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Aerial cable towed systems (ACTSs) can be created by join-

ing unmanned aerial vehicles (UAVs) to a payload to extend

the capabilities of the system beyond those of an individual

UAV. This paper describes a systematic method for evaluat-

ing the available wrench set and the robustness of equilib-

rium of ACTSs by adapting wrench analysis techniques used

in traditional cable-driven parallel robots to account for the

constraints of quadrotor actuation and dynamics. Case stud-

ies and experimental results are provided to demonstrate the

analysis of different classes of ACTSs, as a means of evalu-

ating the design and operating configurations.

Keywords: Quadrotor, Cable-Driven Parallel Robot,

Wrench Feasibility, Capacity Margin, Aerial Manipulation

1 INTRODUCTION

Aerial cable towed systems (ACTSs) are a class of aerial

manipulator that is gaining interest as a means of payload

transportation and manipulation. Currently most ACTSs are

slung loads from helicopters for the purpose of military or

civilian logistics, but the recent increase in the commercial-

ization of unmanned aerial vehicles (UAVs) due to improved

onboard sensing and computation, and higher energy den-

sity batteries has opened the commercial possibility of using

many small UAVs to collaborate towards single tasks [1–3].

The use of multiple small UAVs compared to a single larger

one is desirable from a safety and redundancy standpoint, as

well as allowing for greater reactivity of the system to exci-

tations due to the greater agility of small UAVs [4]. Many

types of UAVs exist, however much of the current research

including this paper is focused on quadrotors due to their

high payload to weight ratio, versatile control, and simple

mechanical design [5].

ACTSs are composed of aerial vehicles connected to ei-

ther a rigid body payload or to a point mass through cables.
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Fig. 1: Prototype ACTS developed at LS2N

Systems of multiple UAVs give greater versatility in the con-

trol of the payload and expand the available task set of the

system, as well as delivering an attractive degree of modular-

ity [6,7]. Studies in which a single UAV with a slung load as

in [8] found that complex control and trajectory generation

was required to avoid payload oscillations, a problem intu-

itively solved by constraining the load through more cables.

Much of the current research into ACTSs is focused on

designing trajectory tracking controllers for the suspended

body. In [9], differential flatness is used to generate feasi-

ble trajectories for the system. The authors of [10] use con-

trol methods adapted from cable-driven parallel robots (CD-

PRs) to ensure stability and trajectory convergence, while

in [11], a linear quadratic regulator is used to control the

robot. In [12], a novel ACTS is presented and uses RRT

graphs to determine feasible payload trajectories. A subject

of great interest currently in the ACTS field is the implemen-

tation of decentralized control where the payload is trans-

ported by the collective action of multiple quadrotors without

explicit communication between each agent. This has been

studied for rigid connections [2], and for cable attachments

using onboard camera [4] or using either observer or sensor

derived tension sensing [13, 14] where the stability is shown

to relate to the internal forces in the body being transported.

In all these works the wrench feasibility and stability of the



ACTS is considered, but to the authors’ best knowledge there

is no systematic quantification of the degree of wrench fea-

sibility nor generic methodology for mapping the extensive

wrench set in task space.

There are strong similarities between ACTSs and CD-

PRs, indeed an ACTS can be considered as a CDPR with

moving pulley anchor points. Wrench capabilities have been

an important topic of research for CDPRs, playing an im-

portant role in their design, workspace analysis, and tra-

jectory generation [15–18]. The link between CDPRs and

ACTSs has been investigated by using tension distribution

algorithms for the purposes of control and stability [10, 19].

In [20], the degree of wrench inclusion is used as a perfor-

mance index for CDPRs. Despite the similitudes of the two

types of systems, there are differences in the modelling of the

available wrench set due to the actuation limits of quadrotors.

The purpose of this paper is therefore to develop a broadly

applicable means of evaluating the available wrench set of

ACTSs, with possible applications in design, motion plan-

ning, and for evaluating the robustness of equilibrium.

Section 2 of this paper describes the parameterization

of ACTSs. In section 3, the equilibrium conditions of the

platform and quadrotors are formalized. The methodology

used for calculating the available wrench set of the ACTS is

shown in section 4 for a simple planar system. Several quasi-

static case studies are presented in section 5, showing the ap-

plication for more complex planar and spatial systems. Ex-

perimental validation is presented in section 6 and section 7

presents the effects of dynamics on the wrench analysis.

2 GEOMETRIC PARAMETERIZATION

To formulate a general methodology, a parameterization

of the ACTS allowing for design variability is important. In

this case, an ACTS with n quadrotors, m cables, and a d DOF

payload is considered. From a practical perspective, it is as-

sumed that the pose of the quadrotors and payload are known

with respect to an inertial frame F0 at origin O. The plat-

form frame Fp is placed at the center of mass and inertia

of the payload denoted as point P. The jth cable of length

l j connects at point B j to the payload at one end and to the

ith quadrotor at point Ai on the other end, with Ai being the

center of mass and geometric center of the quadrotor. Each

quadrotor has a frame Fi at point Ai, with the z-axis normal

to the plane of the rotors.

