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Abstract 

In order to predict the quality and the stability properties of milling processes, the relevant dynamics reduced 

to the cutting edges needs to be known. However, this dynamics varies through the workspace along the tool 

path during a given machining operation. This is the case for large heavy duty milling operations, where the 

main source of the relevant dynamics is related to the otherwise slowly varying machine structure rather than 

to the fairly steady milling tool dynamics. The effect of slowly varying dynamic parameters is presented on 

milling stability when the cutting process takes place in a region of the working space where the steady-state 

cutting would change from stable to unstable. After the separation of the slow and fast time scales, the 

governing non-autonomous delay differential equation is frozen in slow-time in order to determine the time-

periodic stationary cutting solution of the milling operation for different ram extensions.  

 

Keywords: milling; regeneration; chatter; varying dynamics 

1 Introduction 

The aim of this work is to point out the effect of slowly changing parameters on milling dynamics. It is well 

known that machining processes like drilling, turning or milling are subjected to regenerative effect when the 

past relative motion of the workpiece-tool system influences the present behavior of the operation. By 

modelling the geometric arrangement of the cutting edges, the corresponding regenerative delays can be 

identified [1]. Combining with an empirical cutting force charasteristics and with the dynamic model of the 

machine tool structure, the governing equation can be derived [2, 3]. This results in delay differential 

equation (DDE) [4] of autonomous (time-independent) or non-autonomous (time-dependent) kinds for 

different machining operations. In case of milling, the governing equations are time-periodic due to the non-

regular cutter-workpiece-engagement (CWE) and the rotation of the tool [5]. In this time-periodic case, the 

instability of corresponding time-periodic stationary solution refers to unstable milling operation that leads to 

chatter [6]. By using the Floquet theory on the linearized variational system [7], stability charts can be 

constructed usually in the parameter space of spindle speed n and depth of cut a. Between the stable and 

unstable domains, the stability boundaries correspond to either (secondary) Hopf or period doubling losses of 

stability.  

The above mentioned methodology is capable to predict chatter for constant parameters; however, in reality, 

one or more parameters may be slowly varying during the machining operations. For example, large 

machines are well known to have varying dynamic behavior, thus, slowly moving cutter through their 
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workspace is subjected to slowly varying dynamic properties. In five axis milling, even rigid compact 

machines operate in slowly changing environment during complex 3D tool motions, while the varying 

geometry along the tool path also affects the CWE in time.  

In mathematical terms, the slowly changing variable introduces a permanent non-cyclic time dependency in 

the originally time-periodic milling model. This means that the DDE cannot be handled using Floquet theory, 

or at least, not in a straightforward  manner.  The slowly changing ordinary differential equation (ODE) 

models have already revealed the effect of slowly changing parameters on the corresponding stability loss 

and bifurcation [8, 9]. In case of Hopf bifurcations, by using slow time scale, a shift of the stability boundary 

can be identified by considering the accumulative effect of the variational dynamics around the slowly 

changing stationary solution [10].  

This work intends to apply the slow time scale methodology in the time-periodic DDE model of milling 

operations to show how those slowly varying parameters affect the classical chatter predictions. The paper 

considers a simple 1Dof model of the milling operation as a demonstrative example. After having a 

mathematical assumption for the slow-time deviation from the frozen-parameter case, a first order delay 

differential equation is derived for the amplitude and phase deviations. Stability of the slowly changing 

dynamics is determined by considering the exponential growth of the amplitude deviation from the frozen-

time solutions. The single degree of freedom model describes ‘naively’ the cantilever-like structural 

arrangement of a heavy-duty milling machine. The model represents the slowly changing dynamics during 

milling processes performed in ram-axis-direction. It is shown that ram-directional motion can shift stability 

boundaries only because of the varying dynamics. 

 

2 1DoF milling model 

 
 

Figure 1: a) sketch of the actual mechanical model of milling; b) dimensionless stability lobe diagram with 

dimensionless spindle speed υ and depth of cut α [11]. The paths A and B represent examples related to 

slowly increasing depth of cut a (see subsection 4.1) and ram overhang L (see subsection 4.2), respectively. 

