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ABSTRACT

Detecting onshore hydrocarbon is a major topidfth environmental monitoring and exploration. histwork,

a hyperspectral image acquired nearby an old diketion site in tropical area is analyzed. Theaarkinterest includes
a pit filled with bio-degraded heavy oil, surroudd®y herbaceous vegetation and many lagoons.

First, we focused on methodologies that can deddcpollution in an unsupervised manner. Based loa t
assumption that such oil pits are rare eventseérnriage, statistical approach for anomalies detecterived from the
Reed-Xiaoli detector, is used. In order to decréasenumber false alarms, some a priori knowledgrutathe spectral
signature of the pits and about the backgroundtisduced. This approach succeeds in detectingith&ith very few
false alarms.

Hydrocarbon pollution can have an impact on vegmiatnd leads to change in vegetation (bio)physical
parameters (pigments, water content, ...), accorttigpecies, pollutant type and exposition time oider to map the
polluted area without any a priori knowledge, sallam-supervised classification, including an orai method of
automatic classification combining unmixing appteand SVM (support Vector Machine) are applied aachpared.
The results are compared with a partial “grounthtmap” that has been derived from visual obseouation the field,
and with areas of stressed vegetation that have bespped using combination of specific spectraicesl The
classification results are consistent with the grbtruth map and the retrieved stressed vegetatieas.

Keywords: Hyperspectral, Hydrocarbon detection, Spectralivimg, Unsupervised classification, Anomaly detenti
spectral index.

1. INTRODUCTION

Although oil is an important source of energy asdused in the composition of many manufactured ymts] its
extraction and transport can cause more or lese@ijgi pollution. It is therefore essential to habservation means and
associated processing tools to detect this poliuamd to monitor potentially polluted areas. Fois tlssue, the
potentiality of hyperspectral images, providing #mlity to make distinctions among materials wothly subtle spectral
signature differences, is studied. Cloutis (1988)Has demonstrated that hydrocarbon-bearing neder@bjects are
characterized by absorption maxima at 1.73 pm a®d m. Horig et al. (2001) [2] proved the pos#ipilof
highlighting the presence of hydrocarbons mixechvgiaind and plastic materials on a HyMap image,kthan these
specific absorption bands. In 2004 Kuhn et al.d8lined a hydrocarbon index using the 1.73 um aisor band in
order to detect automatically these materials enlHMap image. After the Deep Water Horizon accidEokaly et al.
[4], [5] was able to map the oil-impacted coastakas, using MICA software (Material Identificatioand
Characterization Algorithm), which uses the Tetrdeo spectral feature matching algorithm [6]. Thi¢hars compared
spectral feature observed on field measurement8 (Im and 2.31 um for oil detection) and AVIRIS cpee In [7]
coastal pollution has been mapped using linear xingnitechniques. Endmembers are extracted fromig\umages
using PPI (Purity Pixel Index (ENVI®), followed lilge selection of the purest pixels with the N-Duéibzer (ENVI®).
Then Multiple Endmember Spectral Mixture Analysis (MESMA) is apgl to map the abundances of these
endmembers.

In this work, the area of interest is an formereditraction site that has been flown over with tdgSpex Hyperspectral
cameras, one covering the VNIR spectral range(h4l pm) and the other, the SWIR spectral rangen(4245 pm). In
this area is located a tar pit, surrounded by s#eksor sparse vegetation. For old bio-degradedtlod, specific
hydrocarbon features at 1.73 pm and 2.3 pm terdisfmppear, that makes detection from these featompassible.



More, heavy oil which is characterized by low refnce values can be easily confused with othdt deaterials or
shade. The first part of this paper is dedicatethéomethodology we propose for the detection ehdaermer oil pits.
In the second part, unsupervised classificatiorhoug are applied, in order to give an overviewhef polluted area, in
the context in which no prior information is availa about the scene. Several classification schdrassd on spectral
unmixing are proposed and compared to K-means.

2. MATERIALS

2.1 Image acquisition and pre-processing

Hyperspectral images were acquired in June 20Xbfatmer oil exploration site in tropical zone, ngsitwo HySpex
cameras from NEO (Norsk Elektro Optikk) [8], a VNIBDO and a SWIR320m-e which have respectively p&@tsal
bands in the VNIR domain [0 dm- 1:0um] and 256 bands in the SWIR domain [ -2.5um]. The ground sample
distance was 1.3 m for the VNIR data and 2.6 nmtlier SWIR data. The radiometric correction was penéa using
NEO software and was followed by a correction of #ircraft window transmission. Radiance imagesewben
corrected from atmospheric and environment effesiag COCHISE [9], which is based on the use ofengpectral
information combined with the radiative transferdeoMODTRANZ [10]. The reference data uses for the ortho-
rectification is a SPOT image with 0.65 m spatédalution. The VNIR data is registered with thesrefice data and the
VNIR and SWIR images were registered using GeHdlk][12] using a nearest neighbor resampling fittepreserve
spectral information. After this orthorectificatistage, the spatial resolution of the VNIR-SWIR éngqube is 0.65 m.
The subset of 561 x 948 pixels used in this stgdshown on Figure 1. To focus on the area of isteeemask has been
built. Some pixels that have inconsistent spectfiéctance between VNIR and SWIR, due to the filaat VNIR and
SWIR cameras do not have the same spatial samplavg, also been masked. These spectra can exljuinitpabetween
the VNIR and the SWIR bands around 1 um. In otddimit the impact of these pixels on the futuregessing, those
having a reflectance jump higher that 0.1 are nhskimally it remains 380595 unmasked pixels.