The payload position vector xp =
#  »

OP is expressed in F0,

and in the case of rigid body payloads the rotation from F0

to Fp is given by the rotation matrix Rp. The position vector

of the ith quadrotor is expressed in F0 as xi =
#    »

OAi and the

orientation by rotation matrix Ri. The point B j is defined in

Fp as b j =
#    »

PB j. The configuration of the ACTS is described

by the set of cable vectors u1...,m, with u j being the unit vec-

tor along
#      »

B jAi in F0. As a function of measured states, the

cable vector u j is given by Eqn. (1).

l ju j = xi − xp −Rpb j (1)

O
P

Fig. 2: Parameterization of an Aerial Cable Towed System

with a rigid platform. This general representation shows

curved cables to distinguish them from rigid links, but as the

cable mass decreases they approach straight lines and ti be-

comes parallel to ui.

3 EQUILIBRIUM CONDITIONS OF ACTS

This paper describes the available wrench set of an

ACTS as a function of the thrust capabilities of each quadro-

tor, as well as their configurations relative to the payload,

and their desired acceleration. It is considered that a known

external wrench we = [fT
e mT

e ]
T expressed in F0 acts on the

platform. The equations of motions acting on the platform

and on each quadrotor are expressed separately to determine

the total external and internal forces, effectively dividing the

systems into three components; the quadrotors, the platform,

and the cables linking the two together.

3.1 Platform

Assumption 1: Cables are considered to be massless and

inelastic. This means that the cables can be considered as

straight lines, and as such the ith cable tension vector can be

defined as ti = tiui.

The wrenches on the payload are generated through the

sum of m tension vectors and their corresponding moments,

along with gravity acting at the center of mass. There are

therefore m+ 1 constraining wrenches on the payload. In

cases where the payload is considered a point mass, the mo-

ments generated by the cables are disregarded. As a result,

the equations of motion of the platform expressed in frame

F0 are as follows:

mpg+
m

∑
j=1

(t ju j)+ fe = mpẍp (2)

m

∑
j=1

(Rpb j × t ju j)+me = Jpω̇ωωp +ωp × Jpωp (3)

where mp is the mass of the platform, g is the gravitational

vector [0 0 −9.81]T ms−2, and ωωωp is the angular velocity vec-

tor of the platform. Matrix Jp is the inertia tensor of the plat-

form expressed in Fp.



Fig. 3: Free body diagram of the platform and ith quadrotor

3.2 Quadrotors

The actuation wrench of the ith quadrotor is expressed in

Fi as iwi = [ifT
i

iτττT
i ]

T , where ifi is the thrust vector [0 0 fi]
T

and iτττi is the moment vector [τi,x τi,y τi,z]
T [5]. The compo-

nents of iwi take the form:

fi =
i=4

∑
i=1

CF ω2
i (4a)

τx,i =CF ri

(

ω2
1 −ω2

3

)

(4b)

τy,i =CF ri

(

ω2
2 −ω2

4

)

(4c)

τz,i =CM

(

ω2
1 −ω2

2 +ω2
3 −ω2

4

)

(4d)

where ωi is the anguar velocity of the ith propellor, ri is the

distance from the center of the ith propellor to the quadrotor

center of mass. CF and CM are the coefficients of thrust and

drag of the propellors, respectively. It can be seen that a

quadrotor exerts a thrust normal to the plane containing its

rotors, and three independent moments about its center of

inertia. This results in four degrees of actuation controlling

the orientation of the unit vector vi = Ri[0 0 1]T , and the

magnitude of the thrust fi along vi.

Assumption 2: Cables pass through the center of mass

of the quadrotor to which they are attached. This allows the

assumption that the rotational dynamics of the quadrotor are

fully decoupled from the cable tensions

The equations of motion of the ith quadrotor expressed

in F0 are written as:

fivi +mig−
k

∑
j=1

t ju j = miẍi (5)

τττi = Jiω̇ωωi +ωωωi × Jiωωωi (6)

where k ∈ [1,2] is the number of cables connected to the ith

quadrotor, mi is the mass of the ith quadrotor, and ωωωi is the

angular velocity of the ith quadrotor. Matrix Ji is the inertia

tensor of the ith quadrotor expressed in Fi.

4 AVAILABLE WRENCH SET

With the ultimate goal of determining the available

wrench set of an ACTS, the mapping of cable tension space

used with CDPRs [20,21] is adapted to account for quadrotor

Fig. 4: A planar ACTS with three quadrotors, three cables,

and a point mass payload

constraints. The main difference between the CDPR and the

ACTS available wrench sets is that CDPRs have a constant

available tension set regardless of the state of the robot, so

for any configuration of the CDPR the minimum and maxi-

mum available cable tensions are constant. Because a com-

ponent of the actuation of the quadrotor is required to keep

itself in the air, different configurations will result in variable

tension spaces achievable by the ACTS, in turn affecting the

set of available wrenches in task space. To this end, an extra

mapping step is proposed to go from the thrust space of the

quadrotors to the tension space of the cable system.

During the explanation of the available wrench set cal-

culations, an example of a planar ACTS (Figure 4) com-

posed of three quadrotors with a single cable each attached

to a point mass will be used. It has the configuration C =
[θ1 θ2 θ3] = [0 π

4
− 7π

18
]rad, and a payload mass of mp = 4kg.