Simple one DoF model of the regenerative milling process is considered here with the following second 

order time periodic DDE  
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�̈�(𝑡) + 2 𝜉 𝜔n �̇�(𝑡) + 𝜔n
2 𝑞(𝑡) = 𝑎 𝐾c,𝑡 𝐵(𝑡)(𝑞(𝑡 − 𝜏) − 𝑞(𝑡)) + 𝐺(𝑡),  (1) 

where 𝜔n, 𝜉, 𝜏 and 𝐾c,𝑡 stand for the natural angular frequency, damping ratio, regenerative delay and 

tangential cutting coefficient, respectively. The regenerative delay is originated in the tooth passing 

frequency Ω𝑍 = 𝑍Ω as 𝜏 = 2π/Ω𝑍, where Ω (rad/s) = 2π𝑛 rpm / (60 s/min) is the angular velocity of the 

tool. The milling cutter is assumed to be equally spaced with cutting edges, that is, the principle period 

equals with the regenerative delay as 𝑇p = 𝜏 (see Figure 1a). The stability diagram is usually depicted in the 

parameter space spanned by the spindle speed 𝑛 and axial depth of cut a as demonstrated in Figure 1b. As 

shown in [11] and  [12], the time periodicity of (1) appears in  

𝐵(𝑡) ≡ 𝐵(𝑡 + 𝑇p) = 𝐔⊺ ∑
𝑔(𝜑𝑖(𝑡))

sin 𝜅
𝐓(𝜑𝑖(𝑡))𝛋c  ⊗  𝐧(𝜑𝑖(𝑡))

𝑍

𝑖=1

𝐔, (2) 

and in the stationary excitation 

𝐺(𝑡) ≡ 𝐺(𝑡 + 𝑇p) = −𝑎 𝐔⊺ ∑
𝑔(𝜑𝑖(𝑡))

sin𝜅
𝐓(𝜑𝑖(𝑡)) (𝐊e + 𝐊c ⊗  𝐧(𝜑𝑖(𝑡)) [

𝑓𝑍
0
0

]) 

𝑍

𝑖=1

. (3) 

The mass normalized mode shape vector, lead angle and the feed per tooth are denoted by 𝐔, 𝜅 and 𝑓𝑍. The 

edge normal, the edge coefficients and the cutting coefficients are stored in 𝐧, 𝐊e and 𝐊c = 𝐾c,𝑡𝜿c vectors 

defined in local edge (t, r, a) system, while the transformation between (t, r, a) and (x, y, z) is realized by 

𝐓(𝜑) [13]. The edge angular position and the effect of CWE are traced by 𝜑𝑖(𝑡) and 𝑔(𝜑) [13]. 

Linear stability of the time periodic stationary solution 𝑄(𝑡) = 𝑄(𝑡 + 𝑇p) of (1) can be easily determined by 

various methods, like multi-frequency solution [14, 15, 16] and semi-discretization [17]. The presented 

example with 90 deg lead angle 𝜅 and zero helix angle 𝜂 (see Table 1) was calculated by first order semi-

discretization and using triangularization algorithm. 

Table 1: Parameters of full immersion milling process used in this paper [19]. 

𝑍 𝜅 (deg) 𝜂 (deg) feed direction mode direction 

4 90 0 [1  0  0] [0  1  0] 

𝐾c,𝑡 (MPa) 𝐾c,𝑟 (MPa) 𝐾c,𝑎 (MPa) 𝜔n (Hz) 𝜉 (%) 𝑘 (N/μm) 

1459 259 0 94 0.66 58.38 

3 Slowly changing milling model 

A real milling process is usually subjected to time-dependent slowly changing parameters. In this manner, 

we can modify the DDE (1) by considering some slowly changing parameters with respect to the so-called 

“slow time” 𝑠 ≔ 𝜀𝑡, where the general rate of change is denoted by ε . Thus, 

�̈�(𝑡) + 2 𝜉(𝑠)𝜔n(𝑠)�̇�(𝑡) + 𝜔n
2(𝑠)𝑦(𝑡) = 𝑎(𝑠)𝐾c,𝑡 𝐵(𝑡, 𝑠) (𝑦(𝑡 − 𝜏(𝑠)) − 𝑦(𝑡)) + 𝐺(𝑡, 𝑠).  (4) 

Surely, not all parameters are changing at the same rate during a given process. For example, in the general 

form of (4) one can model a cutting process defined for a ramp-like workpiece [18] with slowly changing 

