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Abstract

The paper proposes an original algorithm which allows a long time scale ex-

trapolation of DEM results at a very low computational cost. This algorithm

can be adapted to any periodic processes. In this study, it is applied to the

mixing process of powders within a conical screw mixer. The results are then

compared with long time DEM simulations. It appears that this method is

able to predict the DEM results with a very good accuracy.
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1. Introduction

Over the last decades, the Discrete Element Method (DEM) (Cundall and

Strack, 1979) has become a major tool to simulate the behavior of granular

media. Since it is the only method able to consider the discrete aspect of

materials, it is well designed to represent the mixing of powders. Thus, sev-
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eral blender techniques have been investigated through DEM: rotating drums

(Mishra et al., 2002; Yang et al., 2008; Liu et al., 2013), screw conveyor-mixers

(Hou et al., 2014; Pezo et al., 2015), V-blenders (Lemieux et al., 2007, 2008;

Kuo et al., 2002), Turbula R©(Marigo et al., 2011), static mixers (Pezo et al.,

2016) and Nauta blenders (Golshan et al., 2017).

However, one of the main limits of the method is its high computational

cost (Bertrand et al., 2005). DEM is indeed able to represent a few millions

particles (Radeke et al., 2010), which is far from the real number of grains

involved in industrial mixing processes. Moreover, only a few minutes of real

time can be reached for such simulations.

Hence, there is a crucial need to develop new methods able to extrapolate

the DEM results to large space and time scales. Several studies have been

dedicated to overcome this limit. A first idea is to use a coarse grain model

Sakai and Koshizuka (2009), which consists in considering coarse grains, the

properties of which reproduce the average behavior of small grains assem-

blies. Another approach consists in simulating the granular media with con-

tinuous models. Discrete and continuous approaches can also be coupled

to combine advantages of both methods, using DEM in high shear rate re-

gions and a continuous method elsewhere (Chen et al., 2016). However, this

method is also limited to the simulation of convective mixing. There are

also very promising works, based on a continuous approach coupled with a

scalar-transport-equation, that simulates the concentration of the different

particles species. The velocity field is interpolated from DEM results and the

transport equation takes into account the different mixing mechanisms, i.e.

advection and diffusion. Segregation velocity is also considered. The differ-
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ent adjustable parameters, like diffusion coefficient and segregation velocity,

are fitted from DEM simulations. For more information on this approach,

see the following references: Fan et al. (2014); Schlick et al. (2015, 2016). If

this approach seems very promising, it has only been applied to very simple

system so far.

In this context, the simulation of monodisperse powders remains very

interesting. It does not exhibit the full complexity of industrial processes

but allows the implementation of simple numerical approaches which can give

very relevant results. For example, Doucet et al. (2008) proposed to simulate

the mixing of powders with a DEM-based stationary Markov process, which

permits to extrapolate the DEM results to large time scale.

This paper an original algorithm which allows a long time scale extrap-

olation of DEM results at a very low computational cost. Contrary to the

works of Doucet et al. (2008), the present method is fully deterministic and

meshless. This original algorithm can be adapted to any periodical process

with monodisperse powder. It can also be implemented in coarse grain simu-

lations to scale up the simulation time. In this paper, the method is applied

to the simulation of a Conical Screw Mixer with one million particles.

2. Material and method

The method is very simple and can be generalized to many different

systems. However, its implementation requires the following conditions:

• The targeted process is periodic,

• The particles are identical,
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• The granular medium is dense - i.e. the distance between the centers

of neighboring particles is roughly equal to the diameter of a single

particle.

Note that these two last conditions are soft constraints because they do not

prevent the algorithm to be executed. Not fulfilling the second condition

would lead to less accurate results.The method has indeed be designed as-

suming that all the particles have a similar behavior. Moreover, for different

sized particles, segregation would not be taken into account. Then, not ful-

filling the last condition would lead to minor errors. In the case of our screw

mixer, the medium is very dense and this point is not an issue. However, the

error could become significant for applications like spouted beds for which

the bulk density is more heterogeneous.

The general idea of the method is first to run a short DEM simulation

over a time-lapse which is greater than the period T characteristic of the

process. It should be noticed that T is very different from the time step

of the DEM simulation. T is indeed only a property of the process, it is

independent of the simulation parameters. It is generally several order of

magnitude greater than the DEM resolution time step. For a mixing process

with a rotating impeller, this time-lapse T should be the rotation period

of the screw impeller, while for a rotating drum this could be the interval

between two avalanches. We note α≥1 the number of period T which is

simulated:

t1 − t0 = αT (1)
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where t0 is the initial time fixed by the user and t1 is the final time of the

DEM simulation. Then, the purpose of the extrapolation is simply to repeat

the track followed by particles between t0 and t1 for predicting t2 and then

t3, t4...