The quadrotors used have a mass of mi = 0.8kg and max-

imum thrust of f̄i = 32N. In a general case, there are n

quadrotors, m cables, and a task space of dimension d, satis-

fying the following requirements:

1 ≤ d ≤ 6 and d ≤ m and n ≤ m ≤ 2n

4.1 Thrust Space

As the ith cable of this ACTS connects with the ith

quadrotor at xi and can only transmit internal tensions, the

thrust fi is the only component of iwi that gets transmitted to

the payload. Quadrotor i’s thrust fi is bounded by the strictly

positive minimum thrust fi required to maintain control of

the quadrotor, and the maximum thrust f̄i that the quadrotor

can generate. The lower bound is of little significance to the

wrench analysis, so long as ẍT
i [0 0 1]T > gT [0 0 1]T .

The upper bounds of the thrust space are simply the

maximum thrust the quadrotors are able to generate. In the

planar case study with three quadrotors, the thrust space is

a 3-orthotope (Figure 5a). The thrust space H can be gen-

eralized for an arbitrary ACTS as the n-dimensional set of

independently achievable quadrotor thrusts, forming an n-

orthotope:

H=
{

f ∈R
n : f ≤ f ≤ f̄

}

(7)



Fig. 5: Thrust H, tension T and wrench W spaces of the planar ACTS in Figure 4

where f = [ f1, . . . , fn]
T .

4.2 Tension Space

Assumption 3: Cables tensions are always positive,

and the projection of every cable on the z axis is positive,

i.e., [0 0 1]u j > 0.

Tension space is the set of tensions that the quadrotors

are able to exert on the cables. Each cable j has tension t j

such that 0 < t j ≤ t j ≤ t̄ j. The minimum tension is chosen

such that there will not be excessive sag in the cable [22], and

the maximum tension is the maximum force the quadrotor

can exert on the cable (assumed to be less than the cable’s

safe operating tension). Accordingly, the tension space can

be generalized as:

T = {t ∈R
m : t ≤ t ≤ t̄} (8)

where t = [t1, . . . , tm]
T . As each cable is supported by a

quadrotor of finite thrust and non-zero mass, a component of

the thrust of the quadrotor must counteract its own weight,

with the remainder being available to support the cable ten-

sion. The balance of forces for the ith quadrotor in this ex-

ample is given by Eqn. (9).

fivi +mig− tiui = miẍi (9)

With fi, ti and vi being unknown, this is an under defined

equation. It can be recognized however that the orientation

of the quadrotor is controllable, thus vi can be eliminated

in Eqn. 10 for the purpose of the wrench analysis using its

property as a unit vector.

f 2
i vT

i vi = [tiui +mi(ẍi − g)]T [tiui +mi(ẍi − g)] (10)

This leads to the explicit relationship between tension and

thrust in Eqn. 11.

t2
i + 2timiu

T
i (ẍi − g)+m2

i (ẍ
T
i ẍi + gT g)− f 2

i = 0 (11)

It is apparent that the maximum achievable tension must

occur at the maximum quadrotor thrust, therefore the max-

imum tension can be mapped from thrust space to tension

space by Eqn. 12.

t̄i =miu
T
i (g− ẍi)+

√

f̄ 2
i +m2

i

(

(

uT
i (ẍi − g)

)2
− ẍT

i ẍi − gT g

)

(12)

Considering only quasi-static motion, this can be re-

duced to the expression in Eqn. (13) where uiz = [0 0 1]ui

and g = [0 0 1]g.

t̄i = miguiz+
√

f̄ 2
i +m2

i g2
(

u2
iz − 1

)

(13)

4.3 Available Wrench Set

The wrench that each cable exerts on the platform can be

mapped from tension space to wrench space with the wrench

matrix W. The platform is in static equilibrium when Wt+
we = 0, where t ∈ T [17, 20].

W =

[

u1 . . . um

Rpb1 ×u1 . . . Rpbm ×um

]

(14)

The wrench space is the set of wrenches that the cables

are able to exert on the payload expressed in F0 as described

in Eqn. (15), where wi is the ith column of the wrench matrix

W and ∆ti = t̄i− ti. A wrench w is inside the available wrench

set if and only if it satisfies Eqn. (15).

W =

{

w∈R
d |w=

m

∑
j=1

α j∆t jw j+Wt, 0≤α j ≤ 1

}

(15)

As the tension space in this example is an orthotope

which is necessarily a convex set, the linear mapping of

the points bounding the tension space is also a convex set.

Therefore the mapping of the vertices of the tension space by

the wrench matrix fully and exclusively contains all feasible

wrenches. Using the convex hull method described in [21],



the achievable wrench set of the system can be found as the

convex hull of the set of d-dimensional points Wa.

Wa = Wdiag(∆t)ααα+Wt 1(1,2n) (16)

where 1(1,2n) is a row vector of ones with 2n columns. In the

planar example considered here, the matrix ααα is the set of all

combinations of tension limits bounding the tension space

ααα =





0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1



 (17)

It is apparent that the mapping from tension space ver-

tices to wrench space generates eight wrenches, however the

wrench space in Fig. 5c has six vertices only. That is because,

due to the redundant nature of the cable system (m > d), two

mapped tension vertices are internal to the convex set formed

by the other six wrenches.

4.4 Capacity Margin

The capacity margin γ is an index used to evaluate the ro-

bustness of equilibrium [16, 20]. It is defined as the shortest

distance from the we to the nearest facet of W . Throughout

the entirety of the wrench set determination, the orientation

of the quadrotor thrust was held to be arbitrary, constrained

solely by its maximum magnitude. This leads to the corollary

that the capacity margin can be used to determine the mini-

mum set of external wrenches on the platform that the ACTS

can compensate for solely with modifications to the attitude

of the quadrotor. As the dynamics of the attitude control

of quadrotors are much faster than those of the translational

control, compensating for disturbances with attitude only

should provide a more robust system. In this planar case, the

attitude φ of the quadrotor results in vi = [sin(φ),cos(φ)]T ,

such that Eqn. (9) is satisfied.