𝑎 ≔ 𝑎(𝑠) and 𝐺(𝑡) ≔ 𝐺(𝑡, 𝑠) (see path A in Figure 1b and description in Subsection 4.1). In the meantime, 

the changing ram extension can be followed by slowly changing 𝜔n ≔ 𝜔n(𝑠), 𝜉 ≔ 𝜉(𝑠), 𝐵(𝑡) ≔ 𝐵(𝑡, 𝑠) 
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and 𝐺(𝑡) ≔ 𝐺(𝑡, 𝑠) due to 𝐔 ≔ 𝐔(𝑠) (see path B in Figure 1b and description in Section 4.2). Note that 

𝑦 ≡ 𝑞; it has been introduced only to distinguish the solution of (1) and that of (4). 

In any case, the governing DDE (4) form of the slowly changing milling operation is no longer exactly time-

periodic. It behaves as a general non-autonomous (time-dependent) system with two different time scales 

described by the (real) ‘fast time’ t and the (introduced) ‘slow time’ s. 

3.1 Stationary Solution 

It is straightforward to assume that (4) must have a slowly changing but in this case not time-periodic 

stationary  solution 𝑌(𝑡) ≠ 𝑌(𝑡 + 𝑇p). Perturbation 𝑥 is introduced in the solution as 

𝑦(𝑡):= 𝑌(𝑡, 𝑠) + 𝑥(𝑡).  (5) 

Abusing the notation, the real time and slow time dependencies are dropped for a while. Substituting the 

assumption (5) into (4) one can get the following form 

�̈� + �̈� + 2𝜉𝜔n(�̇� + �̇�) + 𝜔n
2 (𝑌 + 𝑥) =  𝑎 𝐾c,𝑡 𝐵(𝑌𝜏,𝜀𝜏 + 𝑥𝜏,𝜀𝜏 − 𝑌 − 𝑥) + 𝐺,  (6) 

where 

     𝑌𝜏,𝜀𝜏: = 𝑌(𝑡 − 𝜏, 𝑠 − 𝜀𝜏) ≈ 𝑌(𝑡 − 𝜏, 𝑠) − 𝜀𝜏
𝜕

𝜕𝑠
𝑌(𝑡 − 𝜏, 𝑠) =: 𝑌𝜏,0 − 𝜀𝜏 𝑌𝑠

𝜏,0
.  

This results in 

�̈� + �̈� + 2𝜉𝜔n(�̇� + �̇�) + 𝜔n
2 (𝑌 + 𝑥) =  𝑎 𝐾c,𝑡 𝐵(𝑌𝜏,0 − 𝜀𝜏 𝑌𝑠

𝜏,0 + 𝑥𝜏,𝜀𝜏 − 𝑌 − 𝑥) + 𝐺.  (7) 

Approximating the stationary solution 𝑌(𝑡, 𝑠) of (4) with the stationary solution of (1) for fixed (frozen) slow 

time s, that is, by 𝑌(𝑡, 𝑠) ≈ 𝑄(𝑡; 𝑠) = 𝑄(𝑡 + 𝑇p; 𝑠), (7) is simplified to 

�̈� + 2𝜉𝜔n�̇� + 𝜔n
2 𝑥 =  𝑎 𝐾c,𝑡 𝐵(𝑥𝜏,𝜀𝜏 − 𝑥) − 𝑎 𝐾c,𝑡 𝜀𝜏 𝑄𝑠

𝜏,0.  (8) 

Considering the time periodicity in 𝑄𝑠
𝜏,0

, (8) has the same form as (4). By following the same procedure, a 

frozen-time stationary solution can be determined as 𝑋(𝑡; 𝑠) herewith introduced by 

𝑥(𝑡): = 𝜀 𝑋(𝑡; 𝑠) + 𝑢(𝑡).  (9) 

In this successive substitution, actually, an expansion w.r.t. 𝜀 of the stationary solution of (4) can be derived, 

resulting in the following form 

�̈� + 2𝜉𝜔n�̇� + 𝜔n
2 𝑢 =  𝑎 𝐾c,𝑡 𝐵(𝑢𝜏,𝜀𝜏 − 𝑢) − 𝑎 𝐾c,𝑡 𝜀

2𝜏 𝑋𝑠
𝜏,0, (10) 

with  

𝑌(𝑡, 𝑠) ≈ 𝑄(𝑡; 𝑠) + 𝜀 𝑋(𝑡; 𝑠). (11) 

