2016.
DOI : 10.1109/tpami.2016.2522425

URL : https://hal.archives-ouvertes.fr/hal-01261374

S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.6, pp.721-741, 1984.

D. Gerogiannis, C. Nikou, and A. Likas, The mixtures of Student's tdistributions as a robust framework for rigid registration, Image Vision Computing, vol.27, pp.1285-1294, 2009.

P. J. Green and S. Richardson, Hidden Markov models and disease mapping, Journal of American Statistical Association, vol.97, pp.1055-1070, 2002.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, An introduction to variational methods for graphical models, Learning in Graphical Models, pp.105-162, 1998.
DOI : 10.1007/978-94-011-5014-9_5

URL : http://nma.berkeley.edu/ark:/28722/bk0005s0t3h

Y. Kabir, M. Dojat, B. Scherrer, F. Forbes, and C. Garbay, Multimodal MRI segmentation of ischemic stroke lesions, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2007.
DOI : 10.1109/iembs.2007.4352610

URL : https://hal.archives-ouvertes.fr/inserm-00402278

V. Karavasilis, K. Blekas, and C. Nikou, A novel framework for motion segmentation and tracking by clustering incomplete trajectories, Computer Vision and Image Understanding, vol.116, pp.1135-1148, 2012.
DOI : 10.1016/j.cviu.2012.07.004

D. Karlis and L. Meligkotsidou, Finite mixtures of multivariate Poisson distributions with application, Journal of Statistical Planning and Inference, vol.137, pp.1942-1960, 2007.
DOI : 10.1016/j.jspi.2006.07.001

D. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, vol.60, pp.91-110, 2004.
DOI : 10.1023/b:visi.0000029664.99615.94

G. Mclachlan and T. Krishnan, The EM Algorithm and Extensions, 2008.

G. Mclachlan and D. Peel, Robust mixture modelling using the t distribution, Statistics and Computing, vol.10, pp.339-348, 2000.

B. Menze, M. Reyes, and K. Van-leemput, The multimodal brain tumorimage segmentation benchmark (BRATS), IEEE Transactions on Medical Imaging, vol.34, pp.1993-2024, 2015.
DOI : 10.1109/tmi.2014.2377694

URL : https://doi.org/10.1109/tmi.2014.2377694

R. M. Neal and G. E. Hinton, A view of the EM algorithm that justifies incremental, sparse, and other variants, Learning in Graphical Models, pp.355-368, 1998.

M. Niknejad, H. Rabbani, and M. Babaie-zadeh, Image restoration using Gaussian mixture models with spatially constrained patch clustering, IEEE Transactions on Image Processing, vol.24, pp.3624-3636, 2015.
DOI : 10.1109/tip.2015.2447836

K. M. Pohl, J. Fisher, E. Grimson, R. Kikinis, and W. M. Wells, A Bayesian model for joint segmentation and registration, NeuroImage, vol.31, pp.228-239, 2006.
DOI : 10.1016/j.neuroimage.2005.11.044

URL : http://people.csail.mit.edu/~fisher/publications/papers/pohl06a.pdf

W. Qian and M. Titterington, Estimation of parameters in hidden Markov models, Philosophical Transactions of the Royal Society London Series A, vol.337, pp.407-428, 1991.

B. Scherrer, F. Forbes, and M. Dojat, A conditional random field approach for coupling local registration with robust tissue and structure segmentation, Medical Image Computing and Computer-Assisted Intervention-MICCAI 2009: 12th International Conference, 2009.
DOI : 10.1007/978-3-642-04271-3_66

URL : https://hal.archives-ouvertes.fr/inserm-00517880

T. Tanaka, Information geometry of mean-field approximation, Advanced Mean Field Methods, 2001.
DOI : 10.1162/089976600300015213

M. Vignes, J. Blanchet, D. Leroux, and F. Forbes, SpaCEM3, a software for biological module detection when data is incomplete, high dimensional and dependent, Bioinformatics, vol.27, pp.881-882, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00780593

M. Vignes and F. Forbes, Gene clustering via integrated Markov models combining individual and pairwise features, IEEE Transaction on Computational Biology and Bioinformatics, vol.6, pp.260-270, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00781174

M. Wainwright and M. Jordan, Graphical models, exponential families, and variational inference, 2003.

M. Wainwright and M. Jordan, A variational principle for graphical models, New Directions in Statistical Signal Processing, 2005.

C. F. Wu, On the convergence properties of the EM algorithm, Annals of Statistics, vol.11, pp.95-103, 1983.

J. Zhang, The convergence of mean field procedures for MRF's, IEEE Transactions on Image Processing, vol.5, pp.1662-1665, 1996.