5 CASE STUDIES

Several quasi-static case studies are provided to demon-

strate the computation of the available wrench set. In the

first case, a planar ACTS composed of a rigid platforms with

two quadrotors and three cables is analyzed, differing from

the previous example through a coupling between two di-

mensions of the tension space, as well as a non-homogenous

wrench space. The study is then extended to two 6-DOF

spatial systems, the first of which is a redundantly actuated

platform with eight quadrotors and eight cables, the other be-

ing a system of three quadrotors and six cable such as is used

in [12]. All examples use quadrotors with a mass of 0.8kg

and a maximum thrust of 32N.

5.1 Planar System with 2 Quadrotors and 3 Cables

If the object being transported is large, the moments that

can be applied to the platform become of greater importance.

Fig. 6: A planar ACTS with two quadrotors and three cables

Multiple cables attached to a single quadrotor may improve

the orientation control of the platform without increasing the

number of quadrotors. For the ACTS shown in Fig. (6), the

thrust space to tension space mapping of quadrotor 1 to cable

1 can be done using the same methodology as the previous

example. The second quadrotor is connected to two cables,

and has the equilibrium equation shown in Eqn. (18)

f2v2 +m2g− t2u2 − t3u3 = mpẍi (18)

To determine the tensions in the two cables, there are

five controllable variables ( f2, t2, t3,v2x,v2z). To maintain

generality, we consider that cables j and k connect to quadro-

tor i. This set of equations can be reduced to an equation re-

lating the thrust of the quadrotor to the magnitude of the two

cable tensions as was done in Eqn. 10, with the result shown

in Eqn. 19.

t2
j + t2

k + 2mi(t ju
T
j + tkuT

k )(ẍi − g)

+ 2t jtkuT
j uk +m2

i (ẍ
T
i ẍi + gT g)− f 2

i = 0 (19)

By writing Eqn. (19) to solve for t2 as t2 = h2(t3, f2)
and likewise t3 = h3(t2, f2) the cable tension space can be

formulated as the set of inequalities in Eqn .20.

T = t ∈ R
3











t1 ≤ t1 ≤ t̄1

t2 ≤ t2 ≤ h2(t3, f̄2)

t3 ≤ t3 ≤ h3(t2, f̄2)

(20)

The main difference in computing the available wrench set

for this system is the ααα matrix used in Eqn. (16). Appendix

A proves that, given the sufficient conditions of cables j

and k projecting along the positive z0 axis, and the angle

between cables j and k being less than π
2

rad, the function

t j = h j(tk, f̄i) is convex over the domain tk ≤ tk ≤ t̄k. This

property guarantees that the mapping of any set of points

in the tension space produces a convex set exclusively con-

taining feasible wrenches. In figure 7(a) six tension space



Fig. 7: Thrust, tension and wrench spaces of a planar ACTS with two quadrotors and three cables

vertices are clearly identifiable, however mapping only these

points will result in an over conservative set of available

wrenches. To approximate the full wrench set, the arc be-

tween t̄2 and t̄3 is divided into p+1 segments. The combina-

tion matrix of the tension span of the second and third cables

is denoted as ααα23.

ααα =

[

0(1,3+p) 1(1,3+p)

ααα23 ααα23

]

(21)

The ααα23 matrix includes the three vertices of the t2, t3 plane,

and a set of vertices evaluated at interpolation points t3,k =
h3(t2,k, f̄2) for all interpolation points k ∈ Z | 1 ≤ k ≤ p. The

full ααα23 matrix is shown in Eqn. (22).

ααα23 =







0 1 0 k
p+1

. . . p
p+1

0 0 1
h3(

k∆t2
p+1

+ t2)− t3

∆t3
. . .

h3(
p∆t2
p+1

+ t2)− t3

∆t3







(22)

As the available wrench set of this robot is w∈ [ fx fz my],
it must be homogenized to allow for a calculation of the ca-

pacity margin. In [16], the capacity margin is homogenized

by dividing the moment by the radius of gyration rg =
√

I/A

of the platform, where A is the area of the platform and I is

the second area moment of inertia. If Wa is the matrix whose

columns form a set of points bounding the convex wrench

space, the homogenized wrench space boundary is given by

Eqn. (23).

Wh =





I2 0

0
1

rg



Wa (23)

where I2 is an identity matrix of rank 2. In this case

study the system parameters are defined as: R = Ry(π/6)
where Ry(x) is the rotation matrix about y0 by angle x, plat-

form mass mp = 4kg, platform dimensions b1 = [−0.75 −
0.25]T m,b2 = [0.5 0.5]T m,b3 = [1.0 − 0.25]T m, cables

of 0.75 m in length, and u1 = [0 0 1]T . Fig. 7(c) shows the

available wrench set, with the dotted line indicating the line

Fig. 8: A 6-DOF ACTS with a cubic payload, eight quadro-

tors and eight cables

of action of we. The capacity margin of the ACTS in this

configuration is 0.3N, so this configuration is on the border

of equilibrium. It is noteworthy that solely reducing mp here

does little to change γ, but that γ increases significantly with

a combination of we = [0 0 −my] and decreased mp. The

attitudes φ1 and φ2 of the quadrotors are chosen such that for

the point in tension space t = W−1(mpg−we), Eqn. (9) is

satisfied for the first quadrotor, and Eqn. (18) is satisfied for

the second quadrotor.