The repetition of the trajectories must be done on a single structure: that

of the state t1. One calls “structure” the set of the positions of particles for

a given time. Since the structure at t0 is not the same as that at t1, it is

necessary to bring the first one closer to the second. Thus, the crucial step

of the algorithm consists in pairing the particles: each particle j among the

N particles of the simulation at the starting time t0, at position −→r j(t0), is

associated with a particle i of the ending time t1, at position −→r i(t1), by

finding the twinning function f , defined by Equation 2, which is bijective.

f : J1, NK −→ J1, NK

i 7−→ j = f(i)
(2)

This twinning function has to be defined in such a way that −→r f(i)(t0) is

sufficiently close to −→r i(t1). The meaning of “sufficiently” is discussed later in

the text. A graphical representation of the pairing - ie twinning - step is given

in Figure 1. Note that the goal is to match particles at two distinct times.

The fact that the trajectories are repeated implies the hypothesis that the

paired particles must have the same behavior and therefore be mechanically

identical. So in the ideal case they differ at most only in their color.

Finally, the position of the particle i at time t2 = t1 + αT can be easily

extrapolated: −→r i(t2) = −→r f(i)(t1). In other words, particle i will move, at

time t2, to the position of the particle f(i) at time t1. Let fn = f ◦ . . . ◦ f
be the composition of n functions f , and n a strictly positive integer. The
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position of particle i at the time tn+1 = t1 + nαT is given by Equation 3.

−→r i(tn+1) = −→r fn(i)(t1) (3)

Thus, knowing f , the extrapolation step can be reproduced many times at

a very low computational cost. The general position vector and the displace-

ment associated with the position during the time interval αT are indeed

fixed over time.

2.1. Example

In order to make the method clearer, an example of the extrapolation

approach is presented bellow. Lets consider a nondescript 9 particles system.

1. First of all, a DEM simulation is run. The initial steady state time

t0 is fixed and represented in the left picture of Figure 1. Then, the

simulation is run up to t1 = t0 + αT . The position of particle at time

t1 is shown in the middle picture of Figure 1.

2. Then, the twining function has to be determined. Looking at the posi-

tions of particles at time t0 and t1, it can be observed that particle 3 at

time t1 is closed to the position that was occupied by particle 1 at t0.

Thus f(3) = 1. In the same way one has f(1) = 9, f(2) = 7, f(4) = 8,

f(5) = 6, f(6) = 2, f(7) = 3, f(8) = 5 and f(9) = 4.

3. Finally, the positions of every particle can be extrapolated for the fol-

lowing times. Applying Equation 3, the position of particle 1 at time t2

is predicted: −→r 1(t2) = −→r f(1)(t1) that is −→r 9(t1). At time t3, as one has

f(f(1)) = 4, the position of particle 1 is predicted at −→r 4(t1). Finally,

since f(f(f(1))) = 8, the position of particle 1 at time t4 is predicted
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at −→r 8(t1). Figure 2 shows these three extrapolated steps, particle 1

being in green, and follows the paths presented in Figure 1, moving the

green color on the structure of state t1. The same procedure is applied

to all other particles.

The most time consuming part of the method is the pairing algorithm.

It is described in the following section.

2.2. Pairing algorithm

The principle of the pairing algorithm is to couple particles of time t0

with particles of time t1 in order to get a set of the closest pairs. The aim is

then to find f that minimizes the objective function Fobj defined as follows:

Fobj =
N∑

i=1

∥∥−→r i(t1)−−→r f(i)(t0)
∥∥ (4)

The optimum pairing solution f corresponds to the minimum of the sum of

the N center to center distances dpairi =
∥∥−→r i(t1)−−→r f(i)(t0)

∥∥ between pairs

of particles, N being the number of particles in the simulation.

