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ORACLE INEQUALITIES AND ADAPTIVE ESTIMATION
IN THE CONVOLUTION STRUCTURE DENSITY MODEL

By O.V. LEpsk1 * T. WILLER *
Aiz Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

We study the problem of nonparametric estimation under L,-loss,
p € [1,00), in the framework of the convolution structure density
model on R?. This observation scheme is a generalization of two clas-
sical statistical models, namely density estimation under direct and
indirect observations. The original pointwise selection rule from a
family of ”kernel-type” estimators is proposed. For the selected esti-
mator, we prove an L,-norm oracle inequality and several of its con-
sequences. Next, the problem of adaptive minimax estimation under
L,—loss over the scale of anisotropic Nikol’skii classes is addressed.
We fully characterize the behavior of the minimax risk for different
relationships between regularity parameters and norm indexes in the
definitions of the functional class and of the risk. We prove that the
proposed selection rule leads to the construction of an optimally or
nearly optimally (up to logarithmic factor) adaptive estimator.

1. Introduction. In the present paper we will investigate the following
observation scheme introduced in Lepski and Willer (2017). Suppose that
we observe i.i.d. vectors Z; € R4, i = 1,...,n, with a common probability
density p satisfying the following structural assumption

(1.1) p=0—-a)f+alfxgl, [eFy(R), acl01],

where o € [0,1] and g : R? — R are supposed to be known and f : RY — R
is the function to be estimated. We will call the observation scheme (1.1)
convolution structure density model.

Here and later, for two functions f,g € Ly (]Rd)

Fg)@) = [ fa=2glds). z RS

*This work has been carried out in the framework of the Labex Archimede (ANR-
11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the
?Investissements d’Avenir” French Government program managed by the French National
Research Agency (ANR).
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2 O.V. LEPSKI AND T. WILLER
and for any o € [0,1], g € Ly (Rd) and R > 1,

Fy(R) = {f € Bra(R): (1-a)f +alfxg € PR }.

Here PB(R?) denotes the set of probability densities on R?, B, 4(R) is the
ball of radius R > 0 in LS(Rd) = Ls(Rd,l/d),l < s < o and vy is the
Lebesgue measure on R?. The convolution structure density model (1.1)
will be studied for an arbitrary g € Iy (Rd) and f € Fy(R). Then, except in
the case a = 0, the function f is not necessarily a probability density.

We remark that if one assumes additionally that f, g € ‘B(Rd), this model
can be interpreted as follows. The observations Z; € R4, i =1,...,n, can be
written as a sum of two independent random vectors, that is,

(12) Zi=X;+¢€Y;, t1=1,...,n,

where X;,7 =1,...,n, are i.i.d. d-dimensional random vectors with a com-
mon density f, to be estimated. The noise variables Y;,7 = 1,...,n, are
1.4.d. d-dimensional random vectors with a known common density g. At
last &; € {0,1},i = 1,...,n, are i.i.d. Bernoulli random variables with
P(e; = 1) = «, where a € [0, 1] is supposed to be known. The sequences
{Xi,i=1,...,n} {Yi,i=1,...,n} and {¢;,i = 1,...,n} are supposed to
be mutually independent.

The observation scheme (1.2) can be viewed as the generalization of two
classical statistical models. Indeed, the case @ = 1 corresponds to the stan-
dard deconvolution model Z; = X; +Y;, i = 1,...,n. Another "extreme”
case a = 0 corresponds to the direct observation scheme Z; = X;, i =
1,...,n. The "intermediate” case a € (0, 1), considered for the first time in
Hesse (1995), can be treated as the mathematical modeling of the follow-
ing situation. One part of the data, namely (1 — a)n, is observed without
noise, while the other part is contaminated by additional noise. If the in-
dexes corresponding to that first part were known, the density f could be
estimated using only this part of the data, with the accuracy correspond-
ing to the direct case. The question we address now is: can one obtain the
same accuracy if the latter information is not available? We will see that
the answer to the aforementioned question is positive, but the construction
of optimal estimation procedures is based upon ideas corresponding to the
"pure” deconvolution model.

We want to estimate f using the observations Z(™ = (Z1,...,%Zy). By es-
timator, we mean any Z(™-measurable map f :R* — L, (Rd). The accuracy

of an estimator f is measured by the L,-risk

- A /
RO A= (BellF — 1) " e [1,00),
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where E; denotes the expectation with respect to the probability measure
P; of the observations Z(™) = (Zy,..., Z,). Also, ||-|lp, p € [1,00), is the L,-
norm on R?% and without further mentioning we will assume that f € L, (Rd).

1.1. Oracle approach via local selection. Let ]:(H) = {fﬁ’ he IHI} be a
family of estimators of ”kernel-type” estimators, see Section 2.1, parameter-
ized by a collection of multi-bandwidths H built from the observation Z™.
We want to construct a Z(-measurable random map h:R? - H and for
any p € [1,00) and n > 1 to bound from above the LL,-risk of the selected es-
timator fﬁ . Our selection rule presented in Section 2.1 can be viewed as a
generalization and modification of statistical procedures proposed in Kerky-
acharian et al. (2001) and Goldenshluger and Lepski (2014). In Section 2.2,
the following risk bound will be established

(13)  RY[fz,:f] <1 inf A, (f,ﬁ,-) H +Can™3, Vf €Fy(R).
heH p

Here (' and (5 are numerical constants which depend on d and p only, and
An(-, - 2),r € RY, is an explicitly known functional. We call (1.3) an L,-
norm oracle inequality obtained by local selection. Since the selection rule
from the considered family is done pointwisely, i.e. for any = € R, this
allows to take into account the ”local structure” of the function to be esti-
mated. The LL,-norm oracle inequality is then obtained by the integration
of the pointwise risk of the proposed estimator, which is a kernel estimator
with the bandwidth being a multivariate random function. This, in its turn,
allows us to derive different minimax adaptive results thanks to an unique
L,-norm oracle inequality. It is worth noting in this context that estimation
procedures based on a local selection scheme can be applied to the esti-
mation of functions belonging to much more general functional classes than
whose based on global selection schemes, see for instance Goldenshluger and
Lepski (2011) and Goldenshluger and Lepski (2014) for comparison. We will
see however that although A, (-, -, z),z € RY, is known explicitly, its compu-
tation in particular problems is not a simple task. The main difficulty here
is mostly related to the fact that (1.3) is proved without any assumption
(except for the model requirements) imposed on the underlying function f.
It turns out that under some nonrestrictive assumptions imposed on f, the
obtained bound can be considerably simplified, see Section 3.

1.2. Adaptive estimation. Let X be a given subset of Lp(Rd). For any
estimator fn, define its mazimal risk by R%p) [fn, Z] = SUDjey R%p) [fn, f]

and its minimazx risk on X is given by

(D) = inf; R [fn: %],
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Here, the infimum is taken over all possible estimators. An estimator whose
maximal risk is bounded, up to some constant factor, by ¢, (%), is called
minimax on ..

Let {219,19 € @} be a collection of subsets of Lp(Rd,ud), where ¢ is a
nuisance parameter which may have a very complicated structure.

The problem of adaptive estimation can be formulated as follows: is it
possible to construct a single estimator fn which would be simultaneously
minimazx on each class Yy, ¥ € O, i.e.

lim supg,, ' (L) RP) [ fn; 2] < 00, V0 € ©7

n—oo
We refer to this question as the problem of minimax adaptive estimation
over the scale of {¥y, ¥ € O}. If such an estimator exists, we will call it
optimally adaptive.
From oracle approach to adaptation. Let the oracle inequality (1.3) be estab-
lished. Define

Ro(%) = sup || inf A, (£.5,)|| +n7%, vee.
feXy'! heH p

We immediately deduce from (1.3) that for any 9 € ©
limsup,,_,o, R, ! (Eﬁ)R%p) [fﬁ('); 219} < 00.

Hence, the minimax adaptive optimality of the estimator fﬁ(.) is reduced to

the comparison of the normalization R, (219) with the minimax risk ¢, (3y).
Indeed, if one proves that for any ¢ € ©

lim infp, 00 R (29) 0y, (Sw) < oo,
then the estimator fﬁ(.) is optimally adaptive over the scale {Zg, Y€ @}. Us-
ing the modern statistical language we call the estimator f,, nearly optimally
adaptive if
lim sup,,_, o qﬁ%(Zg) ) [fn, Sy] < oo, V€O,

Objectives. In the framework of the convolution structure density model, we
will be interested in adaptive estimation over the scale

Yy = NF,d(E? E) ﬂ]Fg,oo(}za Q)v U= (gv T, Ev R, Q)7

where Fy (R, Q) := {f eFy(R): I1—-—a)f +a[fxg] € Boo,d(Q)} and
Nﬁd(g, E) is the anisotropic Nikolskii class, see Definition 1 below. Here
we only mention that the adaptive estimation over the scale {Nﬁd (5, E),
(5, T, E) € (0,00)% x [1, 00]? x (0, oo)d} is usually viewed as the adaptation
to anisotropy and inhomogeneity of the function to be estimated. As to the
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assumption f € Fy (R, Q) it simply means that the common density of
observations p is uniformly bounded by Q. In particular, this is always the
case if « =1 and [|g]|c0 < 0.

Additionally, we will study the adaptive estimation over the collection
29 = Nea(B, L) NFy(R) NBooa(Q), ¥ = (5,7, L, R, Q).

We will show that the boundedness of the underlying function allows to
improve considerably the accuracy of estimation.

Historical notes. The minimax adaptive estimation is a very active area of
mathematical statistics, and the interested reader can find a very detailed
overview as well as several open problems in adaptive estimation in Lepski
(2015). Below we will discuss only the articles whose results are relevant to
our consideration, i.e. the density setting under IL,-loss, from a minimax per-
spective. As already said, the convolution structure density model includes
itself the density estimation under direct and indirect observations.

Direct case, « = 0. There is a vast literature dealing with minimax and
minimax adaptive density estimation, see for example, Efroimovich (1986),
Hasminskii and Ibragimov (1990), Golubev (1992), Donoho et al. (1996),
Devroye and Lugosi (1997), Rigollet (2006), Rigollet and Tsybakov (2007),
Samarov and Tsybakov (2007), Birgé (2008), Giné and Nickl (2009), Akakpo
(2012), Gach et al. (2013), Lepski (2013), among many others. Special at-
tention was paid to the estimation of densities with unbounded support, see
Juditsky and Lambert-Lacroix (2004), Reynaud-Bouret et al. (2011). The
most developed results can be found in Goldenshluger and Lepski (2011),
Goldenshluger and Lepski (2014) and in Section 4 we will compare in detail
our results with those obtained in these papers.