5.2 Spatial System with 8 Quadrotors and 8 Cables

In this case, the platform is desired to have a controllable

orientation without holonomic constraints on the twist. The

ACTS, shown in Fig. (8) has a cubic moving platform with

side lengths of 0.5 m, mass mp = 4 kg, and orientation of

R = Rxyz(
π
12

π
12

0). It is manipulated by eight quadrotors so

that all twists are independently achievable with two degrees

of actuation redundancy in non-singular states. A configura-

tion has been chosen to avoid singularities for the evaluation

of the available wrench set. The vector ui of the cables con-

nected to the lower vertices of the platform are rotated by
−π
6

rad from the direction of bi about z0, and then given an

elevation of π
6

rad from the xy-plane. The upper cables are



Table 1: Thrust and tension space limits for the eight quadro-

tors, eight cables case study shown in figure 8

Quadrotor f(N) f̄ (N) Cable t(N) t̄(N)

1 8.7 32.0 1 1.0 25.0

2 8.4 32.0 2 1.0 27.4

3 8.7 32.0 3 1.0 25.0

4 8.4 32.0 4 1.0 27.4

5 8.7 32.0 5 1.0 25.0

6 8.4 32.0 6 1.0 27.4

7 8.7 32.0 7 1.0 25.0

8 8.4 32.0 8 1.0 27.4

Fig. 9: Achievable wrench space of the eight quadrotor, eight

cable ACTS evaluated at wmoment = [0 0 0]T Nm (left) and at

w f orce = mpg N (right).

rotated in the opposite direction by π
6
rad from bi about z0,

and then elevated by π
3

rad from the xy-plane.

In this case, the thrust space is computed for each

quadrotor as in the previous section, resulting in a 8-

orthotope. The tension space is likewise calculated to result

in an 8-orthotope using Eqn. (11). The result is the same as

in the planar system, with the thrust space to tension space

mapping being described by Eqn. (13). The vertices of the

thrust and tension spaces are combinations of maximum and

minimum thrust and tension values in Table (1).

Mapping the vertices of the tension space orthotope to

task space results in a convex 6-zonotope [18, 21] bound-

ing the available wrench set of the ACTS. Fig. (9) shows

the available wrench set evaluated at me = 0 (left) and at

fe = −mpg (right). From this, it is seen that the system can

exert a force wrench between 10N and 120N along z0, and

forces between -20N and 20N laterally, with the largest lat-

eral wrench range occuring when the vertical force is around

60N. This ACTS has little ability to withstand positive mo-

ments about z0 limiting the capacity margin to γ = 6.5N.

This ACTS configuration would be useful in situations that

required (primarily vertical) movements, as well as roll and

pitch capabilities, but without strict yaw requirements.

While the wrench feasibility can be quantified using the

capacity margin after normalizing Wa by Eqn. (24), the con-

figuration of this particular ACTS does not lend itself well

toward numerical optimization, as the set of variables (the al-

titude and azimuth of each cable) is 16 dimensional. Intuitive

configurations avoiding common singularities can however,

be evaluated for their robustness.

Wh =





I3 0

0
I3

rg



Wa (24)

The attitude of the quadrotors must be controlled so as

to choose vi satisfying fivi +mig− tiui = 0. As the system

is redundant in this case, using the Moore-Pensrose pseudo-

inverse of W finds the least norm vector of cable tensions

that will maintain equilibrium. This may result in negative

tensions, however the inclusion of we within W guarantees

a set of continuous feasible tensions satisfying the dynamic

equilibrium of the ACTS to exist [18]. Tension t ∈ T (when

m > d) can be found though adding a projection of the null

space of W by a scalar factor λλλ = [λ1 · · ·λm−d ] onto the least

norm solution of the tensions (as in Eqn. (25) in order to sat-

isfy properties such as continuity, least maximum tension, or

other criteria. Tension distribution algorithms to determine

λλλ are well studied in the domain of CDPR control and the

reader is referred to [23, 24] for greater details.

t = W†(we −mpg)+Nλλλ, where N = null(W) (25)

The rotation matrix of each quadrotor is under-

constrained by 1-DOF, as the rotation of the ith quadrotor

around vi has no effect on the system equilibrium [25], and

any rotation matrix of the under-constrained quadrotor may

be chosen so long as the equation Ri[0 0 1]T = vi is satisfied.

5.3 Spatial System with 3 Quadrotors and 6 Cables

The Flycrane ACTS has been studied for motion plan-

ning in [12], and is composed of three quadrotors and six

cables. A benefit of this design is the ability to generate six

independent wrenches using only three quadrotors. It also

has the advantage of being significantly easier to optimize,

with a three dimensional configuration space compared to

the 16 dimensional configuration space in the previous case.

The ACTS in this case is displayed in Fig. (10). platform

orientation is R = Rxyz(
π
12

π
12

0) and mp = 4kg. The platform

is parameterized as bi = 0.5
[

cos
(

2πi
6

)

sin
(

2πi
6

)

0
]

m, i ∈
Z,1 ≤ i ≤ 6. The cable pairs have lengths of L1,2 = 0.35m,

L3,4 = 0.70m, and L5,6 = 1.40m. Each quadrotor is at an in-

clination of π
4

rad from the zp axis.