2.2 Reference map

A ground truth campaign was conducted one year #feehyperspectral acquisitions during the sanas@eto place it
under the conditions which are the most similathi® image acquisition in term of vegetation pheggld-rom visual
observation and GPS locations, some regions ofeiste have been manually annotated on the hyspérapeata. The
regions thus identified have been extended usimglasity measure based on spectral angle with & vestrictive
threshold (1° spectral angle). The resulting growath is shown on Figure 1.

Water
Tar pit
Manmade
| Green vegetation
Bl Sparse vegetation
I Stressed veg. + bare soil
Edge of pond

Figure 1. From left to right: RGB image extractednfrthe HySpex hypercube, ground truth extendedgusimilarity
measurements.



3. TAR PIT DETECTION

The first objective of this work was to detect themer tar pit. Approaches based on hydrocarbontsdeeatures at
1.73 um and 2.3 um are not possible because tleegadrvisible on the spectra extracted on thesge (Figure 3(a)).
Nonetheless the pit might be distinguishable fréwm background due to its global spectral shapetaApits are rare
events in the scene, we applied anomaly detectethadology with some prior knowledge on the pit.

Many types of anomaly detectors (ADs) have beempgsed in literature [13]. The most frequently usethe Reed-
Xiaoli (RX) detector [14}that is often used as a benchmark to which otheghads are compared. The RX detector
characterizes the background by its spectral mgamnd covariance matriKz. The actual detector calculates the
Mahalanobis distance between the pixel underrtemtd the background. In this work, we use a Ctasslitional
version of RX (CRX) [15]. In CRX, the image is firsegmented and the covariance matrix and mearrapeavithin
each class i (i.&€p; and up ;) are determined. The Mahalanobis distance betileepixel under test, r, and each of the
classes is calculated. The final result is the mimn of these distances:

Derx (1) = min [(T - ”B,i)t Cat (r— :uB,i)]

In order to evaluate the detection, two regionsit&rest have been built, one to count the trugtipes, and the other to
exclude pixels on the tar pit and surrounding @Exedving spectral signature possibly mixed with dhe of the tar pit.
Figure 2 shows the image of RX score. The falseralaate at the first detection is 2.63°1@ corresponds to only one
pixel, whose spectrum is shown Figure 3. This gpettis non-physic but has not been rejected bytekeon spectral
consistency because the reflectance gap betweeR ¥hd SWIR is less than 0.1
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Figure 2. From left to right: Image of RX score;imw of interest used to evaluate the detectiomg) and excluded to
count the false alarms (in green); ROC curve (detestrate vs false alarms rate).
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Figure 3. (a): spectral statistics of the tar flif}: reflectance spectrum of the false positive. @) the two parts of the
spectrum [0.4 um, 1 pm] and [1 pm, 2.4 pm] do motespond to the same material, owing to the nediet impact of the
VNIR and SWIR images.

4. UNSUPERVISED CLASSIFICATION

The aim of this work is to get an overview of theaof interest without any prior information. Rbat, we tested
several unsupervised classification schemes, thatdcbe followed by a characterization step of th@sses thus
obtained. For instance, identifying stressed veipetaclasses is particularly interesting, as they de related by
pollution in the subsurface.

A common unsupervised classification method is ihmeans, which assigns, at each iteration, pixelslasses
according to their similarity with class centroitisat are re-calculated at each iteration. In thes@mt work, two
similarity distances are used, the Euclidian distamnd the spectral angle cosine. We proposecdhalsov classification
scheme coupling endmembers extraction, linear uimgriand SVM (Support Vector Machine). Our choicenistivated

on the one hand, because linear unmixing is theepiotool to analyze hyperspectral image. Butdhealysis of each
abundance map can by tedious and time consuming thieenumber of endmembers increases. A straigtdfol way

to classify image using abundance maps could fess@n pixels to the class for which abundancegkdst. But this
method gives poor results as it will be shown ia #ection 6. On the other hand, SVM is very effiti® classify

hyperspectral data [16], but it is a supervisedhaogtthat needs training samples, that are suppasadhilable in this
study. The method developed in this work, named MM, uses unmixing in order to extract training gées and
SVM to classify the image, which allows non-linetass boundaries.