Intermediate case, « € (0,1). To the best of our knowledge, adaptive es-
timation in the case of partially contaminated observations has not been
studied yet. We were able to find only two papers dealing with minimax
estimation. The first one is Hesse (1995) (where the discussed model was
introduced in dimension 1) in which the author evaluated the L.-risk of
the proposed estimator over a functional class formally corresponding to the
Nikol’skii class Nog 1(2,1). In Yuana and Chenb (2002) the latter result was
developed to the multidimensional setting, i.e. to the minimax estimation
on Ny ¢ (5, 1). The most intriguing fact is that the accuracy of estimation in
partially contaminated noise is the same as in the direct observation scheme.
However none of these articles studied the optimality of the proposed esti-
mators. We will come back to the aforementioned papers in Section 1.3 in
order to compare the assumptions imposed on the noise density g.
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Deconvolution case, o« = 1. First let us remark that the behavior of the
Fourier transform of the function g plays an important role in all the works
dealing with deconvolution. Indeed ill-posed problems correspond to Fourier
transforms decaying towards zero. Our results will be established for ”mod-
erately” ill posed problems, so we detail only results in papers studying that
type of operators. This assumption means that there exist i = (u1, ..., 1q) €
(0,00)? and Y7 > 0, T3 > 0 such that the Fourier transform § of g satisfies:

d d
A [+ <|g@)] < T [[(+23)7, Vi = (..., 1q) € RL
=1 =1

Some]minimax and minimax adapt]ive results in dimension 1 over different
classes of smooth functions can be found in particular in Stefanski and Car-
roll (1990), Fan (1991), Fan (1993), Pensky and Vidakovic (1999), Fan and
Koo (2002), Comte and al. (2006), Butucea and Tsybakov (2008), Hall and
Meister (2007), Meister (2009), Lounici and Nickl (2011), Kerkyacharian et
al. (2011).

There are very few results in the multidimensional setting. It seems that
Masry (1993) was the first paper where the deconvolution problem was stud-
ied for multivariate densities. It is worth noting that Masry (1993) consid-
ered more general weakly dependent observations and this paper formally
does not deal with the minimax setting. However the results obtained in this
paper could be formally compared with the estimation under LL,-loss over
the isotropic Holder class of regularity 2, i.e. N 4 (5, 1) which is exactly the
same setting as in Yuana and Chenb (2002) in the case of partially contam-
inated observations. Let us also remark that there is no lower bound result
in Masry (1993). The most general results in the deconvolution model were
obtained in Comte and Lacour (2013) and Rebelles (2016) and in Section 4
we will compare in detail our results with those obtained in these papers.

i
2

1.3. Assumption on the function g. Later on for any U € L (Rd), let U
denote its Fourier transform. All our results will be established under the
following condition.

ASSUMPTION 1. (1) if a # 1 then there exists € > 0 such that
}1 —a+ af](t)‘ >e, VteR%
(2) if o = 1 then there exists ji = (u1,...,p1q) € (0,00) and Yo > 0 s.t.

_HE5
2

GO = Toll_ (1+2)7F, V= (t1,....,tg) €RL
Remind that the following assumption is well-known in the literature:

By "y
To[I (1 +2) 7 <|g(t) < TII,(1+2) 7, vieR™
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It is referred to as a moderately ill-posed statistical problem. In particular,
the assumption is satisfied for the centered multivariate Laplace law.

Note that Assumption 1 (1) is very weak and it is verified for many
distributions, including centered multivariate Laplace and Gaussian ones.
Note also that this assumption always holds with ¢ = 1 — 2« if @ < 1/2.
Additionally, it holds with e = 1—q if § is a real positive function. The latter
is true, in particular, for any probability law obtained by an even number
of convolutions of a symmetric distribution with itself.

At last, our Assumption 1 is weaker than the conditions imposed in Hesse
(1995) and Yuana and Chenb (2002). In these papers § € C() (R?), g(t) #0
for any t € R? and ‘1 —a+ag(t)‘ >1— o for any t € R%

2. Pointwise selection rule and L,-norm oracle inequality. To
present our results in an unified way, let us define fi(a) = fi, a = 1, fi(a) =
(0,...,0), « € [0,1). Let K : R — R be a continuous function belonging
to Iy (Rd), fRK = 1, and such that its Fourier transform K satisfies the
following condition.

ASSUMPTION 2. There exist ki > 0 and ko > 0 such that

d d
. j (o) .
/ K@) [0+t <, / R@)PTL+ 2 @dt < 1.
R4 j=1 R4 j=1
Set H = {e*, k € Z} and let HY = {h = (h1,...,hq) : h; € H,j =
1,...,d}. Define for any h = (hi,...,hg) € H?

Kj(t) = Vo 'K (ti/hn, s ta/ha), t €RY, Vi =TT, hy.

Later on for any u,v € R? the operations and relations u/v, uv, u\V v,uAv,
u > v, au,a € R, are understood in coordinate-wise sense. In particular
u > v means that u; > v; for any j =1,...,d.

2.1. Pointwise selection rule from the family of kernel estimators. For
any h € (0,00)? let M(-, h) satisfy the operator equation

(21)  Kily) =1 —a)M(y,h)+ a/Rd g(t —y)M(t,h)dt, ye R

Note that although the explicit expression of M (,l_i) is not available its
Fourier transform can be easily deduced from (2.1), see Section 5.1.2.

For any h € ¢ introduce J/”\H(x) =n 1Y M(Z — x,ﬁ),m € R4, Our
first goal is to propose for any given x € R? a data-driven selection rule from
the family of estimators F (H¢) = {]/”\H(a:), he H?}. Define for any h e He
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) = /200 ()32 (2 B) + 7 MaoA (B) T2 by (g A 1) 7450,
where we have put ¢ (:c,h) = ;Zizl M? (Zi —x,h) and
An () = 4In(Mso) + 61n (n) + (8p +26) X0 [1 + pj(a)]| In(hy)|;

Moo = [(2m) e ||K || 1o + Yo Kilam1 }] V 1.

Pointwise selection rule. Let H be an arbitrary subset of H%. For any heH
and = € R? introduce

~

RH($) = SUDjic Uﬁ;vﬁ(@ — fﬂ(x)| - 4ﬁn (:U, hv 77) — 4ﬁn (z, ﬁ)] +;

where (7; (a;, ﬁ) = SUD g T ﬁn (a;, 77), and define

(2.2) h(z) = arg mf {7?, (z) + 8U; (z, h)]

Our final estimator is fﬁ(ﬁ)(x), z € R? and we will call (2.2) the pointwise
selection rule. Note that the estimator fﬁ(.)(-) does not necessarily belong to

the collection {fﬁ(), he H?} since the multi-bandwidth h(-) is a d-variate
function, which is not necessarily constant on RY. The latter fact allows
to take into account the "local structure” of the function to be estimated.
Moreover, ﬁ() is chosen with respect to the observations, and therefore it
is a random vector-function.

2.2. Ly-norm oracle inequality. Introduce for any = € R? and h € H4

Us(z,h) = sup  Un(a,7), Sﬁ(a:,f):/RdKﬁ(t—:c)f(t)yd(dt);

FEM: f>h
where we have put

) = 2 ()02 (0 ) + 4 Mo () TE o 4 1)),

and o (3377)) = Jpa M2 (t — 2, 7)p(t)vg(dt).
For any H C H¢, h € H and 2 € R? introduce also

(2'3) B%(l‘,f) = §u§ ‘Sﬁ\/ﬁ(xv f)_Sﬁ(xvf)‘7 Bﬁ('rvf) = ‘Sﬁ(xv f)_f(xﬂ
e

THEOREM 1. Let Assumptions 1 and 2 be fulfilled. Then for any H C H<,
n>3,pe[l,oo) and any f € Fy(R)
gzp) [fﬁ(.)a f} <

1

infj e {2850, 1) + By ) + 49U (- }H +Cynt.
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The explicit expression for the constant C,, (independent of f, n and H) can
be found in the proof of the theorem. Later on we will pay attention to a
special choice for the collection of multi-bandwidths, namely

HE = {heH: h=(h,....,h), heH}.

1sotr
More precisely, in Part II, the selection from the corresponding family of
kernel estimators will be used for the adaptive estimation over the collection
of isotropic Nikolskii classes. Note also that if H = HZ . then obviously

isotr
BZ(~,f) < 2suPﬁ€H§isotr:nSh By(-, f) for any h = (h,...,h) € Hidsotr and we
come to the following corollary of Theorem 1.
COROLLARY 1. Let Assumptions 1 and 2 be fulfilled. Then for anyn > 3,
p € [1,00) and any f € Fy(R)

R&p)[&(_),f]é _inf {5 sup Bﬁ(-,f)+49U;(~,ﬁ)}
heH? qeEHE , n<h

isotr isotr

1
2 .

+Cyn
P

The oracle inequality proved in Theorem 1 is particularly useful since it
does not require any assumption on the underlying function f (except for the
restrictions ensuring the existence of the model and of the risk). However,
the quantity appearing in the right hand side of this inequality, namely

[t {2800 + Byt 1) + 400 (1)}

is not easy to analyze. In particular, in order to use the result of Theorem
1 for adaptive estimation, one has to be able to compute

inff g {285, £) + By f) + 49U (- ) } Hp
for a given class F C L,(R?) NFy(R) with either H = H? or H = H{

SUp e

isotr*
It turns out that under some nonrestrictive assumptions imposed on f, the

obtained bounds can be considerably simplified. Moreover, new inequalities
will allow us to better understand the way for proving adaptive results.

3. Abstract upper bound theorem. Define Vq,u € [1, ], D > 0,
Fyu(R, D) i= {J € Fy(R): (1= a)f +alf»g] € B (D)},
where IB%ESZ,) (D) is the ball of radius D in the weak-type space Ly oo (Rd), ie.
Bo) (D) = {A: R 5 R: |[Aus < D}, where
[Aluyo0 = inf {C : vg(z : [A(z)| >3) < C¥7", V3 > 0},
As usual IBB(()Z?C)I(D) = B ¢(D) and obviously ]BBEEZ)(D) D Bua(D).
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It is worth noting that the assumption f € F, (R, D) simply means that

the common density of the observations p belongs to IB%EIOZ)(D).

Our objective is to bound from above sup scp R [J?H()’f] for any F C
Fyu(R,D)NBgq(D). Since F is an arbitrary set this bound can be applied
to the adaptation over different scales of functional classes. In particular,
the results below form the basis for our consideration in Section 4.

REMARK 1. Note that Fy1(R, D) =F4(R) for any D > 1. Moreover, it
is easily seen that Fy o (R, R||gllc) = Fg(R) if a = 1 and ||g||oc < o0. At
last Fg oo (R, Qllg]l1) D Fg(R) N Boo,a(Q) for any o € [0,1] and Q > 0.

Introduce for any h e He

Inn+39_, [Inhy (q) _ ntXd Ik,
n

= T - ] () *
VAT B2 (hja1)Hs () ’ n Ty b (A1) ()

Furthermore let H be either H¢ or H¢

1sotr

Hv) = {f_i ceH: Gn(ﬁ) <av}, H(v,2) = {}_i €N): Fn(ﬁ) < cwz_%}.

Fo(h)

and for any v,z > 0 define

Here a > 0 is a numerical constant whose explicit expression is given in the
beginning of Section 5.2. Put also for any v > 0, lg(v) = vP~ (14| In (v)[)*H),
where t(H) = d — 1 if H = H¢ and ¢(H) = 0 if H = H¢

isotr*

REMARK 2. Note that $H(v) # 0 and $H(v, z) # 0 whatever the values of
v >0 and z > 2. Indeed, for any v >0, z > 2 one can find b > 1 such that

(Inn+ dnb)(nb®)~! < [a®v?271] Aav.
The latter means that b= (b, ...,b) € H(v,2) N H(v).

All the results in this section will be proved under an additional condition
imposed on the kernel K.

ASSUMPTION 3. Let K : R — R be a compactly supported, bounded
function and [ K = 1. Then
K(x) =[], K(z;), Yz € RY,
Without loss of generality we will assume that |K|lco > 1 and supp(K) C
[—exe, e with e > 1.