The 3-orthotope thrust space is mapped to the 6-

dimensional cable tension space, with the tension in each

pair of cables ( j and k) being related to the thrust of a sin-

gle quadrotor (i) through Eqn. (26).

fivi +mig− t ju j − tkuk = 0 (26)



Fig. 10: Diagram of the Flycrane ACTS with non-

homogeneous cable lengths

Table 2: Thrust and tension space limits for the Flycrane

ACTS case study. As the maximum tension of cables j and

k connected to quadrotor i are coupled, t̄ j is evaluated at its

maximum value of t̄ j = h j(tk, f̄i)

Quadrotor f(N) f̄ (N) Cable t(N) t̄(N)

1 8.6 32.0 1 1.0 27.6

2 1.0 28.8

2 9.5 32.0 3 1.0 24.4

4 1.0 24.9

3 9.3 32.0 5 1.0 25.5

6 1.0 25.0

To determine the tensions in the two cables, there are

6 variables (t j, tk, fi,vix,viy,viz). An additional equation is

found as vi is a unit vector, resulting in 4 equations with

6 unknowns. Considering quasi-static motion reduces to

Eqn. (19), generalized in Eqn. (27) for cables j and k.

t2
j + t2

k + 2t jtk
(

uT
j uk

)

− 2mig(t ju jz + tkukz)

+m2
i g2 − f 2

i = 0 (27)

Each of the three orthogonal 2-dimensional tension

space components, which are all composed of straight lines

along the lower bound tensions, and the upper bound tension

is described by an analytic function h, where t j = h j(tk, f̄i),
creating a 6 dimensional solid composed of a combination of

flat and curved surfaces. It can be seen on the t jtk-plane that

for longer cables (uT
j uk ≈ 1), the upper bound of the curve

approaches a straight line joining the vertices
(

t j,hk(t j, f̄i)
)

and
(

h j(tk, f̄i), tk
)

. As the number of interpolation points p

along the curve t j = h j(tk, f̄i) increases, the size of the convex

set of points increases by the cube of the number of points

(3+ p)3. Short cables relative to the baseline separating the

cables increases the curvature of the maximum tension curve,

Fig. 11: Available wrench set of the Flycrane evaluated at

wmoment = [0 0 0]T Nm (left) and at w f orce = mpg N (right).

increasing the importance of interpolations. The vertices of

the thrust space and the cable tension space are shown in Ta-

ble (2). In the same manner as is done for the planar system

with two quadrotors and three cables, the available wrench

space of this ACTS can be mapped through interpolated ver-

tices along the convex curved surfaces. The combination ma-

trix ααα is built as all combinations of the columns of ααα jk, de-

rived as in Eqn. (22), and arranged as shown in Eqn. (28)

ααα = comb









ααα12

ααα34

ααα56







 (28)

The available wrench set of the ACTS is shown in

Fig. (11). The ACTS in this configuration can apply a peak

force of 50N along z0, and a peak force of 30N in the positive

x0 direction, however it can only exert a force of 2N along

the negative x0 axis. It is able to exert moments from -10 Nm

to 15 Nm about z0, but much less around x0 and y0.

5.4 Remarks on the Computational Complexity

The method presented in this paper is capable of per-

forming an analysis of varied ACTS architectures. However

there are practical limitations such as computational com-

plexity. The number of tension space to wrench space map-

pings is given by 2n1(3+ p)n2 where n1 is the number of

quadrotors with one cable and n2 is the number with two

cables. With a large number of wrench vertices, the determi-

nation of the convex hull as well as the the inclusion of we

within W becomes computationally expensive.

Another issue arising in the application of this method-

ology for solving optimal configuration problems is the size

of the configuration space which varies by the design of

the ACTS. The eight-quadrotor, eight-cable ACTS (ACTS-8)

and the Flycrane each have 6-DOF freedom platforms, how-

ever ACTS-8 has configuration C ∈ R
16, while the Flycrane

has configuration C ∈ R
3. As the capacity margin γ is con-

tinuous (assuming a continuous we), gradient descent meth-

ods may be used to optimize the configuration, but in the

case of ACTS-8, the size of the configuration space is still



Fig. 12: ACTS prototype developed at LS2N

problematic. With such a large system, it becomes important

to use heuristic parameterization to reduce the problem to a

reasonable size. This can include forcing symmetry around

the we axis, and using knowledge of mechanics to avoid sin-

gularities. In the case study provided for the ACTS-8, the

configuration space is parameterized in R
4, with the cables

being divided into two groups, and cable j in group g being

parameterized by azimuth and elevation angles (φg,θg) with

respect to the projection of b j on the plane normal to we.

Even with simplifying assumptions, it is unlikely to be

applicable to real-time configuration planning for the ACTS-

8, but more appropriate uses would be the optimization of

pre-planned tasks or motions, as well as the optimal design

of the system. This could include the location of the cable

connection points, or in the case of coupled cables, the cable

lengths. For systems such as the Flycrane in which C ∈ R
3,

a real-time optimization of C to maximize γ during motion

planning could potentially be feasible but hasn’t yet be at-

tempted.