Since each particle has to be associated with another single particle, the

full direct resolution of this problem would require the evaluation of the N !

possible combinations. Hopefully, such a problem can be viewed as an Eu-

clidean assignment problem (Rendl, 1988) and can be solved numerically

by means of the Hungarian method introduced by Kuhn (1955). The in-

put of this algorithm is the table of distances between each pair of particles

candidate to coupling, whose size is N2. This leads to a prohibitive computa-

tional memory and time calculation for large scale simulations with N > 105

particles. Therefore, the number of combinations have to be substantially

decreased. This aim is reached by introducing two simplifications:
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1. The method can be improved by avoiding taking into account pairs of

particles, the distance between which is too high. Thus, the first sim-

plification step consists in allowing a maximum number Nc of pairing

possibilities for each particle, excluding the furthest ones. This can

be seen as a cutoff distance, similar to those implemented in the SPH

or Molecular Dynamics methods, except that, in the present case, the

cutoff criterion is firstly based on a maximum number of neighoring

particles. Each particle i at step t1 has to get Nc candidates j at step

t0 and vice versa. Hence, the number of candidates is at least equal to

Nc. Further explanations are given in Figure 3.

2. Simulation domain is divided into Nx × Ny × Nz subdomains where

Nx, Ny, and Nz are respectively the number of slices in the x, y, and

z directions. The Hungarian algorithm is then run separately on every

subdomain. This is kind of a domain decomposition which simplifies

the resolution and also allows its parallel implementation.

In this study, with N = 106 particles, the pairing algorithm has been run

with Nc = 300 and Nx = Ny = Nz = 10.

It should be noticed that both the limitation to Nc pairing candidates

for each particle and the division of the global domain might not allow the

convergence to the minimum for the objective function. Thus, the quality

of the pairing solution should be evaluated before any extrapolation of the

DEM results.

2.3. DEM model

A classical DEM model is used in this study. The particles are spherical

and the particle size distribution (PSD) is uniform with a span (dmax
p − dmin

p )
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equal to 5% of the mean diameter dp. Since the purpose is to give an example

of the extrapolation procedure, the contact law used here - the non-linear

Hertz-Mindlin model - is not detailed but can be found elsewhere (Zhu et al.,

2007). The simulation has been run with LIGGGHTS 3.1.0 (Kloss et al.,

2012). The parameters used in the DEM simulation are given in Table 1.

Table 1: DEM parameters

Parameter Type Value Unit

Number N Particles 106 -

Mean radius R = dp/2 Particles 0.83 mm

Width of the PSD Particles 5 %

Friction coefficient
Particle-Particle 0.5 -

Particle-Wall 0.2 -

Rolling friction coefficient
Particle-Particle 0.15 -

Particle-Wall 0.01 -

Restitution coefficient
Particle-Particle 0.3 -

Particle-Wall 0.9375 -

Poisson ratio
Particle 0.25 -

Wall 0.25 -

Young modulus Particle 0.1 GPa

Wall 1 GPa

Density Particle 104 kg.m−3

2.4. Description of the conical screw mixer

This method has been applied to the DEM simulation of powder mixing

within a conical screw mixer. The later is a conic blender with a screw
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impeller. An accurate description of the mixer is given in Figure 4. The

screw impeller rotates around the axis of the cone −→ey , going along the wall

with an angular velocity ωa. This rotation will be labeled as primary rotation.

The screw impeller also rotates around its own axis with a velocity ωs. This

will be labeled as secondary rotation. In this study, ωs = 30ωa.

2.4.1. Filling procedure

The conical vessel is filled with particles using a classical DEM procedure:

initial positions of particles are randomly chosen in the upper part of the cone

and particles are then allowed to fall by gravity. The filling step is considered

to be accomplished when the mean translational velocity is bellow 10−4 m.s−1.

Friction coefficients and rolling friction coefficients are set to zero to ensure

that the upper free surface is almost flat at the beginning of the mixing

process.

2.5. Evaluation of the mixing quality

2.5.1. Mixing indices

Multiple indices are available in the literature to evaluate the mixing

quality for at least two components: the component “of interest” and the

other one that can regroup several component excluding of course the one

“of interest”. The Lacey index (Lacey, 1954) IL is the most common. It is

defined as follows:

IL =
σ2
0 − σ2

m

σ2
0 − σ2

r

(5)

where σ2
m is the variance of the composition of the component of interest over

the sampling, σ2
0 is the variance of the fully segregated state: σ2

0 = p(1− p),
with p the ratio of particles of the component of interest in the whole mixture,
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σ2
r the variance of the random system: σ2

r = p(1−p)
ns

with ns the number of

particles - regardless the nature of the particle - in each sample.