Introduce the following notations. Set for any h € H and j =1,...,d

gl = | [ KOS rube () = £, by = s b5,
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where (ey, ...,e4) denotes the canonical basis of R%. Introduce Vs € [1, 00

= S il Brus) =gl =1
Fher:h<n JeF

For any v > 0 and j = 1,...,d, set V;(v) = {h € H : B, r(h) < cv} and

J(h,v) = {j €{l,....d}: hj evj(v)}, h e M.

where ¢ = (20d) ™! [ max(2ck||K|| oo, HICHl)]*d. As usual the complement of

J (ﬁ,v) will be denoted by J (l_i,v). Furthermore, the summation over the
empty set is supposed to be zero.
For any 5= (s1,...,54) € [1,00)¢, u>1 and v > 0 introduce

(1) AdvFw=inf inf [ | 2. v Bigr(h)]Y + z‘“}
jeJ(hww)

(32)  As(v,F) = inf [ Y v [Bygr(hy)]” +02F3(5)]‘
hen(v) L. —=
JE€J (hy)
Furthermore, we assume that any quantity depending on v is equal to zero

when v = oo.

THEOREM 2. Let assumptions of Theorem 1 be fulfilled and suppose ad-
ditionally that K satisfies Assumption 3. Then for any n > 3, p > 1,q >
ILR>1,D > 0,0 < v <w < oo,u € (p/2,0],u > q, § € (1,00)%,
g € [p,o0)? and any F C By a(D) NFyu(R, D)

?clglzR [fh(),f] < c® [ZH(U / 1[A u) A Ay (U,F)]dv

+oP Ag(v,F u)} —|—Cpn_%.
If additionally q € (p,o0) one has also

(2) Y op1lAL )
?}ggR [fh( ] < C [ZH(U)"‘/U P A(v, F,u) A Ag(v,F)|dv

+vp‘q} +Cyn e
Moreover, if q = co one has

iugR“[f(),f] < c® [1H<v>+ / WP~ Ag(v,F,u) A Ag(v, F)]dv
c v

Sl
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Finally, if H = H%,,, all the assertions above remain true for any § €

[1,00)? if one replaces in (3.1)—(3.2) Bj s, w(-) by B, #()-

19, It is important to emphasize that C® depends only on §,§, ¢, K, d,
R, D,u and q. Note also that the assertions of the theorem remain true if
we minimize right hand sides of obtained inequalities w.r.t §,¢ since their
left hand sides are independent of § and ¢. In this context it is impor-
tant to realize that C® = C(?)(5,.-.) is bounded for any 5 € (1,00)¢ but
C®@)(5,---) = 0o if there exists j = 1,...,d such that sj = 1. Contrary to
that C?)(5,---) < oo for any 5 € [1,00)¢ if H = H . and it explains in
particular the fourth assertion of the theorem.

20 It is worth noting that all bounds presented in the theorem are
heavily based on the result given in (5.39) of Section 5.2. This is L,-norm
oracle inequality on Fg (R, D) NBg 4(D). In particular, it does not require
Assumption 3 and it is established for any compactly supported K satisfying
Assumption 2.

3%, Note also that D, R, u,q are not involved in the construction of our
pointwise selection rule. That means that one and the same estimator can
be actually applied on any F C Up p 4y q Ba.a(D)NFgu(R, D). Moreover, the
assertion of the theorem has a non-asymptotical nature; we do not suppose
that the number of observations n is large.

49, As we see, the application of our results to some functional class is
mainly reduced to the computation of the functions B; SJF(-) j=1,....,d,
for some properly chosen s. Note however that this task is not necessary for
many functional classes at least for the classes defined by the help of kernel
approximation. Indeed, a typical description of ' can be summarized as
follows. Let A; : Ry — R4, be such that A\;(0) = 0,\; 1 forany j =1,...,d.
Then, the functional class is defined as a collection of functions satisfying

(3.3) th,f,jurj < \j(h), VheH,

for some 7 € [1, oc]. It yields obviously B, r(-) < A;(+) forany j =1,...,d,
and the result of Theorem 2 remains valid if we replace formally B r(-)
by Aj(-) in all the expressions appearing in this theorem.

In Section 6 (Proposition 2) we show that for some particular kernel K*,
the anisotropic Nikol’skii class N4 (3, E) is included into the class defined

by (3.3) with \;(h) = L;h”% whatever the values of 3,L and 7.

4. Adaptive estimation over the scale of anisotropic classes. Let
(e1,...,eq) denote the canonical basis of R%. For some function G : R — R!
and real number u € R define the first order difference operator with step
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size u in direction of the variable xj by A, ;G(z) = G(x +ue;j) —G(x), j =
1,...,d.

By induction, the k-th order difference operator with step size u in direc-
tion of the variable x; is defined as

Ak G(a) = Ay ARG () = S (1) () Auy Gla).

DEFINITION 1. For given vectors 8 = (B1,...,8q4) € (0,00)%, 7 = (r1,
cooyrq) € [1,00]%, and L = (L1, ..., Lg) € (0,00)* we say that a function G :
R? — R! belongs to the anisotropic Nikolskii class Ni g (ﬂ, L) if |Gllr; < Lj
forall j =1,...,d and there exists natural number k; > [; such that

|85, < L, eeR, Wi=1,..d

If 3 = B € (0,00),7; =1 € [1,00] and L; = L € (0,00) for any j =
1,...,d the corresponding Nikolskii class, denoted furthermore Ny 4(38,L),
is called isotropic. The following quantities related to the parameters of the
Nikol’skii class will be of the great importance:

2p5 (o) +1

1 _ ~—d  2pj(e)+] 1 _ ~d 2pj()+1 _ 1d B;
Bla) = 2=l B, w(a) = 2mg=1 g L) =1l Ly

Define also for any 1 < s < oo and « € [0, 1]

#o(s) =w(@)2+1/B(a)) —s, 7(s)=1-1/w(0)+1/(s5(0)).

4.1. Construction of kernel K. We keep Assumption 2 and enforced As-
sumption 3 by Assumption 4 below related to the following specific construc-
tion of kernel K used in the definition of the estimator’s family {J/”\H(), he
Hd} [see, e.g., Kerkyacharian et al. (2001) or Goldenshluger and Lepski
(2014)]. Let ¢ be an integer number, K : R! — R! be a compactly supported
continuous function satisfying [, K(y)dy = 1, and K € C(R'). Put

Kelw) = Siy () (D 11(2)),

and add the following structural condition to Assumption 2.
ASSUMPTION 4. K(z) = H;l:l Ke(z;), Vo € R4

4.2. Main results. Set 6, = L(a)n™'In(n), t(H) = d — 1 if H = H? and
t(H) = 0 if H = H{ . and let

isotr
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([ [In(n)]®, 0 (p) > pw(a);

v (n) V [In(n)]HE s (1) = peo(a):

b (EI) = In» ( )V[ll (n)]"*, o(p) = pw(a);
lng(n)v %a(p) =0;
{ 1, otherwise,

4.2.1. Bounded case. The first problem we address is the adaptive esti-
mation over the collection of the functional classes {Nﬁd (ﬂ, L) NFy(R) N
Boo d(Q)}EFERQ' As it was conjectured in Lepski and Willer (2017), the

boundedness of the function belonging to Ny 4 (5, E) NF4(R) is a minimal
condition allowing to eliminate the inconsistency zone. The results obtained
in Theorem 3 together with those from Theorem 2 in Lepski and Willer
(2017) confirm this conjecture. Define

1-1
e EE o) > pola);
B(o .
(4.1) pla) = %’ 0 < »a(p) < pw(a);
w #a(p) <0, 7(00) > 0;
#7 #a(p) <0, 7(00) < 0.

THEOREM 3. Let a € [0,1], £ € N* and g € Ly (R?), satisfying Assump-
tion 1, be fized. Let K satisfy Assumptions 2 and 4.

Z)Thenforanype(l ), Q>0,R>0,Ly>0, BE(OE] € (1,00)?
and L € [Lo,0)? there exists C' < oo, independent of L, such that
lim sup sup b, (Hd) 5;’)(0‘ Rp [fﬁH;f] <C,
n—00 ’

€Nz (B.L) NFg(R)NBoo,a(Q)
where p(a) is defined in (4.1).
2) For any p € (1,00), @ >0, R>0,Ly >0, B8 € (0,4, r € [1,00] and
L € [Lg,0) there exists C < oo, independent ofL such that:
lim sup sup b, (Hﬁsotr) (5 pla ") [f~
"7 feN, 4 (L) NFy(R)MBoo,a(Q)

] <C.

7 zsot

Some remarks are in order. 19. Our estimation procedure is completely
data-driven, i.e. independent of E, T, E, R, @), and the assertions of The-
orem 3 are completely new if a # 0. Comparing the results obtained in
Theorems 3 and 2 in Lepski and Willer (2017) we can assert that our es-
timator is optimally-adaptive if 3z, (p) < 0 and nearly optimally adaptive
if 0 < 74(p) < pw(a). The construction of an estimation procedure which
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would be optimally-adaptive when s, (p) > 0 is an open problem, and we
conjecture that the lower bounds for the asymptotics of the minimax risk
found in Theorem 2 in Lepski and Willer (2017) are sharp in order. This
conjecture in the case a = 1 is partially confirmed by the results obtained
in Comte and Lacour (2013) and Rebelles (2016). Since both articles deal
with the estimation of unbounded functions we will discuss them in the next
section.

20, We note that the asymptotic of the minimax risk under partially
contaminated observations, o € (0,1), is independent of a and coincides
with the asymptotic of the risk in the direct observation model, o = 0. For
the first time this phenomenon was discovered in Hesse (1995) and Yuana
and Chenb (2002). In the very recent paper Lepski (2017), in the particular
case ¥ = (p,...,p), p € (1,00) the optimally adaptive estimator was built. It
is easy to check that independently of the value of 5 and 7, the corresponding
set of parameters belongs to the dense zone. Note however that our estimator
is only nearly optimally-adaptive in this zone, but it is applied to a much
more general collection of functional classes. It is worth noting that the
estimator procedure, used in Lepski (2017), has nothing in common with
our pointwise selection rule.

39, As to the direct observation scheme, a = 0, our results coincide with
those obtained recently in Goldenshluger and Lepski (2014), when pw(0) >
#9(p). However, for the tail zone pw(0) < s¢(p), our bound is slightly better
since the bound obtained in the latter paper contains an additional factor

d
In? (n). It is interesting to note that although both estimator constructions
are based upon local selections from the family of kernel estimators, the
selection rules are different.

49, Let us finally discuss the results corresponding to the tail zone,
#4(p) > pw(a). First, the lower bound for the minimax risk is given by
[L(a)n~1]P(@) while the accuracy provided by our estimator is

d—1
In 7 (n)[L(a)n =" In(n)]P®.
As it was mentioned , the passage from [L(a)n=1]P(®) to [L(a)n =" In(n)]P(®)
seems to be an unavoidable payment for the application of a local selec-
tion scheme. It is interesting to note that the additional factor ln% (n)
disappears in the dimension d = 1. First, note that if @ = 0 the one-
dimensional setting was considered in Juditsky and Lambert—Lacroix (2004)
and Reynaud-Bouret et al. (2011). The setting of Juditsky and Lambert—

Lacroix (2004) corresponds to r = oo, while Reynaud-Bouret et al. (2011)
deal with the case of p = 2 and 7(2) > 0. Both settings rule out the sparse
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zone. The rates of convergence found in these papers are easily recovered
from our results corresponding to the tail and dense zones.