6 EXPERIMENTAL VALIDATION

An ACTS prototype composed of three quadrotors con-

nected to a point mass payload moving in 3D cartesian space

was constructed at LS2N. The configuration C is the set of all

cable directions decomposed into an azimuth φi (angle of ro-

tation about z0) and inclination θi (angle from z0 to the cable)

for each cable. With the control methodology being outside

the scope of this paper (but similar to [10]), it is sufficient to

know that the state is composed of the payload position xp,

velocity ẋp, and the configuration C and Ċ.

Each quadrotor has a mass mi = 1.05 kg, and a maxi-

mum thrust f̄i = 18.0 N. They were built using a Lynxmotion

Crazy2fly frame, 8”x4.5” ABS propellors, a Pixhawk flight

control unit, and a Raspberry Pi 3B as an onboard computer.

Quadrotor and payload position feedback was provided by a

Qualysis motion capture system with 1mm precision. The

cables are connected to the quadrotors throught a passive

spherical mechanism ensuring the offset between the tension

line of action and the geometric center of the quadrotor to be

lower than 7mm regardless of orientation. The cables used

were 0.5mm braided PE line with a measured linear density

of 0.2 g/m and an elongation factor of 0.05 %/N. With ca-

Fig. 13: The available wrench set of the ACTS prototype at

θ = 35o (top), 50o (middle) and 65o (bottom) under quasi-

static motion. The cyan, red and blue spheres are centred at

we =−mpg for payload masses of 1.0 kg, 1.5 kg and 1.8 kg

respectively and have radius corresponding to the magnitude

of their respective capacity margins.

bles of 1.3 m in length and tensions ranging from 1-10 N,

the effects of cable elongation and sag on the experiments

are negligible compared to other factors such as uncertainty

in the applied thrust and communication delays in the con-

troller.

To validate the wrench analysis, the ACTS tracked a

quasi-static trajectory xd
p(t), during which ||ẍd

p||< 0.06 ms−2

and the external wrench is we = mpg. External wrench

forces in the xy-plane could be tested with modifications to

the controller. The testing capability of the ACTS to re-

sist external moments would require a rigid body payload

and may be investigated in the future. The desired con-

figuration is Cd(t) = [φφφd θθθd ] where φφφd = [0 120 − 120]o,

θθθd(t) = [θd(t) θd(t) θd(t)]o. The desired inclination angle θd

began at 35o, and was increased at a rate of 1.5o/s to modify

W . For instance, Fig. 13 shows the available wrench sets of

the ACTS for different payload masses and configurations.

The configuration at which the ACTS diverged from the tra-

jectory (||xp − xd
p|| becomes unbounded) is considered to be

the limit of wrench feasibility.

The capacity margin of the symmetric ACTS is plotted

as a function of θd in Fig 14 while the position tracking er-

ror is plotted as a function of the mean value of [θ1 θ2 θ3].
The results show a good correlation between the estimated

unstable configuration based on γ and the configuration at



Fig. 14: The capacity margin γ (solid lines), and the 2-norm of the platform position tracking error (dot-dashed lines) as a

function of the mean angle θ. The error is bounded within the set of positive γ, and diverges when γ ≈ 0.
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Fig. 15: Plot of the capacity margin (blue), and the inclina-

tion angle (red) at which it occurs as a function of the payload

mass for the ACTS prototype in quasi-static motion

which the ACTS crashed. Table 3 shows for various pay-

load masses, the maximum capacity margin γ̄, the predicted

mean θθθd value of zero capacity margin θ (γ = 0), the actual

mean θθθ value at the time of loss of control θcrash, and the

difference between predicted and actual unstable configura-

tions. With each configuration being controlled to an accu-

racy of ±5 deg, all tests but one (mp = 2.05 kg, possibly an

error in experimental procedure) are within the bounds of er-

ror for crashing at the point of zero capacity margin. With

a tracking error generally ranging from 5-10 cm, it can be

difficult to determine when the instability actually began, so

θcrash is taken as the configuration at which the tracking er-

ror diverged beyond 0.1 m. A video of some experiments1

shows a clear correspondence between the configuration with

γ = 0 N, and the ability of the ACTS to follow trajectories.

Figure 15 shows the evolution of the maximum capacity

margin γ̄ and the configuration at which the maximum ca-

pacity occurs as a function of the payload mass. Limits are

1The video can be found at https://youtu.be/UipyUgF82ZY

Table 3: Comparison of the mean θ when the ACTS crashed

(error diverges > 0.1 m) to the predicted configuration limit

of θ (γ = 0 N)

Mass (kg) 1.15 1.35 1.65 1.85 2.05 2.15

γ̄ (N) 3.7 2.8 1.6 1.0 0.5 0.25

θ (γ = 0) (deg) 71 67 58 51 40 34

θcrash (deg) 70 64 60 56 50 34

Error (deg) 1 2 -2 -4 10 -1

imposed on the safe range of θ, with the lower limit being

chosen to keep the quadrotors a safe distance apart and the

upper limit being chosen to maintain a safe distance from

actuation singularities in the controller, occurring when all

cables are co-plannar.

7 DYNAMIC WRENCH ANALYSIS

The previous case studies showed how the proposed

methodology can be applied to any reconfigurable ACTS

with quasi-static quadrotor motion. This section shows

the effect of considering the dynamics for the experimen-

tal ACTS at a constant configuration displayed in Fig. 12.