4.1 Endmembers extraction and unmixing

We assume that the spectrum of each pixel can Beapgroximated by a linear mixture of the pure goment spectra
present in the image weighted by their fractiofalredances in the pixel:

Dij =Yk=1 exayj+wy s.t. 0 <a;<1& Yhe1 ag =1 (1)

Wherep; is the radiance or the reflectance of the pixi fhe band i, aney is the radiance (or reflectance) of the
endmember k in the bandsi is the abundance of the endmember k in the ppaidw; is a residual error.

In this study an automatic endmembers extractioBEAis applied using a deterministic approach baseddSP

(Orthogonal Subspace projection) [17]. Abundanaesthen computed with fully constrained unmixingtinoal, i.e.

under the positivity and sum to one constraintE@f (1). In unmixing process, determining the numifeendmembers
(EM) is a complex issue that has motivated sewsmaks [18][19]. The advantage of OSP AEE is tharéasing the
EM numbers do not change the EM already extraeted thus is less sensitive to the number of EM.

4.2 Training Samples extraction and classification step

The workflow for extracting training samples sesing abundance maps is presented on Figure 4hEaranstruction
of a class, we set that the corresponding setarhieg samples must contain a number of pixels, dgibater than a
minimum MinNb. MinNb can be chosen by the usertHis study, MinNb is fixed to 20. The training sdegpare
extracted according to their abundance values. Tinest have an abundance value greater than a tidesh0.95 in
one of the abundance map (threshold that can beeluntil 0.65 to get enough samples). For thexddmce map i, if
Nb < MinNb with a threshold equal to 0.65, no clag correspond to the"iendmember. This step is introduced in



order to avoid having many marginal classes. Ifgample number of one class is greater than 18&ndom draw is
realized to balance the numbers of samples ifmalttasses.
SVM is applied on the image using the training slesithus extracted. A polynomial kernel of degrég Gsed.

N Abondance maps
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Figure 4. Construction of learning samples fromahendance maps
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5. STRESSED VEGETATION MAPPING

An alternative approach proposed by recent stualias to use vegetation as an indicator of soil mmitated by oil or
gas [20] [21] [22]. The soil contaminants have @mpact on vegetation health which can modify itscaé reflectance.
The optical properties of leaves are essentiallgted to the pigments in the VIS, the parenchymactire and cell
morphology in the NIR, the plant structural matisrigignin and cellulose) in the SWIR and the watentent in the NIR

| and SWIR spectral domains [23] [24] [2Blidure 5Figure-J
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Figure 5. Spectral signatures for dry and freskidsdrom a cherry tree illustrating carotenoid (Famthocyanin (Anth.),
chlorophyll a and b (CHL), water and lingo-cellulasmtent.



Surface properties are often measured by convegtingflectance spectrum into a single number valusdex. The
equations for these indexes often compare refleetahan absorbing wavelength sensitive to a doesti related to the
considered class to a non absorbing wavelength.

Lots of spectral indices can be found in literatir&éharacterize some biochemical components it gigecies such as
chlorophyll, nitrogen, lignin, cellulose, water [2@he changes in plant pigments, leaf structurg water content can
be considered as a response to various stressgfs@Rly normalized indexes based on wavelengthsat&d on
atmospheric windows are considered. Many indicésre@aced in the literature are tested in orderetfing the optimal
combination of indices allowing stressed vegetataentification on the hyperspectral image. Thrpectral indices,
corresponding respectively to spectral domains VVNBR/IR and VNIR-SWIR, are combined. This selectidrindices
will be the subject of a forthcoming publication anjournal. The stressed vegetation map thus adatain shown on
Figure 6(f)

6. COMPARATIVE RESULTS

Four unsupervised methods are compared: UM-SVM,d&ms based on Euclidian distance or spectral @ogiee, and
a fourth, referred to as MAX-AB, which classify tHata according to their maximum abundance vallles.number of
classes for UM-SVM is derived from the algorithmsdébed on Figure 4. The same number of classestifor K-
means. For MAX-AB, the number of classes is the Ipeimof endmembers. The classification maps thuaidd are
shown on




Figure 6
Figure 6
It is not easy to compare unsupervised classitinatesults, and assign similar colors to all, beeaclasses are not
labeled. Nevertheless, we try to assign about #mescolors scheme for all classification maps. Ma@mputing
confusing matrix based on the partial ground t{@H) is not appropriate, first because the numbbalasses is greater
than the number of GT classes and because theslaan differ from a classification method to aroth