This index tends rapidly to 1 with respect to the mixing quality. Hence,

we chose to also calculate the Ashton index IA (Ashton and Valentin, 1966)

which allows a better discrimination between mixing states when the system

is almost homogeneous:

IA =
log
(
σ2
0

σ2
m

)

log
(
σ2
0

σ2
r

) (6)

This index also tends to 1 but slower to the Lacey index. It should be noticed

that both indices depend strongly on the sampling protocol. Therefore, in

this paper, the sampling is based on a 3D Voronöı diagram: 1000 particles

are chosen randomly and 1000 samples are built around this particles. Each

of the particles of the mixture is attached to the sample corresponding to

the particle - among the 1000 initially selected - which is closest to it. This

procedure is repeated 10 times and the indices presented are the average of

the 10 mixing values thus obtained.

2.5.2. Dispersion

The dispersion is a mixing criterion that takes into account both convec-

tive and diffusive mixing mechanisms. In order to quantify it, N clusters are

considered. Each cluster i is composed of a central particle i and neighbour-

ing particles j. The neighbourhood limited to particles j that are separated

from the central particle by a surface-to-surface distance of less than a mean

radius i.e. R = 8.3 10−1 mm. This translates into:

‖−→r j −−→r i‖ < Ri +Rj +R (7)
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Each particle is often part of several clusters. The distance of dispersion didisp

of one single cluster i is defined as the average distance between the central

particle i and its Mi neighbouring particles j at a time t minus the same

mean distance but ∆tdisp earlier.

didisp(t; ∆tdisp) =

Mi∑

j=1

‖−→r j(t)−−→r i(t)‖ − ‖−→r j(t−∆tdisp)−−→r i(t−∆tdisp)‖

(8)

Most of the time, such a distance is positive but it can also be negative if

any compression of the cluster occurs. Golshan et al. (2017) used a similar

criteria to define their tracers. Here, every particle is considered as the center

of a cluster.

Finally, the dispersion ddisp is interpolated to a tetrahedral mesh. This

allows us to build a continuous dispersion field, for a given duration ∆tdisp,

over the volume of the conical screw mixer.

3. Results and discussion

The extrapolation method decribed above has been applied to the mixing

process of powder.

The standard DEM simulation has been run for a full primary revolution

of the screw impeller in the conical mixer, which corresponds to 30 s of phys-

ical time and 30 rotations of the screw impeller around its own axis (with

ωs = 60 rpm).

During post-processing, four initial configurations were created by as-

signing different colors to the particles regarding their initial positions. The

different configurations are labeled according to the number of slices in the
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corresponding direction, respectively 2x, 2y, 2z and 8y. For example, 8y

means that initialy there are eight layers of particles stacked on top of each

other in the y direction. These configurations are represented in Figure 5.

Since only one type of particle is mixed, mixing indices cannot be calculated

without any coloration procedure.

Finally, the extrapolation algorithm has been run to predict the two next

primary revolutions of the screw impeller.

3.1. Determining the steady state

Extrapolation requires that the system be in a permanent state. It means

that the velocity field has to reach its periodic state with respect to the screw

rotation. After the filling step, the simulation starts with an acceleration

step, which is due to the inertia of the system. Moreover, the shape of the

upper free surface of the granular packing can evolve slightly between the

static and dynamic state. This explains why applying the pairing algorithm

before reaching the steady state would increase significantly the error of the

pairing solution, particularly near the top of the mixer.

Therefore, the beginning steady state can be determined by considering

the average velocity of the particles and the torque acting on the screw im-

peller, along its axis of rotation. It is shown in Figure 6 that the steady state

is reached after ten secondary revolution of the impeller i.e. 10 s of mix-

ing. In this study, the initial state was set at t0 = 21 s for the extrapolation

algorithm.

One natural time period of the process is T = 1 s, the period of rotation of

the screw. We take α = 9 in Equation 1 and the final state of the simulation

is at t1 = 30 s. The extrapolation is so conducted with a αT = 9 s step which
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corresponds to 9 full revolutions of the screw impeller.

3.2. Accuracy of the pairing algorithm

If the pairing algorithm is executed directly on steps t0 and t1, this will

lead to poor results because of the non alignment of the empty volumes

created by the screw impellers that are not in the same position for the two

time steps. In that case, it is a critical point to superimpose the screws before

the execution of the algorithm. Thus the whole state at time t0 is rotated of

an angle of αTωa = −108◦ around −→ey - i.e. all particles and the meshes. The

extrapolated time step tn+1 is then obtained from extrapolated data after

rotation by an angle −n× 108◦ around −→ey .