Next, we remark that the aforementioned factor appears only when aniso-
tropic functional classes are considered. Indeed, in view of the second asser-
tion of Theorem 3 our estimator is nearly optimally adaptive on the tail
zone in the isotropic case. The natural question arising in this context, is

d—1
whether the In 7 (n)-factor is an unavoidable payment for anisotropy of the
underlying function or not?

5%. We finish our discussion with the following remark. If o # 1 the as-
sumption f € Fy o (R, Q) implies in many cases that f is uniformly bounded
and, therefore, Theorem 3 is applicable. In particular it is always the case
if the model (1.2) is considered. Indeed f,g € &B(Rd) in this case, which
implies || flloo < (1 — )7 plloc < (1 — a@)7'Q. Another case is ||g|/cc < o0
and recall that this assumption was used in the proofs of Theorems 1 and 2
in Lepski and Willer (2017). We obviously have that

I£lle < (1= )@ + aRllg]loo] -
More generally || flloo < (1 —a) 1 (Q + aD) if f € Fyo(R,Q) and ||f x
9lloo < D. Since the definition of the Nikol’skii class implies that || f||,« < L*,
where 7" = sup;—; _q7j and L* =sup;_; 4 Lj, the latter condition can be
verified in particular if | g||; < 00,1/¢ =1 —1/r*. All saying above explains
why we study the estimation of unbounded functions only in the case a = 1.

4.2.2. Unbounded case, « = 1. The problem we address now is the
adaptive estimation over the collection of functional classes {Nﬁd (5, E) N
Fy.o00(R, Q)}E,F,IZ,R,Q' As we already mentioned, if additionally ||g||cc < 00
then Fy (R, Q) = Fy(R) for any @ > R||g|l and, therefore, in view of
Theorem 1 in Lepski and Willer (2017) there is no consistent estimator if
either p = 1 or »4(p) <0, 7(p) <0, p* = p. For this reason, later on we will

—

only consider the parameters 3,7 belonging to the set P, ; defined below.
Py = (0, oo)d X [1,oo]d \ {g,f’: #a(p) <0, 7(p) <0, maxj—y__47; < p}.
Set z(a) = w(@)(2+1/8(a))B(0)7(c0) + 1, p* = [max;—1,. 47| V p and let

1-1
e TEE, Fa®) > po(e);
%, 0 < 5 (p) < pw(a);
(42)  ela) = T(p)e()5(0) )
T #alp) <0, T(p7) > 0;
AT ) <0, 7(7) <0




ORACLE INEQUALITIES AND ADAPTATION 17

=0 s

and s, (p) = 0. Note also that »,(p*)/p* = —1if p* = oao

We will assume 0/0 = 0, which implies in particular

THEOREM 4. Let £ € N* and g € 1; (Rd), satisfying Assumption 1 be
fixed and let K satisfy Assumptions 2 and 4.

1) Then for any p > [minj—1 pj]~', R,Q > 0, 0 < Ly < Lo < 00,
(E,F) € PpiN{(0,4% x (1,00]%} and L € [Lo, Log)® there exists C < oo,
independent of I_:, such that:

lim sup sup b, (’Hd)_l&jg(l)Ré") []ff}l 2d fl1<c,
T N (B.L) Ny o0 (RQ) ’
where o(+) is defined in (4.2).
2) For any p > [minj=1 . pj]~", R,Q >0, 0 < Ly < Lo < 00, (B,r1) €
Ppi N {(0,4] x (1,00]} and L € [Lo, Loo) there ezists C' < oo, independent
of L, such that:

lim sup sup bn(q.[glsotr)fl 57;9(1)7%](;1) [J?ﬁ P f] <c
e fENr,d(ﬂ,L)ﬁngoo(R7Q) isotr

Some remarks are in order.
19. Note that ||g|j1 < 00, [|gllc < oo implies that ||g||2 < co and, therefore
the Parseval identity together with Assumption 1 allows us to assert that

9]0 <00 = p;>1/2, Vji=1,...,d
Hence, the condition p > [minj:L_._ Hj]_l is automatically checked if p > 2
and ||g]|co < 00. Also, it is worth noting that considering the adaptation over
the collection of isotropic classes, we do not require that the coordinates of
iZ would be the same. The latter is true for the second assertion of Theorem
3 as well. At last, analyzing the proof of the theorem, we can assert that

the second assertion remains true under the slightly weaker assumption p >
d(pr + -+ pa) ™t

20, The assertion of Theorem 4 has no analogue in the existing literature
except the results obtained in Comte and Lacour (2013) and Rebelles (2016).
Comte and Lacour (2013) deals with the particular case p =2, 7= (2,...,2)
while Rebelles (2016) studied the case 7= (p,...,p), p € (1,00). It is easy to
check that in both papers whatever the value of 5 and I, the corresponding
set of parameters belongs to the dense zone. Note also that the estimation
procedures used in Comte and Lacour (2013) as well as in Rebelles (2016), if
p > 2, (both based on a global version of the Goldenshluger-Lepski method)
are optimally-adaptive. They attain the asymptotic of minimax risks cor-
responding to the dense zone found in Theorem 1 in Lepski and Willer
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(2017), while our method is only nearly optimally adaptive. However, it is
well-known that the global selection from the family of standard kernel es-
timators leads to correct results only if 7 = (p,...,p) when the L,-risk is
considered, see, for instance Goldenshluger and Lepski (2011). On the other
hand, estimation procedures based on a local selection scheme, which can
be applied to the estimation of functions belonging to much more general
functional classes, often do not lead to an optimally adaptive method. Fortu-
nately, the loss of accuracy inherent to local procedures is logarithmic w.r.t.
the number of observations.

3%, Together with Theorems 1 and 2 in Lepski and Willer (2017), Theo-
rems 3 and 4 provide the full classification of the asymptotics of the minimax
risks over anisotropic/isotropic Nikolskii classes for the class parameters be-
longing to the sparse zone and, up to some logarithmic factor, belonging to
the tail and dense zones as well as the boundaries. We mean that the re-
sults of these theorems are valid for any fixed 3 e (0,00)% 7 (1,00]% and
Le (0,00)%. Indeed, for given B and L one can choose Lo = minj—y, g Lj,
Ly = maxj_q, qLj; and the number /, used in the construction of kernel
Ky, as any integer strictly larger than max;—; . 4 53;.

5. Proofs of Theorems 1-2.

5.1. Proof of Theorem 1. The main ingredients of the proof of the theo-
rem are given in Proposition 1. Their proofs are postponed to Section 5.1.2.
Introduce for any h € H¢

&n(x,h) = L0 [M(Zi —a,h) —E;M(Z; — 2,h)], z€R%

PROPOSITION 1. Let Assumptions 1 and 2 be fulfilled. Then for any
n>3 and any p > 1

() Juo Br{ subgepa [16 (0, B) | = Un (o, ) Jratcda) < Cpm™5;
(ii) fRdEf{SUP;;eHd [ﬁn(x, — 3Up (2 h)]i}ud(dw) < Cln~z;

(iii)  fpa Ef{ SUPy g0 [Un (2,

=
~

[MIS]

=

) — 4[?n(:n,ﬁ)]i}l/d(dx) <Cpn7a.

The explicit expression of constant C, and C’I’, can be found in the proof.

5.1.1. Proof of the theorem. We start by proving the so-called pointwise
oracle inequality for losses.
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Pointwise oracle inequality for losses. Let h € H and z € R? be fixed. We
have in view of the triangle inequality

~

Frn@ = F@)| < B = Frn@)] +
(5.1) + )f,;(w) - f(w)‘ :

~

f”(x)vﬁ(x) - fﬁ(x)

19, First, note that obviously fﬁ(:p)vﬁ(m) = fﬁvﬁ(x) () and, therefore,

~

H(I)vfz(x) - fﬁ(x) (x)) = ‘fﬁvﬁ(x) (z) — fﬁ(w) ()

Moreover by definition, ﬁn (:c, _') < ﬁ; (m,ﬁ) for any 77 € H®. Next, for any
ﬁ, 77 € H¢ we have obviously ﬁn (x, hV 77) < (7;; (:c, ﬁ) A [7;{ (x, ﬁ) Thus,

~

(5.2) Fitoni @) = Ty @)| < R(@) + 807 (2, B(x)).

Similarly we have

(5.3)

Fropir@) = Fal)| < Ry (@) + 805 ().
The definition of h(z) implies that for any k € H

Rz (@) + 803 (2. 5(x)) + Ry () + 803 (. ) < 2Ry () + 1607 (. F)
and we get from (5.1), (5.2) and (5.3) for any h € H

(5.4)

Fio @) = F(@)] < 2R5(2) + 160 () +

Fi@) = 1)
20, We obviously have for any h, i€ H?
| Frvs@) = T(@)| < [EpM (21— 2, hv i) — EpM (% - o,7)
|60 (2 v )|+ € (7).
Note that for any h € H¢
E;M(Z; — x,h) := / M (t — 2, 0)p(t)va(dt)
Rd

=(1-a) /RdM(t—x,ﬁ)f(t)yd(dt)—i—a/ M (t —2,h) [f % g] (t)va(dt),

R4
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in view of the assumption (1.1) imposed on the density p. Note that
(1-a) /Rd M (t —2,h) f(t)va(dt) + a /Rd M (t — x,h) [f * g] (t)va(dt)

= /Rd f(2) [(1 —a)M(z— =, H) + a/}Rd M(u,ﬁ)g(u — z+ x)vg(du) | vg(dz)

and, therefore, in view of the definition of M(‘, E), c.f. (2.1), we obtain

(5.5) EfM(Zy — 2,h) = . K:(z — 2) f(2)va(dz) =: Sz(x, f), VheH™
We deduce from (5.5) that
UEfM(Zl -z, hvV T_f) — ]EfM(Zl -, ﬁ)‘ = |Sﬁvﬁ(x’ f)— Sﬁ(l’, f)‘

and, therefore, for any ﬁ, 7€ HY

i@ = Fi@)| < [Squst@ £) - Sz, 1)
(5.6) +[€n (2, v )| + [ (2, 7))
30, Set for any h € H% and any z € RY
v(@) = supgeya [[&n(2,7)| = Un(z,7)]

wi(x) = sup [Un(az,ﬁ) - 4[7n(x,ﬁ)]+, wa(x) = sup [ﬁn(az,i_i) - 3Un(x,f_£)]+
heHd heHd
We obtain in view of (5.6) that for any h € H (since obviously i V 7j € H4
for any h,ij € H?)

(5.7) Rj(z) < Bi(x, f) + 2v(z) + 21 ().
Using the obvious inequality (sup,, Fo — sup, Go)+ < sup,(Fy — Go)+ get

(5.8) [(7; (2, E) - 30U, (, E)Lr < f,u?-I; [ﬁn(x,ﬁ) - Z’)Un(az,ﬁ)]+ =: wa(x)
eH?

We get from (5.4), (5.7) and (5.8)

~

i (@) — 1@ < 23, £) + 40(@) + 4w (o) + 48U (. )
+16ws(x) + ‘J?ﬁ(x) — f(2)].