Considering 𝜀 to be sufficiently small, the last term in (10) can be dropped and the variational equation 

described by the perturbation u around the stationary solution 𝑌 has the form 

�̈� + 2𝜉𝜔n�̇� + 𝜔n
2 𝑢 =  𝑎 𝐾c,𝑡 𝐵(𝑢𝜏,𝜀𝜏 − 𝑢). (12) 

3.2 Asymptotic behavior of the stationary solution 

The asymptotic behavior of this non-autonomous slow/fast system can be derived by the WKB method [10] 

considering the original time periodicity slightly depending on the slow time s. According to Floquet theory 

[7], the general solution of a linear time periodic system is given by an exponential and a time-periodic term 
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[19]. Similarly, using the WKB method, the following general solution can be assumed for the slowly 

changing equation (12): 

𝑢(𝑡): = 𝑢(𝑡, 𝑠) = e
σ(𝑠)

𝜀 𝐴(𝑡, 𝑠), where 𝐴(𝑡, 𝑠) = 𝐴(𝑡 + 𝑇p, 𝑠). (13) 

In (13), the slow time s is also carried by the asymptotic behavior referring to the stability (rapid exponential 

growth σ(𝑠)) of the slowly varying solution u on the fast time scale t. Substitution of (13) into (12) leads to a 

partial differential equation as  

𝜀 𝜎𝑠𝑠𝐴 + 𝜎𝑠
2𝐴 + 2𝜎𝑠�̇� + �̈� + 2𝜉𝜔n(𝜎𝐴 + �̇�) + 𝜔n

2𝐴 = 𝑎 𝐾c,𝑡 𝐵 (e−τ 𝜎𝑠 − 1) 𝐴  (14) 

by using the assumption e
σ(𝑠−𝜀 𝜏)

𝜀 ≈ e
σ(𝑠)

𝜀 e−τ 𝜎𝑠(𝑠). In accordance with (13), one can obtain 

�̇� = 𝐴𝑡 + 𝜀 𝐴𝑠   and    �̈� = 𝐴𝑡𝑡 + 2𝜀 𝐴𝑡𝑠 + 𝜀2𝐴𝑠𝑠. (15) 

However, keeping ε sufficiently small and consequently having small change on 𝐴 w.r.t. slow time s, one can 

assume 𝐴𝑠 = 𝐴𝑠𝑡 = 𝐴𝑠𝑠 = 0. Thus, Fourier expansion is applied on the now exactly time-periodic 𝐴 and B 

as  

𝐴(𝑡): = ∑ 𝐴𝑙  

∞

𝑙=−∞

ei 𝑙 Ω𝑍𝑡       and     𝐵(𝑡): = ∑ 𝐵𝑙  

∞

𝑙=−∞

ei 𝑙 Ω𝑍𝑡 .  (16) 

The multi-frequency approach [15] or Hill type of infinite expansion of the slowly changing milling 

dynamics can be given after substituting (16) into (14) as 

((𝜀 𝜎𝑠𝑠 + 𝜎𝑠
2 + 2𝜉𝜔n𝜎𝑠 + 𝜔n

2)𝐈 + [2 i 𝑙 Ω𝑍𝜎𝑠 − 𝑙2Ω𝑍
2 + 2 𝜉 i 𝑙 Ω𝑍]𝑙=−∞

∞ )

[
 
 
 
 

⋮
𝐴−1

𝐴0

𝐴1

⋮ ]
 
 
 
 

= 

                                                                     𝑎 𝐾c,𝑡 (e
−τ 𝜎𝑠 − 1)

[
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋰
⋯ 𝐵0 𝐵−1 𝐵−2 ⋯
⋯ 𝐵1 𝐵0 𝐵−1 ⋯
⋯ 𝐵2 𝐵1 𝐵0 ⋯
⋰ ⋮ ⋮ ⋮ ⋱]

 
 
 
 

[
 
 
 
 

⋮
𝐴−1

𝐴0

𝐴1

⋮ ]
 
 
 
 

  . 