The efficiency of the pairing algorithm can be evaluated by looking at the

distances between paired particles. The most accurate results correspond to

the smallest distances. The pairing distance distribution is given in Figure 7

and Table 3. It appears that the distance dpair between paired particles is

less than the mean diameter dp (resp. 1.2 dp) for 90% (resp. 95%) of the

particles. This result is considered as rather good. However, it should be

noticed that for a very few particles, the pairing distance increases up to 27.7

times the mean diameter dp. This can be explained by the slight evolution

of the free surface shape between t0 and t1 and the domain decomposition

into Nx × Ny × Nz = 1000 domains in order to accelerate the execution of

the pairing algorithm. This can be seen in Figure 8. It is also interesting to

notice that this algorithm works well in our dense packing simulation, but

would lead to a higher error for looser packings. The pairing algorithm was

run on a single computer with a 4 × 3.5 GHz intel i5 processor and took

about 10 h for 106 particles.
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3.3. Extrapolation of the DEM results

The extrapolation algorithm has been run to predict the two following pri-

mary revolutions of the screw impeller. To validate the extrapolation results,

a DEM simulation has also been run for two extra full primary revolutions.

The time gains over the full simulations are summed up in Table 2. The

later presents typical CPU times for full DEM simulation compared with

the extrapolation protocole, and gives the ratio of CPU time between DEM

simulation and extrapolation with respect to the number of impeller pri-

mary convolution. Hence, the last column represents the gain factor which

is expected. Since the extrapolation process requires a short initial DEM

simulation and then the resolution of the pairing algorithm, this method be-

comes very interesting for long time extrapolation. Here, it has been limited

to two extra revolutions because it was not possible to run longer DEM sim-

ulation for comparison. Thus, once the pairing algorithm has been solved,

the extrapolation step for a full primary revolution takes about 1 min while

it takes ≈ 5.×103 hr of CPU time for DEM. This emphasizes the major gain

reached by the extrapolation approach.

However, attention should be drawn to the fact that those results give only

orders of magnitude. They could evolve slightly according to the computer

configuration and optimization of the codes. In our study, DEM simulation

were run with a 2.6 GHz cluster with 40 parallel threads while both pairing

and extrapolation algorithms were run on a single 4× 3.5 GHz intel i5 CPU.

For comparison, the cross sectional views of DEM and extrapolated re-

sults are given in Figure 9 and Figure 10 for the different configurations.

All the results for extrapolation and DEM look very similar. For example,
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Table 2: Comparison between typical CPU times (hr) between DEM simulation and ex-

trapolation method with respect to the number of impeller primary convolution. On the

last line, +1 represent an extra primary convolution once the pairing algorithm has been

resolved. For example, the CPU time for 3 full primary convolutions, is equal to the CPU

time for 2 full convolutions plus the time for 1 extra primary convolution.

Primary DEM (hr)
Extrapolation method (hr)

Ratio
convolution Initial DEM Pairing Extrapolation total

1 5× 103 5× 103 0 0 5× 103 1

2 1× 104 5× 103 4× 101 1.5× 10−2 5.04× 103 2

+1 5× 103 1.5× 10−2 3× 105

the shape of the red layer of the 8y configuration is well reproduced at the

different stages of the simulation.

In order to get a more accurate comparison between extrapolation and

DEM simulations results, Lacey and Ashton indices have been calculated for

the four different initial configurations.

The results are presented repectively in Figure 11 and Figure 12 for Lacey

indices and in Figure 13 and Figure 14 for Ashton indices. Those make it clear

that the mixing kinetic is correctly predicted by the extrapolation scheme. To

go further and evaluate the accuracy of the method, the relative difference,

between extrapolated and DEM results for the Lacey and Ashton indices

is given in Figure 15 and Figure 16 respectively. It appears that the error

remains lower than 0.7% for the Lacey index and lower than 1.5% for the

Ashton index, for all the configurations. This shows that the extrapolation

algorithm reproduces very accurately the different mixing mechanisms.