It remains to note that
|F(@) = f(2)] < Bi(x, f) + |&a (2, 8)| < Bj(x, f) + Un (2, k) + v(2),
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and we obtain for any = € R?, putting z(z) = 5v(z) + 4w (z) + 16w (),
| fis) (@) = f(@)| < 2B2(2, f) + By(e, [) +49U;; (x,h) + 2(x), Vh € H.

Noting that the left hand side of the latter inequality is independent of h
we obtain for any z € R?

(5:9) | Ty (@) = fl@)| < inf {2B2(0. 1) + By(e, ) + 49U (. 1) } + 2(a).

This is the pointwise oracle inequality.

Application of Proposition 1. Set for any = € R¢
Ro(2) = infy_y {232(:5, f) + Bi(w, f) + 49U (=, E)}
Applying Proposition 1 we get from (5.9) and the triangle inequality

RO fgn 11 < ||Ball, +5[/ Ef{v(z)} ]1+4[/ Ep{w (z }p}

#16] [ Erfma@)’]” < [Ral, + G,

where C,, = 5(C), )P + QO(C’) The theorem is proved. []

1

P

N)

5.1.2. Proof of Proposition 1. Since the proof of the proposition is quite
long and technical, we divide it into several steps.

Preliminaries. We start the proof with the following simple remark. Let
M(t, l_i),t € R%, denote the Fourier transform of M(-, l_i) Then, we obtain

in view of the definition of M (-, ﬁ)
M(t,h) = K(th)[(1 — @) + ag(—t)] ', te R

19. Note that Assumptions 1 and 2 guarantee that M (-, i_i) el (Rd) N
Lo (Rd) for any heHl and, therefore,

1M R) | < m)~||pI (- ﬁ)Hp 1M (), = @m) 282 (-, )
Thus, putting M (h ) M H] w “L(hy A1) 7M@) we obtain vh € M4

(5.10) [|M (B, < Moo(B),  [[M(, !!2<M2Hh (hy A1),

in view of Assumptions 1 and 2. Here we have put M2 = [ (2m) d{5 1
Lot +Talk21a=1}] V1. Additionally we deduce from (5.10) for any h e He

(5.11) M (R} < M2M Hh (hyj A 1)~H(@),
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Let E(-,l_i) be either M(,l_i) or MQ(-,E) and let L (ﬁ) denote either
Moo(i_i) or Mgo(i_i)
We have in view of (5.10), denoting T'(h) = 3°7_,[1 + p;()]| In(h;)],

(5.12) LRV Lao(h) < M2ATH) | kel
Additionally, we get from (5.10) and (5.11)

(5.13) 1L£(R) || < MEMZEATP) Vi e 1.

Set o~ \/ Joa £2(t — 2, R)p(t)va(dt) and note that in view of (5.13)
(5.14) /R o B Pt = [|£ )2 < MEMETE, € He
Next, we have in view of (5.12)

(5.15) o (7Y || < Loo(R) < MZ2T,

20, Define for any = € R? and heH?
¢~ (, i_{) =n" Y0 [£(Z — =, i_i) ~EL(Z; -z, H)],
2 (w, ﬁ) = 3In(n) + (8p + 22)T'(h) + 2| In ({o* (, i_i)} Y {n_3/2ﬁ (ﬁ)}) E

VE(z, i_i) = ot (z, ﬁ) 2n~1z, (z, h) (4/3)n" 2y (z, h)ﬁ (ﬁ),
UL (2,7) = 0% (. ) /20 0 () + (4/3)n A () Los (7).
where remind A, (l_i) = 41n(Mo) + 61n (n) + (8p + 26)T'(h).

Noting that sup.cjqp [Inz] < |Ina[ V [Inbd| for any 0 < a < b < oo we
deduce from (5.15) z, (:1:, i_i) < A\ (ﬁ) for any = € R? and, therefore,

(5.16) VE(x,h) <U*(x,h), VheH

First step. Let z € R? and h € HY be fixed. Put b = 8p + 22. We obtain for
any z > 1 and ¢ > 1 by the integration of the Bernstein inequality

Ef{’CL (z, ﬁ)| —Von-lzo* (z, ﬁ) —(4/3)n" 2L (fi)}i
<2I(g+1)[ 2n—1o* (x, l_i) + (4/3)n" Lo (ﬁ)}qexp {2z},

where I' is the Gamma-function.
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19. Choose z = 2, (:L‘, E) Noting that for any n € N* and z € R?

1

2n~1z0 (x, }_i) + (4/3)n Lo (l_i) <3Loo (}_i)n_i
and taking into account that exp {—|In(y)|} <y for any y > 0, we get

B {[¢5(w h)| = VE (2, )},

—

<2 X 3T (g + D432 ()T ({0 ()} v {052 L0 (B })?
(5.17) < C’,gl)n_%_:ie(Qq_b)T(ﬁ) ({O‘L (z, l_i)} v {n_3/2£oo (ﬁ) })2
Here to get the second inequality we have used (5.12) and put C’él) =
2M24390 (g + 1).
Set X(l_i) = {w e R?: O‘E(ZL‘, H) > n_S/QEOO(E)}, 2\?(5) =R%\ X(ﬁ) and
later on the integration over the empty set is supposed to be zero.

Putting C’,(,2) = C,(,l)MQQMgo, we have in view of (5.16), (5.14) and (5.17)
applied with ¢ = p that for any h € H¢
p

(5.18) /X(E) Ef{‘g‘l: (a:, ﬁ)| —U~r (a:, fz) }il/d(da:) < C’1§2)n756(2p+4*b)T(h).

20, Introduce the following notations. For any i = 1,...,n set
(2, 1) = 1{|£(Z - 2.1) = EL(Zi — 2, B)| = 07 Lo () },
and define the random event D(ac,ﬁ) = {Z?:l v, (:U, H) > 2}. As usual,

the complimentary event will be denoted by D(ac, H) Set finally 7r(x, ﬁ) =
Pp{W(z,h) =1}.

We obviously have ‘Cﬁ (w, ﬁ) (x H) <3n 'Ly (E) <U* (ﬁ) and, therefore,

1.
D
(5.19) 1D(xﬁ) {I¢5 (@, h)| = U= (z, ) }" = 0.

Applying Cauchy-Schwartz inequality, we deduce from (5.19) that

- - 1 - - =
Ey{|C* (. R)] = U (@, B) Y < BF{[C5 (. )| = UF (2, 1)} By { D (2, 1) }.
Using (5.17) with ¢ = 2p and (5.12) we obtain for any x € QE(E)

N

(5.20) E;{|¢5(a,R)| - U (2, R) Y < Ofn="5 ™0 [P {D(a,R) } |,

1
where we have put CZ(JS) = [C’ézlj)] 2M2 and c, = 2p+2 — b/2.
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For any A > 0 we have in view of the exponential Markov inequality
Pr{D(w,h)} = Pr{ S0, Wi(w.F) = 2}
< e[ (e, B) +1—w(a, )] = e P[> — V(e ) +1]"
< exp{—2X\ +n(e* — V) (z,h)}.
Tchebychev inequality yields 7T(l‘ h) <n?L ( )[ ( )] and we get
P{D(z,h)} <exp{ —2A+n3L2(R) [05 (2, 7))} (* — 1)}, Vi e H .

Note that the definition of )E(i_i) implies n3L£2 (h) [cr (x, h)] < 1 for any
T € /'l_’(i_i) Hence, choosing A =1n2 — 21In {n3/2£g01 (}_i)aﬁ (x, }_i)} we have

P{D(x,h)} < (e2/AnSLA(h) [0 (2, 1)]!, Va e X(h).
It yields, together with (5.12), (5.14) and (5.20) and for any h € H¢

(5.21) /_(q) Ef{}CE(%E)\ _ Uc(ﬂc,ﬁ)}iw(dw) < 01(34)n § o(2p+10-0/2)T(h )’
X(h

where C’,§4) = 0123) (e/2)MS M3. Putting C’I(,E’) = CZSQ) + 01(34) and noting that
2p + 10 — b/2 < 0 we obtain from (5.18) and (5.21) for any h € H?

(5.22)/ Er{|¢ (e, )] — UL (2, 1)} va(da) < O e@riio=b/2T0),
Rd

3. Choosing £ = M and L., = M, we get from (5.22) and the definition
of b for any h € H¢

(5.23) / By {6 (2, 5)| = Un (2, B) ¥ va(de) < COn~5e-TH,
The first assertion follows from (5.23) with C), = C Zk:eZd e~ =11kl
Second step. Denoting x (, f_i) = {|o? (:U,h) -0 (:c,h)‘ — Up (2, h)}+,

o (@) = o™ (2, )y 20 Aa (R) + (4/3)n=" A (R) M2, (R),
and choosing £ = M? and L, = M2, we get from (5.22) for any h € H?

(5.24) / E{x(, k) va(dr) < Clg5)n_§e(2p+10—b/2)T(}_i)'
R4

Note that oM* (ac E) < ./\/loo(_’) (:U, E) and, therefore, for any = € R?
8 (2,7) < Moo (R)Up (2, h), Vh e HL
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This implies,

Zn_l)\n(ﬁ)&2(aj,ﬁ) < 2n_1)\n(ﬁ)02(3},ﬁ)+2n_1An(ﬁ)Mm(ﬁ)Un(x,ﬁ)
+2n7 N, (i_i)/\/loo (E) X (z, E),

where we have denoted x*(z, E) = M (f_i)x(x, ﬁ) Hence

[e.9]

(5.25) On(2,5) < Un (1) + /2000 (7) Mo (B) [Un (2, B) + (2, 7).

By the same reason

(5.26) U, (x, H) <U, (:c, E) + \/Qn_lx\n (H)Moo(ﬁ) [Un (a:, f_i) +x* (1’, ﬁ)]
Note that the definition of ﬁn (:L', 5) and U, (:E, E) implies that
(5.27) 2n_1)\n(ﬁ)/\/loo(i_i) < (3/2) min [ﬁn(w,ﬁ), Un(:v,f_i)]

Using the inequality +/]ab] < 27(|ay| + |b/y]), v > 0 we get from (5.25),
(5.26) and (5.27)

(A]n(:r, l_i) < (1 + \/3/72%- (3/4)y)Un(a:, ﬁ) + (2y)_lx* (m, ﬁ),
U (z, l_i) < (1+(3/4)y) Uy, (z, ﬁ) + (2y)" U, (z, l_i) + (2y) " Ix* (z, l_i)

Choosing y = 1/2 in the first inequality and y = 1 in the second we get for
any z € R and h € H?

(5.28) [ﬁn(:r,i_i) - 3Un(x,}_i)]+ < X*(x,ﬁ);
(5.29) [Un(x,f_i) - 4[7n(ac,i_i)]+ < X*(x,f_i).

Remembering that b = 8p + 22 we obtain from (5.28), (5.29), (5.24) and
(5.12) for any h € H?, denoting C, = Mng]gS).

(5.30) / B [Un (2, k) — 3Un (2, k)] va(dz) < C;n—ge—T(m;
Rd

630 [ Es[Un(e )~ 40 D) vatan) < Oy e T,
Rd

The second and third assertions follow from (5.30) and (5.31). ]



26 O.V. LEPSKI AND T. WILLER

5.2. Proof of Theorem 2. The proof of the theorem is very long and
technical and we break it on two parts, which in its turn are divided on
several steps. Introduce the following notations: ¢; = Mav/2D, ¢p = M

=73
a= {196[(61\/073) V (cacs)] }71,
where c3 = 2max {4In(Ms), (8p + 26) max;—1,__4[1 + uj(a)]}.