(17) 

For the sake of simplicity, zeroth order (average) consideration can be derived by picking only the averages 

of 𝐴 and 𝐵 as in [20], resulting in 

(𝜀 𝜎𝑠𝑠 + 𝜎𝑠
2 + 2𝜉𝜔n𝜎𝑠 + 𝜔n

2 −  𝑎 𝐾c,𝑡 (e
−τ 𝜎𝑠 − 1)𝐵0)𝐴0 = 0. (18) 

In (18), 𝐴0 has non-trivial solution if the following is satisfied 

𝜀 𝜎𝑠𝑠 + 𝜎𝑠
2 + 2𝜉𝜔n𝜎𝑠 + 𝜔n

2 −  𝑎 𝐾c,𝑡 (e
−τ 𝜎𝑠 − 1)𝐵0 = 0. (19) 

Note that, in (19), at least one parameter is slow-time dependent. Also, (19) resembles to the characteristic 

equation of constant parameter case (1). Moreover, in point of 𝜎𝑠, (19) has the form of a singular perturbed 

algebraic equation Γ(𝜎𝑠), which is released by dynamic term 𝜎𝑠𝑠 with 𝜀, that is 

𝜀 𝜎𝑠𝑠 +  Γ(𝜎𝑠) = 0. (20) 

Obviously, if the rate of parameter change approaches zero, (19) is restricted to the constant parameter 

characteristic equation for 𝜎𝑠 originated from (13). 
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3.3 Stability criteria 

The general solution for the slow-time system in (13) suggests that, in case of negative real part 𝜎, the 

perturbation introduced in (9) dies out, while positive real part σ induces rapid explosion w.r.t. s. That means, 

the first order nonlinear ODE representation of the characteristic equation in (19) has to be integrated by 

using a proper initial condition when s = 0. This can be done by using numerical algorithms like Runge-Kutta 

method. For the sake of initial condition, we assume at s = 0 the system is frozen for a while in slow time s, 

then   

𝜎(𝑠) ≈ 𝜆𝑠     ⟹         𝜎𝑠(𝑠) ≈ 𝜆         ⟹            𝜎𝑠(0) ≈ 𝜆, (21) 

where 𝜆 is the frozen time characteristic exponent. The real part of the cumulated value of 𝜎𝑠 over slow time 

has the form 

re (∫ 𝜎𝑠(𝜁)d𝜁
𝑠

0

) (22) 

that refers to the stability properties of (17) as shown in [10]. If the function (22) crosses zero, the stability 

property of the slowly changing stationary solution 𝑌(𝑡, 𝑠) (11) will flip. 

Keeping in mind the ‘singular perturbation’-like structure of (20), formula (22) has interesting theoretical 

consequences. On the one hand, sufficiently small 𝜀 induces shifting of the onset of unstable motion 

independently of 𝜀, as shown by only integrating the solution of Γ(𝜎𝑠) = 0 from (20). On the other hand, 

(22) suggests that the accumulated stability is overtaken by the accumulated instability, which results in the 

shift on the onset of the unstable motion, which very much depends on the initial values of the slowly 

changing variables [10].  

4 Case Studies 

In this section we provide two distinct examples, in which the behavior of the dynamic bifurcation analysis 

might have a relevance. It is important to emphasize that these are completely artificial examples. Real case 

study might result in different significance of the explained effect.   

 

Figure 2. The real part of the critical eigenvalue 𝜎(𝑠) a) and its derivative 𝜎𝑠(𝑠) b) solving (17) w.r.t. s under 

slowly changing axial depth of cut a(s). In panel c) time domain simulation y(t) and the frozen time 

stationary solution 𝑄(𝑡; 𝑠) are shown. Here 𝜀 = 1 × 10−4 (m/s). 
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4.1 Slowly varying depth of cut 

In the literature there are various measurement examples, when the test required pre-manufactured 

workpiece with a gentle slope [18, 19, 21]. These measurements typically are aimed to present stability limits 

or so-called nonlinear hysteresis phenomenon, the direct consequence of subcritical Hopf bifurcation of the 

stationary milling process. The slowly changing parameter in (4) the axial depth of cut is defined as 

𝑎(𝑠) = 𝑎min + 𝜀 𝑡, (23) 

with 𝑎min = 1 mm and 𝑎max = 10 mm. In Figure 2ab) one can follow the accumulation of the critical 

eigenvalue that shows according to the criterion (22). The system loses its stability after the constant 

parameter limit ac at the dynamic one adin. The loss of stability can be realized as the time domain solution in 

Figure 2c) “escapes”  the stationary solution calculated by using simply the frozen time stationary solution 

𝑄(𝑡; 𝑠). One can realize the linear dependency of the axial depth of cut a on the stationary solution in Figure 

2c). It can be also realized in Figure 2c) the actual onset point where the solution escapes from the stationary 

solution is a bit ahead of the predicted position. This suggests deeper dependency of the rate of change 𝜀 on 

the dynamics which needs further, more detailed study of the problem. 