Finally, the dispersion field was calculated for ∆tdisp = αT = 9 s, start-
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ing from t1, for DEM results and extrapolation results. This parameter is

very interesting for two reasons: (1) the pairing algorithm adds an artificial

dispersion by pairing the particles with particles that are not exactly at the

same location and (2) it describe in details the diffusion mechanism. Thus,

the comparison between the dispersion fields for DEM and extrapolated re-

sults is given in Figure 17. The relative error is presented in Figure 18 and

Table 4. We can see that the relative differences can be high, greater than

1000%. Two reasons explain this observation. First, when DEM dispersion

is near zero, the dispersion added by the extrapolation algorithm is compar-

atively high even it is if low in absolute value. Secondly, the highest pairing

distances near the free surface lead to a poorer rendering of the dispersion

magnitude as shown in Figure 17.

In order to investigate the influence of α, another extrapolation has been

made with α = 1 - ie with an extrapolation step of 1 s. In that case, the

relative errors are larger, about 5% percent for the Lacey index and 8%

percent for the Ashton index. This is simply explained by the fact that

the prediction of the same time t, needs 9 times more steps with α = 1

than with α = 9. This leads to greater errors comming from the dispersion

error accumulated at each extrapolation step. Thus a larger α decreases the

cumulative error but leads to less points to describe the evolution of the

extrapolated mixture.

Conclusion

An original method was presented for the long time extrapolation of DEM

simulation by using a pairing algorithm. The results show an extremely
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good agreement between extrapolated and DEM results. Thus, this method

is able to predict accurately long time results at a very low computational

cost compare to a full DEM simulation. This method has been applied to the

simulation of mixing in a conical screw mixer but it could easily be applied to

any other periodic mixers like rotating drums, four bladed mixers, Turbula R©
, V-blenders... The method could also be extended to simulate more complex

processes, like spouted beds, the particles of which have a cyclic behavior.
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screw conveyor-mixers – Discrete element modeling approach. Advanced

Powder Technology 26, 1391–1399.
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Figure 1: Representation of the pairing algorithm: particles position at time t0 (left),

t1 (middle) and pairing step (right) where pairing distances are represented by double-

headed arrows. Arrows (middle) arrows show the trajectories that have to be repeated by

the extrapolation algorithm.
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Table 3: Pairing distances

Frequency[%] Relative distance dpair/ (2R)

10 0.29

50 0.55

90 0.94

95 1.18

99 4.42

99.9 9.85

99.99 18.52

100 27.70
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a
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Figure 8: Pairing algorithm efficiency, considering pre-classification into 10 × 10 × 10

domains (left), and regarding dpair repartition in 3D (right).
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Figure 9: Cross sectional views of the mixer at different stages for the 2x and 2y initial

configurations. Comparison between DEM and extrapolated results.
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Figure 10: Cross sectional views of the mixer at different stages for the 2z and 8y initial

configurations. Comparison between DEM and extrapolated results.
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Table 4: Decile absolute relative dispersion error |(dextradisp − dDEM
disp )/dDEM

disp |

D1 D2 D3 D4 D5 D6 D7 D8 D9

0.0876 0.179 0.278 0.394 0.549 0.814 1.31 2.27 5.11

29



0 1 2 3

0

0.2

0.4

0.6

0.8

1

Number of primary rotations

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

DEM DEM & Extra.

Time [s]

I L

DEM

Extra. 1

2

3

4

5

6

7

8

Figure 12: Comparison between extrapolated and DEM Lacey index IL. Results for

configuration 8y.
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configuration 8y.
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Notations

dp Mean diameter of particles [m]

dmin
p , dmax

p Minimum and maximum diameter of particules [m]

ddisp Dispersion length [m]

dpair Pairing distance [m]

i,j Indices, identifiers of particles [-]

f Pairing function [-]

N Number of particles in the mixture [-]

Nx,Ny,Nz Number of slice in the x, y and z direction [-]

Mi Number of particles in the cluster i excluding the central one [-]

p Global proportion of the component of interest [-]

−→r i Position of the center of particle i [m]

R Mean radius of particles [m]

Ri Radius of particle i [m]

t0 Starting time step for extrapolation [s]

t1 Ending time step for extrapolation [s]

tn+1 Extrapolated time step (n > 1) [s]

T Time period of the process [s]

vave Average translational velocity magnitude of particles [m.s-1]

α Multiplier of time period T giving the extrapolation step [-]

Γ Torque on the screw impeller along its rotation axis [N.m]

∆tdisp Time interval used to calculate the dispersion [s]

ωa Primary rotation velocity (arm) [cycle.s-1]

ωs Secondary rotation velocity (screw) [cycle.s-1]
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