5.2.1. Preliminaries. Recall that for any locally integrable function A :
R? — R its strong maximal function is defined as

(5.32) M[A](z) := sup !

— [ A@®)dt, xeR%
HVd(H)/H ()

where the supremum is taken over all possible rectangles H in R% with sides
parallel to the coordinate axes, containing point x. It is well known that
the strong maximal operator A — 9[)\] is of the strong (t,t)—type for all
1 <t < oo, ie, if A € Lg(R?) then M[N] € L¢(R?) and there exists a
constant Ct depending on t only such that

(5.33) [MN]]], < CellAlle,  t € (1,09,

Let m[A] be defined by (5.32), where, instead of rectangles, the supremum is
taken over all possible cubes H in R? with sides parallel to the coordinate
axes, containing point x. Then, it is known that A — m[)\] is of the weak
(1,1)-type, i.e. there exists C; depending on d only s.t. for any \ € L;(R?)

(5.34) Vd{x  [mA) ()| > 3} < Ci YA, V5> 0.

The results presented below deal with the weak property of the strong max-
imal function. The following inequality can be found in Guzman (1975).
There exists a constant C > 0 depending on d only such that

d—1
Z/d{:v: |9M[N] ()] z;,} < C fra 'A(f)'{u <1n+ W;“) }dx, 3> 0,

where for all z € R, In;(2) := max{In(z),0}.

LEMMA 1. For any given d > 1,R > 0, Q@ > 0 and q € (1,00] there
ezists C(d,q, R, Q) such that for any A € By g(R) N Bq 4(Q)

v : [N (@)] =3} < C(d.a, R, Q7 (1+ 1)), vs>0.

The proof of the lemma is an elementary consequence of the aforemen-
tioned result and can be omitted.
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Recall also the particular case of the Young inequality for weak-type
spaces, see Grafakos (2008), Theorem 1.2.13. For any u € (1, co] there exists
C'q > 0 such that for any A € L (Rd) and A2 € Ly oo (Rd) one has

(5.35) A1 % Azlluoo < Cul[Arl[1l1A2]|u,00-

Let J denote the set of all the subsets of {1, ...d} endowed with the empty
set (). For any J € J and y € R? set y; = {y;, j € J} € Rl and we will
write y = (ys,y7), where as usual J = {1,...d} \ J.

For any j = 1,...,d introduce the d x d matrix E; = (0,...,ej,...,
where, recall, (ey, ..., eq) denotes the canonical basis of R%. Set also E[J]
>_jes Ej. Later on Eg = E[f] denotes the matrix with zero entries.

To any J € J and any A : RY — R associate the function

Ar(ys,25) = A= +EUJ](y - 2)), y.zeR%

with the obvious agreement A\; = X if J = {1,...d}, which is always
the case if d = 1. For any h € H% and J C {1,...d} set K} ,(us) =

[Tics h;llC(uj/hj) and define for any y € R¢
(K50 A () = Jain K5 5 (w5 = yp) My, wg)y g (dug),
where v 7 is the Lebesgue measure on RII. For any ﬁ, 7€ H? set

By o(x, f) = 1S54z, f) — Sz, f)|-

LEMMA 2. Let Assumption 3 hold. One can find k € {1,...d} and a
collection of indexes {j1 <Jo < ooe < jk} € {1,...,d} such that for any
z €RY and any f:RT = R

By @, f) < iy ( [‘KﬁVﬁ| ° bhjpf,jz]]l () + [\K}ﬂ ° bhjl,f,jz]Jl (3?));

By(e. f) < S || Kyl obngra] @) =

0)

The proof of the lemma can be found in Lepski (2015), Lemma 2. Also, let
us mention the following bound which is a trivial consequence of the Young
inequality and the Fubini theorem. If A € Ly(R?) then for any t € [1, o0]

(5.36) sup | {1650 ] [, < WA, ¥ & 7

To any J € J and any locally integrable function X : R? — R, we associate
the operator

1
(537 MmN () = s /Hu| A(t + B — 1])v7,(dt)
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where the supremum is taken over all hyper-rectangles in R/ containing
z; = (z4,j € J) and with sides parallel to the axis.

As we see M ;[A] is the strong maximal operator applied to the function
obtained from A by fixing the coordinates whose indices belong to J. It is
obvious that My[A] = M[A] and My ;[N = A

The following result is a direct consequence of (5.33) and of the Fubini
theorem. For any t € (1, 00] there exists Cy such that for any A € Lg (R?)

(5.38) sup HDJTJ[)\]Ht < G| Al
JeJ

Obviously this inequality holds if t = co with C, = 1.

5.2.2. Part I. For any h € He and any v > 0, let
B}_i(a f) = 232’(7.]0) + BE(?f)? A(Ev fa U) = {JB eR?: B}_{(:B:f) > 271“}7
Introduce for any v > 0 and f € Fy (R, D)
Av, f) = inf_g [Vd(A(ﬁ, fv) +v—2F3(ﬁ)};

A(v, f, u) = infzzg infﬁeﬁ(v,z) [Vd (.A(i_i7 fvv)) + Z—u];

Ap(v, fyu) = inf >0 infr g2 [[A(E,f,v) B (z, f)[Pva(dz) + vpz*U}.

Note that Ap(oco, f,u) = 0. Let K be a compactly supported function
satisfying Assumption 2. The goal of Part I is to prove the following bound.

For any n > 3, p > 1,9 > 1,R > 1,D > 0,0 < v < v < oo,u €
(p/2,00],u > q and any f € Fy (R, D) NBqgq(D)

RO Fayp /1 < D i) + /vvpl{A(v,f)AA(v,f,u)}dv

v

1

(5.39) (@, fow)|" + Gy

Here CV) is a constant independent of f and n. Its explicit expression can
be found in the proof of the theorem. We remark also that only this constant
depends on q. Since the risk of our estimator is independent of v,v > 0 we
can minimize the right hand side of (5.39) w.r.t. these parameters.

Auxiliary results. Let us prove several simple facts. First note that for any
n > 3 for any h € H

d
(5.40) An(R) < cs [m )+ 1n(hj)]] .
j=1
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Sl

Next, it is easy to see that for any any n > 3 and 7, he (0, 00)?
Fu(i) < Fa(R)[1(Va/ Vi) Guli) < Ga(R)1(Va/ V5 )

where I(v) = v™'(1 4+ Inv). Since 7 > h implies Vi > Vi and [(v) < 1 if
v > 1, we have

S

(5.41)  F(7) < Fu(R), Gu(7) < Gn(h), Vi, ke (0,00)

Then by (5.40) and the second inequality in (5.41), we have:

(5.42) sup Moo (1)

< e9e3Gy, (H)
qeEHL: T>h 3”1_[] 177J(773 A 1)”J( @)

Now let us establish two bounds for [|U}: (-, H) || co-

1%. Let u = co. We have in view of the second inequality in (5.10) for
any 77 € H?

o(w,7) < VDM ()|, < Mav DIy my

It yields for any z € R? in view of the first inequality in (5.41)

N|=

(nj A1)"HI(@) | vz e RY

(5.43) sup \/2n_1)\ (Mo?(z,7) < sup  c1v/esF(7) < ci/esFa(h )

FeH: iT>h FeH: iT>h
Then gathering (5.42), (5.43) and by definition of a, we have
(5.44) 1U5 (1) oo < (196a) " [En(R) + G (R)].

1%b. Another bound for ||U;(-, E) |loo is available regardless of the value
of u. Indeed for any 77 € H? in view of the first inequality in (5.10)

a(%ﬁ) < HM(,ﬁ)H < M H] 11 (77j A 1)7"1(0‘), Yz € R
It yields for any x € R? and any n > 3

sup \/2n—1/\n (7)o?(z, 1)
fEMH: 7>h

In(n) + 3%, [In(n 9
< sup V2c3My \/ = 1’ (JQJ < can
qeH: T>h fl_[] 1 77](773 A 1)H In (n)

Then gathering with (5.42) again, we have

U (- 1) loo < V2e3 Moo V (c2¢3)v/n/Inn Gy (R), Vh € HE.

MGy (R).
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Denoting b[b] = (b, .. .,b), we obtain from (5.2.2)

29, Let now u < co. Let us prove that for any 3 > 0, s € {1,u} and any
f€Fyu(R,D)

—

(5.45) Fillél]{HHU;(o,h)Hoo < li)leg }|U;L"(.7b

(5.46) Vg <:E eRY: sup U, (;U, 7, f) > 5> <cs [55_2F3 (ﬁ)]s,
TEH: ﬁ’zﬁ
where we have put L{g(‘,ﬁ, f) = 2n_1)\n(ﬁ)02(-,ﬁ) and D=1ifs=1 and

D=Difs=u. Indeed, if s = 1, applying the Markov inequality, we obtain
in view of the second inequality in (5.10) for any 77 € H?

(5.47) (3: eR?: (z,7, f) > 3) < 2(n32)71)\n(77) / o’ (z,7)vq(dz)

Rd
= 2(n5®) " A ()| M ()|
An (7)
T2y mi(nj A D =

Here we have put cg = 2M3Zcicsz and to get the last inequality we have
used (5.40). To get the similar result if s = u we remark that o2(-,77) =
M?(-,77) »p(-) and that M?(-,7) € L1(R?) in view of the second inequality

n (5.10). It remains to note that f € Fy (R, D) implies p € IB%EI d)(D) and
to apply the inequality (5.35).
It yields together with the second inequality in (5.10) for any 7 € H?

< 2Mj3(ng®) "

63 2F2( )

(5.48) va(z € RY: Uy (2,7, f) 2 3) < [c6CuDs 2 F2(7)]"
Denoting C =1 if s = 1 and C = Cy if s = u, we get from (5.47), (5.48)
yd<x eR?:  sup L{n(x,ﬁ, f) > 5> < [065'53_2]3 Z F,%S(ﬁ)
eH: ijh FeEHLT>h

It remains to note that since 7, h € He and 7> h we can write n; = €™ h;
with m; > 0 for any j =1,...,d. Putting m = (m4,...,mq) € N¢ the latter
result yields together with the first inequality in (5.41)

> ORE@<FER) Y (1 +ij) e STi1 M = e F25 ().

FeHL:T>h meNd

Thus, (5.46) with ¢5 = c7[cgC]® is established.



ORACLE INEQUALITIES AND ADAPTATION 31

3% Let cx > 1 be s.t. supp(K) C [—ck, ck]% We have Vh € (0, 00)?
|5 D] = | i K5t = ) f(E)a(dt)| < )| K| £1) ().

If h = (h,...,h),h € (0,00), the latter inequality holds with m[|f|] instead
of M| f|]. Thus,

(5.49)  sup |By(e, )] < 32ex) K|l f)2) + |f(2)], Ve € R,
heH

where we have denoted My = M if H = H? and My = m if H = H4

1sotr*

Moreover, we deduce from (5.49) and (5.45) putting 7% (z, f) = Bj(z, f) +
49U (-, k) that
(5.50) %Iellfﬂ | T;(2, )] < 3Q2ex) | K || f] () + | (2)].

Proof of 5.39. Put T(z, f) = inf;_y [T7(x, f)| and introduce C, = {z €
Re: T(x, f) > v},v > 0. For any given ¥ > 0 one has

(5.51) [T, NHIE < p/ov vp_ll/d(Cv)dv + /C |T(x, f)[Prq(de).