The three first maps in

SR LR

i

Figure 6
Figure-6are based on endmembers extraction. (a) is UM-SgMis MAX-AB and (c) is MAX-AB where only pixels

having one abundance value greater or equal to (@&%0ted MAX-AB65), the same threshold used in BVM, are
classified. First, we can notice that few pixels alassified with MAX-AB65. Only water classes hawemerous pixels.
Vegetation classes are poorly represented, whicdnméhat vegetation spectra in the image are nextlely a mixture
(following Eq. (1)) of several endmembers extracteing, and very few pixels have a prevailing ataume that
corresponds to one of the vegetation endmembera threshold is put on the abundances (method MX- water
classes (various blue colors) spread a lot to gtgrmdent of vegetation classes (various green a@tidw colors). Only
the “stressed vegetation - bare soil+stressed agget (in various maroon colors) is in good agreamwith the GT.
Among these three methods, only UM-SVM gives syitigf results that will be discussed in more detdilsis shows
the interest of using SVM to classify the imagenfrabundance maps.



The results of the K-means classification using lilian distance (ED) and the spectral angle (SAM§ ahown
respectively on

Figure 6

Figure-6(d) and (e). With SAM, some vegetation area aemntified as water (for instance light green clabthe GT
map which corresponds to yellow classes obtaindld BD et UM-SVM). More the bare soil path is nogmdified with
SAM. For these reasons, only results obtained Bdhwill be discussed in more details.

The average spectra of each class are plottedqurd=i7 keeping the same colors as those of thsifitasion maps.
Line (a) is UM-SVM and line (b) K-means-ED. The eage spectra of the ground truth are on line (t)is Tigure
shows also the distribution of the pixels of thifedtent GT classes in the classes obtained by UNUSWV K-means. A
class related to the path, that is not presertiénptartial ground truth is identified by UM-SVM sk 8) and K-means
(class 3). Class 2 of UM-SVM corresponds to greash dense vegetation, which is not identified by Kams, and not
present in the GT. Neither method identifies thepi The corresponding pixels are included in afighe water
classes. Generally speaking we note that a G @dasplit into more K-means classes than into UMlasses. The
spectral differences between average spectra agsd¢d the K-means are significantly smaller tthese of UM-SVM.
For UM-SVM, spectra of class 9 and 10 are quiteilaimio those of class 5 and class 3, respectivbBt explains to
spreading of dark green and light green GT clagsesne hand, and of the brown and dark green G$sels on the
other hand, into these pairs of UM-SVM classes. @i@éepest water class, which has the lowest refieetapectra, is
better identified by K-means that UM-SVM, whichdisato a class that has only deep water pixelsgdasunlike UM-
SVM. The reverse is observed for the edge of ponds.



In conclusion, UM-SVM method retrieves more reldvalasses than K-means, with an additional advantagt the
number of classes is determined by the methodkeslimeans for which the number of classes mudixied in a more
or less arbitrary way by the user. Both methodsitifie classes coinciding with areas of interesthsas stressed
vegetation, which may be an indicator of oil padut

%




Figure 6. Classification maps obtained with UM-SVajJ, MAX-AB(b), MAX-AB65 (c), K-means-ED (d), K-mearSAM
(e), Stressed vegetation reference map (f) andx&heded using spectral angle with 1° threshold (g).
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classification methods

| The Figure 6(fFigure fresents the stressed vegetation map (in whiteljtireg from the combination of the spectral
indices described in the previous section (8§ 5psSed vegetation areas are located around thegiear a path. These
areas are consistent with field observations. Ste¥egetation is also present at other locationhe image, where no
field information is available. Promising perspeet for hydrocarbon detection applications accardm impact on

vegetation stress are then suggested.



7. CONCLUSION

The objective of this study was to analyze an atese to a former oil exploitation site, withouigerknowledge of the
terrain, but certainly affected by oil pollutionhigh we are trying to highlight on the hyperspddtreage. First anomaly
detection has been applied in order to detect thsepce of tar pits. The RX-Cluster method has legxyatied, with
some assumptions to reduce the false alarms oocesea NDVI test has been added to reject vegataikels and a
reflectance level test to focus detection on objedth low reflectance. With this approach, the pérpresent in the
image is detected with only one false alarm. Thesupervised classification methods have be appiiedder to obtain
an overall mapping of the area. The classes thtarau could be identified a posteriori. Among tbsted methods, the
K-means method, using Euclidian distance, and a mathod, UM-SVM, coupling unmixing and SVM, give agb
results, in accordance with a partial ground tnuidg, that was based on in-situ observations. Tharadge of UM-
SVM is to give more differentiated classes, whilerage spectra the K-means classes are much nmoitarsiBut both
the methods succeeds in retrieving classes ofcpéati interest such as stressed vegetation asibearelated to oil
pollution for monitoring soil contamination in deshg vegetated oil and gas exploration and prodonatgions.
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