At a constant configuration, acceleration of the payload and

quadrotors are the same, thus the system acceleration will be

described by ẍp. As there is an explicit second order kine-

matic relationship between the state acceleration ẍp, C̈ and

the quadrotors accelerations ẍ1, ẍ2, ẍ3, this methodology can

be easily adapted for time-varying ACTS configurations as

well.

Figure 16 shows the effects of different magnitudes and

directions of acceleration for the ACTS pictured in Fig. 12

at a constant configuration of φφφ = [0 2π
3

−2π
3
], θθθ = [π

4
π
4

π
4
],

and a payload mass of mp = 1.15 kg. There is a marked

https://youtu.be/UipyUgF82ZY


Fig. 16: Dynamic wrench analysis for linear accelerations along X (red), Y (green) and Z (blue) directions compared to the

static result (black). The sphere is centered at we = mp(ẍp −g) and is tangent to the nearest border of the dynamic available

wrench set, thus have a radius of ||γ||. If γ > 0 N, the sphere is shown in green, otherwise it is red. The leftmost figures

shows the tension spaces. The top row has accelerations of magnitude ||ẍp||= 1.5 ms−2, and the bottom of ||ẍp||= 3 ms−2.

difference in the capacity margin as a function of both the

direction and magnitude of the applied acceleration to the

system. Despite this, all the scenarios tested fall within the

bounds of the static wrench feasibility. This highlights the

need to account for dynamics within the wrench analysis,

even for accelerations lower than 1 ms−2

Experimental validation of the dynamic wrench analy-

sis may be undertaken at LS2N once the drone arena is ex-

panded to allow sufficient space for dynamic tests.

8 CONCLUSIONS AND FUTURE WORK

In this paper, it is shown how the available wrench set of

the payload of an aerial cable towed system (ACTS) can be

calculated. This method is adaptable to systems where two

cables are coupled due to sharing the actuation of a single

quadrotor. It is proven that the relationship between tensions

in such a coupled system is necessarily convex given certain

operational and design conditions, showing that the available

wrench set obtained from a mapping of the tension space is

guaranteed to be conservative throughout the wrench space.

From a practical point of view, this has applications in

the optimal design and motion planning of ACTS with the

objective of increasing the ability to resist external wrenches

acting on the moving platform. As the available wrench set is

determined through a mapping of the full achievable tension

space of the system, it can be seen that the position of the

platform and the configuration of the system can be main-

tained through re-orientation of the thrust vectors while the

external wrench is within the bounds of the available wrench

set. This can be done through attitude control of the quadro-

tor, requiring no change in the quadrotors positions. The

higher dynamic response of attitude control compared to po-

sition control may lead to improvements in response time to

system disturbances lying within the available wrench set.

Further investigation of this wrench analysis methodol-

ogy is underway, with the intention of designing an ACTS

optimally suited to exerting desired wrenches on the envi-

ronment.
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Appendix A: Proof of Convex Tension Space

This appendix proves that the function relating the max-

imum tensions of two cables i, j connected to quadrotor Q

forms a convex tension space when ẍi = [0 0 0]T∀i. Equation

19 can be rewritten as

t̄2
i + t̄2

j + k1t̄it̄ j + k2t̄i + k3t̄ j + c | 0 < t ≤ t̄ ≤ t̄max (29)

where k1 = uT
i u j, k2 = −2mQguiz, k3 =−2mQgu jz, and c =

m2
Qg2 − f̄ 2

Q

The maximum tension of cable j, t̄ j relates to t̄i through

the function t j = h j (ti, fQ), with t̄ j = h j

(

ti, f̄Q

)

. The function

is convex if, over the span of allowable tensions, it can be

shown that
dt̄ j

dti
≤ 0 and that

d2t̄ j

dt2
i

≤ 0 (sufficient conditions,

not necessary). Using implicit differentiation, it can be found

that the derivative of t̄ j with respect to ti is

dt̄ j

dti
=−

2t̄ j + k1ti + k2

2ti + k1t̄ j + k3
(30)

Assuming that the payload is suspended, uz is positive

for all cables, therefore k2 and k3 are both positive. Applying

a simple design rule
√

l2
i + l2

j ≥ ‖B j −Bi‖ forces 0 ≤ k1 ≤

1. With strictly positive tensions, and k1,k2,k3 ≥ 0,
dt̄ j

dti
is

strictly negative.

By setting
dt̄ j

dti
=− g

h
, the quotient rule and the law of im-

plicit differentiation can be used to solve the second deriva-

tive.

d2t̄ j

dt2
i

=−
g
(

g
h
− k1

)

+ h

h2
< 0 (31)

It is therefore shown that within the domain of ti ≤ ti ≤
t̄i∀i, given that all cable vectors have a positive projection

along the z-axis, and that the angle between two cables con-

nected a quadrotor is acute, the tension space is a convex

shape.


	INTRODUCTION
	GEOMETRIC PARAMETERIZATION
	EQUILIBRIUM CONDITIONS OF ACTS
	Platform
	Quadrotors

	AVAILABLE WRENCH SET
	Thrust Space 
	Tension Space 
	Available Wrench Set
	Capacity Margin

	CASE STUDIES
	Planar System with 2 Quadrotors and 3 Cables
	Spatial System with 8 Quadrotors and 8 Cables
	Spatial System with 3 Quadrotors and 6 Cables
	Remarks on the Computational Complexity

	EXPERIMENTAL VALIDATION
	DYNAMIC WRENCH ANALYSIS
	CONCLUSIONS AND FUTURE WORK