Note that the second term disappears if one chooses v = oo. Denoting
W, ={z e R?: 49U (z,h) > 27'v} we have for any h € H and v > 0

(5.52) va(Co) < va(A(B, £,0)) +va(Wo(h, f));

(5.53) |T(e, NPLe, (@) < 2|By(, N1y 0y + 98| U3 (2 F) [P 1o, (@)

(554 va(C) < waw € R 2 3(2ek) 1K oMl 1)) + £(2)] > ).

The last inequality follows from (5.50).

19 Set Ui (z,h,f) = sup  Uy(z,7, f). Noting that U (z,h) <
. ﬁﬁe%d: ﬁZE B
Ui (z, h, f) + (196a) ' G, (R) in view of (5.42), we get for any h € H(v)

(5.55) W, C {x eRY: AU (2, h) > 4_11)} = W,

Applying (5.46) with s = 1 we deduce from (5.52) that

va(Cy) < l/d(.A(E, f,v)) + 196%c50 2 F? (ﬁ), Vh € H(v).
Since the left hand side of the latter inequality is independent of h we get
(5.56) va(Cy) < max[1, 196c5]A(v, f).
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20, Let us establish the following bounds, where cqg is given in the para-
graph 2%b. below. For any u € [1,00] and v > 0

(5.57)  v4(Cy) < max[1, 51962, c5196** D a®"[{A(v, f) A A(v, f,u)}.

and for any u € (p/2, 0],
(5.58) / T (z, f)[Pra(dz) < max[2P, 98P¢y]A, (v, f,u), Vo > 0.
Co

2%. Let u = oco. Note that minimum over z in the definition of A(-, -, 00)
and A, (-, -, 00) is obviously attained for z = 2. Also, we remark that W, = ()

for any h € $(v,2) in view of (5.44). Thus, we deduce from (5.52) and (5.53),
since the left hand sides of both inequalities are independent of A

(5.59) v4(Cy) < A(v, f,0), /C I'T(x, f)|Pra(dz) < Ap(v, f,00).

This inequality and (5.56) ensure that (5.57) and (5.58) hold if u = co.

2%b. Let u < oco. Applying (5.46) with s = u, we obtain in view of (5.55)
vy (WU) < 051962“D“v_2“F7%“ (l_i) < 51962 Dug2u v Vh € (v, 2).

It yields together with (5.52)

(5.60) va(Cy) < max|[1, ¢5196°* D" |A(v, £, u).

This inequality and (5.56) ensure that (5.57) holds if u < oo.
What is more, we have in view of (5.42) and (5.55) for any h € $(v)

U . B) "o, < 22043 (B, £)[ "1,
Moreover, applying (5.46) with s = u, we have for any y > 0 and he (v, 2)
ud(ﬁy) < ¢51962u DUy~ 2uf2u (i_i) < ¢51962u DUy~ 2 (qu)2uz 7Y,
Hence, if additionally u > p/2, we have for any h € (v, 2)
/ |Us (2, 1) [Pva(da) < 2”p/ v’ va(Wy)dy

v

(0.9]
= 051962uD“a2u2pp1)2“z_“/ yP T2y = PV

v

This yields together with (5.53)

(5.61) /c |'T(x, f)|Pry(de) < max[2p,98p09]Ap(v,f, u).
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This inequality ensures that (5.58) holds if u < oc.

39 Recall that f € Fy(R) implies that f € By 4(R). Since additionally
J € Bga(D), q > 1, Lemma 1 as well as (5.34) is applicable and we obtain
in view of (5.54) Z/d(Cv) < c10v" M1 + [Inv)"™ for any v > 0. It yields for
any v >0and p>1

v

(562) p/q)plyd(cv)dy < Cllgpil(l + ‘lngy)p—lth(H)'
0

In the case of t(H) = 0 the last inequality is obvious and if t(H) =d — 1 it
follows by integration by parts. The bound (5.39) follows now from (5.51),
where the bound (5.62) is used when the integration is made over [0, v], the
estimate (5.57) for integration over [v, ] and the bound (5.58) with v = v.

5.2.3. Part II. In the subsequent proof ci,co,..., stand for constants
depending only on §,¢q, g,K,d, R, D,u and q.

19, We start with the following obvious observation. For any A : R —
R,,icRand J €J

(5.63) [KgoNs(x) < 2ec||Klloo) MM (z), VoeRY

Putting C1 = (2cx||K]|s0)? we get for any h, 77 € H? in view of (5.63) and
assertions of Lemma 2 that

d d
By () <2C1 Y sup My (b, 15] (), By f) < C1y_sup My (b, 1,5] (-
=1 7€3 =173
Thus noting that the right hand side of the first inequality above is inde-

pendent of 77, we obtain

d
(5.64)  Bj(z, f) <5C1 Y supMy[by, p5](z), Vo eRY vheH,
=173
Applying (5.38) with t = 0o, we have for any v > 0 in view of the definition
of J(h,v)

By(x. f) <5Ci| 3 sup M [bn, 1.4] (x) + > supl|9ny [b, 1]

J€J(hyw) J€J(hw)
<501 ) supMy by, 1] (@) +5C1 Y Bjsor(hy)
jeJ(hw) T jeJ(hw)
(5.65) < 5C, Z sup My [bn, 1.5] () + 47y, VfeF.

——~ Jed
jeJ(h,v)
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We obtain for any f € F, v > 0 and § = (s1,...,54) € (1,00)%, applying
consecutively the Markov inequality and (5.38) with t = s;,

Vg {A(ﬁ, f,U)} < Vd( Uses Ujej(fl,v){x : 5CL M [b, 1.4 () > (4d)_lv})
(5.66) <o Y vl e Y v [Bigs(n)]

jeJ(hw) jeJ(hw)

Noting that the right hand side of the latter inequality is independent of
f and the left hand side is independent of s, we get for any v > 0 and
5¢e (1,00)¢

(5.67) cfl sup{A(v, f) A A(v, f,u)} < Az(v,F,u) A Az(v,F).
feF

20, Note also that in view of (5.2.3), we have for any v > 0

(5.68) /,4 - Bz, f)|"va(da)

p

vg(dx) + e3vPry {A(i_i, 7, v)}

> supMy by, g5 ()
jej(ﬁ,v)

= [ 2 /A(;;,f,v)

For any v > 0 and j = 1,...,d, introduce A;(v) = A(H, f,v) NY;(v), where
Aj(v) = {ac eR?: sup ey My [bn,.7,5] () > (4001)*11}}.
Noting that in view of (5.2.3) for any v > 0 and any j € J(h,v)
Aj(v) C {x cRe: 5C ] Z ilégmj [bn, 1) () > v/8}
keJ(hw), ki

C {a: e R?: 50, Z 3u13mtJ [bhj,f,k] (x) > v/8} =: ,A*(ﬁ, fiv),
— JEJ
keJ(h,v)

sup My [bhj,f,j] (x) ‘pyd(dm) + vPuy {.A(f_i, 7, v) }] .

JeJ
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we deduce from (5.68) that for any ¢ € [p, 00)?

/A(ﬁ,f,u) | (z, ) ’pyd dz) < ¢4 Z / SupDﬁJ bh],f,j]( )’de(dx)

QI JEJ
jeT(hw) !

+cxvP [Vd {A* (fz, f, v)} + 1y {A(i_i, fa"U) }}
< cg Z P~ N

jeJ(hw)

(5.69) +esvP |:I/d {A* (ﬁ, /s U)} ez {A(l_i, f,v) } } .

sup My [bhgaﬁ ]
JeJ

It remains to note that similarly (5.2.3) for any 5 € (1, 00)?

va { A7 (R, £.0) } < er 30 (Byw)o ™ [b, 1]

jeJ

and to apply (5.38) with t = ¢; to the each term in the sum appeared in
(5.69). All of this together with (5.2.3), applied with § = ¢ yields for any
v >0 and 7€ [p,o0)?

ey 4q;j
/. gy B D) S c0 5 70 [B e (0)] "
" jeJ(hw)
Noting that the right hand side of the latter inequality is independent of f
and the left hand side is independent of ¢, the we get

(5.70) sup Ay (v, f,u) < cgvPAg(v,F,u), Vv >0, 7€ p, 00)<.
feF

The first assertion follows from (5.67), (5.70) and (5.39).
39. Remark that in view of (5.49) and (5.33) f € Bq (D) implies

(5.71) 1B5(-, )l < [32ex)IKl|%Cq + 1] D, Vh € (0,00)%,

lq <

where Cyq is the constant which appeared in (5.33). Hence for any v > 0 and
q € [p,0)

(572) /J;l(af’ ) ‘Bﬁ(x’ f)‘pyd(d.ﬁ) < 2q_pQ}p—qHBE(-7f)H3 < Cl()’Up_Cl_

Remind that H(v) # 0, H(v, z) # 0 whatever v > 0 and z > 2, see Remark
2. Hence, in view of (5 ( .72) for any f
u) <

Ap(v, inf,>o [clovp*q + z*“] = c1ovP 9.
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It remains to note that the right hand side of the obtained inequality is
independent of f and the second assertion of the theorem follows from this
inequality, (5.67) and (5.39).

4%, Since C = 1 we obtain in view of (5.71) for all f € Bu 4(D)
1Bz (-, [3(2cx)?(|K||%, + 1] D, VA € (0,00)%
It yields for any § € (1,00) in view of (5.2.3) if @ = 0o
s 5j
Loy e D) < t0 3 07 [Bas )]
o jeJ(hw)
Since the left hand side of the obtained inequality is independent of f and
the left hand side is independent of § we conclude that

Dl =

(5.73) sup A, (v, f,u) < c1oAs(v,F,u), Yo >0, §€ (1,00)%
feF

The third assertion of the theorem follows now from (5.67), (5.73) and (5.39).

59. We have seen (Corollary 1), that BE(-,f) < 28up,eqg<p B f) if
h=(h,...,h) € He,. Therefore by definition of B; (-, f):

isotr*

d

5.74) B#(, f) <5 sup Bp(-, f) <5 sup sup K ob
( ) h( ) neH:n<h 71( ) nGHn<h;JE ’ | Uf]] ()

where, remind 77 = (1,...,1) € HL .. We remark that (5.74) is similar to
(5.64) but the maximal operator is not involved in this bound. This, in its
turn, allows to consider 5 € [1,00)?. Indeed, similarly to (5.2.3) we have for
any v > 0, applying (5.36) with t = oo

(5.75) By(z, f) <5 sup Z 31;5) [| K] Obnfj] (z) +47 v, Vf € F.

We obtain for any f € F, v > 0 and § = (s1,...,54) € [1,00)% applying
consecutively the Markov inequality and (5.36) with t = s;
— S5
va (AR £.0)) < e Senng v [Bio e ()]
We note that the obtained inequality coincides with (5.2.3) if one replaces
Bjs, r(-) by B Giss r(+)- It remains to note that Bj s, r(-) < Bj,, r(+)- Indeed,

by ri =1 by ¢ ().
v (:L‘) ki)rgo hG’H:iElkpSth hufid (:E)
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Therefore, by the monotone convergence theorem and the triangle inequality
for any s € [1,00)

Bjsr(h) = SHP [bv,1,5lls = SUP hm H sup bZ,f,j
feF heH: e #<h<h
< sup klggo Z Hb;f,j = sup Z ht H Bj.r(v
JeE heM: e~k<h<h Fely,

The fourth statement of the theorem follows now from (5.67), (5.70), (5.72)
and (5.39). |

6. Proof of Theorems 3 and 4. In the subsequent proofc,cy,C,Cy, ..
stand for constants that can depend on g, Ly, Lo, @, R, 5, 7, d and p, but
are independent of L and n. These constants can be different on different
appearances. The proofs are based on the application of Theorem 3 and on
some auxiliary assertions presented below.