4.2 Slowly varying ram overhang  

 

Figure 3. The real part of the critical eigenvalue 𝜎(𝑠) a) and its derivative 𝜎𝑠(𝑠) b) solving (17) w.r.t. s under 

slowly changing ram extension (cantilever overhang) L(s). In panel c) time domain simulation y(t) and the 

frozen time stationary solution 𝑄(𝑡; 𝑠) is shown. 𝜀 = 1 × 10−4 (m/s). 

Considering the ram as simply a cantilever beam the following dependencies can be determined w.r.t. the 

ram overhang 𝐿 by using simple Euler beam theory [22] 

𝜔n = 𝐴𝜔n

1

𝐿2
 , 𝑘 = 𝐴𝑘

1

𝐿
, 𝐔 = 𝐀𝐔

1

√𝐿
, and consequently 𝐵0 ∼

1

𝐿
. (24) 

Obviously, the presented relations in (24) are far to be true in a real machine. Instead, the real behavior 

should be characterized by measuring frequency response functions (FRFs) in many overhang positions. In 

this manner the real dynamics and even the damping can be determined. This artificial example is calculated 

with  

𝐿(𝑠) = 𝐿min + 𝜀 𝑡, (25) 

with 𝐿min = 100 mm and 𝐿max = 122.5 mm. The parameters introduced in (24) are  
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𝐴𝜔n
= 5.9062

rad m2

s
, 𝐴𝑘 = 58.8 × 105 N, 𝐀𝐔 = [0 0.0244 0]⊺ √

m

kg
 . (26) 

In Figure 3ab) the accumulated effect of the slowly changing parameter L is shown on the critical 

eigenvalue. Similarly to Figure 2ab), the dynamic bifurcation limit Ldin and the constant parameter stability 

limit Lc are not the same. A shift appears confirmed in Figure 3c) by time domain simulation. Here, the 

stationary solution changes drastically (blue and red envelope curves in Figure 3c) by varying the ram 

overhang L. The amplitude of the stationary solution shrinks because by changing the L the system goes 

away from the stability pockets (see path B in Figure 1b), where “resonance” causing high but finite gain on 

the amplitude [23]. Although the stationary solution shrinks, the system becomes more flexible causing the 

onset of the unstable motion after the constant parameter limit Lc at Ldin and the amplitude goes to infinite 

(without modelling the threshold fly-over effect [24]). 

5 Conclusion 

There are several industrial problems, including ones related to cutting technologies, which may involve 

dynamic processes on (very) different time scales. In the present work, we study milling operations that 

clearly have fast time-periodic dynamics. In the meantime, there exists a slow rate of change of some system 

parameters originated in the slowly varying structural dynamics as the tool moves in the working space of 

the milling machine.  

In this paper, the so-called dynamic bifurcation phenomenon has been introduced for the analysis of milling 

stability. A new generalized governing equation was derived, with which the stability of the slowly changing 

milling dynamics can be predicted. Two simplified case studies presented slowly varying behavior. The non-

trivial, sometimes counter-intuitive theoretical predictions based on the analysis of the new governing 

equations were confirmed by time domain simulation results, although some parameter domains still need 

further and deeper study. 

The results may have industrial relevance when the milling cutter moving in the workspace has varying 

reduced dynamics. The results are somewhat counter intuitive. On the one hand, the accumulated stability, in 

theory, does not or weakly depends on the rate of change, which suggests that shifting of the stability appears 

even for extremely small rate of change. On the other hand, the shift (e.g., adin  ac) carries the initial 

parameter value, since this has direct effect on the accumulated stability behavior.  

It is important to emphasize that the above presented results apply only in cases when the cutting operation 

starts from stable stationary cutting; at this point, the results do not explain the transition backward from 

chatter to stable stationary cutting, which requires different modelling techniques that are applicable also for 

quasi-periodic oscillations. 
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