Let Joo ={j=1,...,d: rj = co} and put py = [sup,c7_ 7]V p, where
Joo 18 complimentary to J. Introduce

. = BiT(p+) . —
) € Joo, = ol € Joo;
00, J Gjoo, /837 i € Jo-

PROPOSITION 2. Let { e N*, p > 1 and K satisfying Assumption 4 be
fized. Then for any € (0, a4, €[, oo]? and L € (0,00)¢ one can find
C1 > 0 independent ofL such that Vh € H?

Bi
(62) BjTJ,Nrd(E,E) (hj) < Clehj], ] = 1,...,d.

If additionally T(p*) > 0 then
. < ) =1,...

(6 3) B] qu?d(ﬁ L) (h ) Cleh Vi 1, ,d,

At last, (6.2) and (6.3) remain true if one replaces the quantity B by B*.

The proof of the proposition as well as the proofs of technical Lemmas 3,
4 and 5 are put into Appendix.

The bandwidth’s construction presented below as well as auxiliary state-
ments from the next section will be exploited not only for proving Theorems
3 and 4, but also in the consideration forming Part II of this work. By this
reason we formulate them in a bit more general form than what is needed for
our current purposes. Recall that ¢ = (20d)_1 [ max(2cx, || Kelloo, [1Kell1)] -
and let L > 0 be any number satisfying

(6.4) L <1A(C{le) A L.
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6.1. Special set of bandwidths. Set for any r,s € [1, 00]

sw(@)(2+1/5(a))
W -, o€ [O, 1]

Recall that 6, = L(a)n~!Inn and introduce for any v > 0, s € [1, o]

7o (r,8) =

1 1 9 sw(a) 1 sw(a@)(2+1/B(a))
(65) ,r’] (1}, S) — (LL; )ﬁj {Cl_ 571} (sFw(@))Bjrj 4, B; (s+w(@)Bjr; ;
L 1 ) sv(a) 1 sv(a)(2+1/y(a))
(66) ’I’]] (v’ s) = (LL; ) Vi {Cl_ 6n} (stv(@)vja5 )4 (s+v(a))vja; ,
1. —d  2p(a)+1 1. d 2p;(a)+1
where 77(05) = ijl o ) ”U(a) T Z]:l Y595

The constant a > 0 will be chosen differently in accordance with some
special relationships between the parameters 3, 7, i, « and p.
Determine h;(-,s) and b;(-,s),j =1,...,d, from the relations

(6.7) hj(v,s) = max{heH: h<m;v,s)}, v>0;
(6.8) hj(v,s) = max{heM: h< ﬁj(v,s)}, v >0,
and set f_i(-,s) = (hl(-,s), ... ,hd(-,s)) and 6(',5) = (hl(-,s), .. .,f)d(-,s)).

6.2. Auziliary statements. All the results formulated below are proved
in Section 7. Let

g @) w(a)(41/B(a)
3(0) = 2(a26,) TN we 1o,

and remark that 3(-) = 2 if u = oo. Note also that
(6.9) 3(v) >2, Yu> (a‘%,ﬂm =:v.
Introduce the following notations: p(o) = minj—y, g4 pj(c),
X = g~y = Tt 52 ¥ = gk — k= e 52
Recall that z(a) = w(a)(2+ 1/8(«))B(0)7(c0) + 1 and define

DY — PN CLCOLO]
(6.10) v = (a7%8,) T IR@FE@ v = (a7 %5,) @Fe@/s

Set u* = [~7(00)B(0)]7t if 7(0c0) < 0 and let u* = oo if 7(c0) > 0. Put
finally y = u* V p* and Zy (o) =Y — [X + 1]y ! + 1/u.

ProrosITION 3. Let 5, 7, Lo, Lo, [, a and p be given. Assume that
Le [Lo, Loo)?. Then,
1) there ezists a > 0 independent ofE such that for all n large enough
h(v,1) € H(v), Yo € [v,1],
2) there exists a > 0 independent of L and u > 1 such that h(v,u) €
$(v,3(v)) for all large n if either T(c00) > 0 or Zy u(a) > 0, 7(p*) > 0.
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Recall that v — 0,n — o0, is defined in (6.9) and introduce

I S _Y+l/u
(611) V1 = (a_z(sn) 1*U/W<0)+1/5(0>’ V3 = (a_25n) Tr(u)\/O’

where 7(u) = [1/w(0) — 1/u][1 + X] — 1/5(0)[Y 4 1/u]. Define also

uw(1)
(612) vV = Vl{.,.(p*)>0} + v21{7’(p*)§0}7 Vo = (Cl_zdn) > (p¥,u)(w(D)+u) |

Note that vi — oo,n — oo, if oo > u > u* Vv p* (it will be proved in
Proposition 4 below). However v; = 1 if u = co. As it is shown in the proof
of Proposition 3, formulae (7.12), v < v for all n large enough. Also vg —
00,n — 00, if s (p*,u) < 0. At last vg — oco,n — o0, since w(0) > w(1).
Moreover vg = oo if 7(u) < 0. Introduce finally

v, 1], p* = 00

Tu(a) =

[

[v,vi], a#1, p* < oo;

[v,V], a=1, p* <oo, Zyula)>0;
[

’U7V3]) o = ]-7 p* < o0, Zy,u(a) <0.

PRrROPOSITION 4. Let E, 7, Lo, Loo, i, « and p be given and let Le
[Lo, Loo]?, u € [y, 00]. Then, there exists a > 0 independent of L and u such
that for all n large enough h(v,u) € $(v,3(v)), v € Zy(w).

In the current paper we will use the statements of Proposition 3 and 4
only with u = co. In this context we remark that s, (-) = s,(-, 00).

We finish this section with the following observations which will be useful
in the sequel.

LeEMMA 3. For any u € (1,00] and « € [0, 1]

(6.13)  Zyu(a) >0, 7(p*) >0, = 2(e)/w(a) —14+2/u>0;
(6.14)  Zyu(a) >0, 7(p*) <0, = s,(p",u) <0;
(6.15)  3,(p*,u) <0, 7(p*) >0, = z(a)+w(a)/u > 0;
(6.16) 7T(0c0) >0o0r Zyu(a) >0,7(p*) >0, = z(a) +w(a)/u>0;
(6.17)  pl@)+1l/u-1/y>0 = Zyu(a)>0.

Set r(a) = 1—1/w1(;14/rpl/6(a) A Zﬂﬁ(go)‘zrl. If 5¢,(p*) > 0 one has

(6.18) ola) =r(a), pla) =r(a)Aw(e)/pl.
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If »24(p*) < 0 one has

(6.19) ole) = r(a) A [T(p)ﬁz;ﬁm) Lrpr)>0y + w(a)ii(pf;*/p) 1{f(p*)§0}]§
(6.20) p(a) = r(a) A [Wl{f(m)m} + nga)l{T(oo)<0}:|'

6.3. Several bounds. Let us collect some bounds for several terms appear-
ing in Theorem 2 and used in the proofs of Theorems 3 and 4 simultaneously.

LEMMA 4. For any v € [v,v] UZx ()

A;(v,Nﬁd(g, I_;),oo) < Cléﬁ(a)v_“’(o‘)gﬂ/ﬁ(a)), Vo € Too(a);
RN _w(a) w(e o
Ar(oNea(B. D) € Coi™ o S NTHET | v e v, o)

If additionally T(p*) > 0 the following inequality with ¢ defined in (6.1) holds
R w(@)7(p)B(0)
va(j'(VaNﬁd(Bv L)7 OO) < CQ(Sn e

19. In view of the first and the second bounds from Lemma 4 and the
definitions of v and w, choosing v = v, we get

v
(6.21) / WP [A(v,Nra(B, L), 00) A Ar(v,Njg (B, L))] dv
v
el w(e)(@+1/8(a)
S c4 |:6TLZ)(O<)+1XP7 w(a)+1 ]_{%a(p)>pw(a)}
(@) w(a)(241/6(a) —w(a a
0 T ) cpuo(ayy F O PP @CHBE Ty

w(a)

oR@gp@EH/B@) 4 (n) (&W 1 e ) =pio(e)}

+5;;<a>1{%a(p):0}>} = Ayt @@ B
After elementary computations and taking into account (6.18), we obtain
(6.22) A, < esb? (H)OP(@) | A, < es5b? (H)oP2(®),

These bounds are not surprising because o(a) = p(«) if s, (p) > 0.
1

i
20 Choosing v = v, we obtain lg(v) < by~ TI/B@) (lnn)t(H),
which yields by (6.18), (6.19) and (6.20):

(6.23) Ui (v) < c1b2 (H)OPAD) | f(v) < 16 (H)6R@),
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6.4. Proof of Theorem 3. Furthermore F = Ny 4 (E, E) NFy(R)NBoo a(Q)-
Since Fg(R) NBoo a(Q) C Fy (R, D) with D = Q[1 — o+ g1}, Theorem
2withu=o00,q=00, D =Q[l —a+alg|i]VQ is applicable with F = F.

19, Consider the case 7(c0) < 0. Choose ¥ = 1 and remark that the
statements of Propositions 3 and 4 hold for any v € [v, ©]. Indeed, it suffices
to note that Zoo () 2 [v,D] := [v, 1], because vi,va,vg > 1 and v > 1 if
7(00) < 0,7(p*) > 0,Zy () > 0 since in this case v > 1 by (6.16). Then
we can apply all the bounds obtained above, in particular we get from the
first inequality of Lemma 4

(6.24) Ar(1,N7g(B,L),00) < C1A1(1) < 604 < cgbl (H)oLA(),

since w(a) > pp(«a) in both considered cases in view of the second equality
in (6.18) and of (6.20). Applying the third assertion of Theorem 2, we obtain
from (6.21), (6.22), (6.24) and (6.23)

1

sup R [, f1< O(er +ea+ 5+ co)h (B < erby (),
feF o,

and the assertion of Theorem 3 follows in both considered cases.

29, Consider the case 7(c0) > 0.

Choose v = v and remark that the statements of Propositions 3 and 4
hold for any v € [v,]. Indeed, 7(c0) > 0 implies v < 1 in view of (6.16)
and, therefore, [v,v] C Zo (). We deduce from (6.21), (6.22), third bound

in Lemma 4 and (6.23), applying the first assertion of Theorem 2 that

w(a)7(p)B(0) 1

(6.25)  supRP (g, f1 < Clesdn " +(es+ Cﬁ)bﬁ(H)égp(a)} g
feF

This completes the proof of Theorem 3 in view of (6.20).

6.5. Proof of Theorem 4. In the following we assume p* < oo, since p =
oo implies by definition of the anisotropic Nikol’skii class that Nz d(ﬁ , )
Beo,d(Loo). Hence, the results in that case follow from Theorem 3 since
o(a) = p(a) when p* = oc.

Moreover, we remark that the imposed condition p > [minj—q . p; ]
implies Zy o (a) > 0 in view of (6.17) proved in Lemma 3. This, first, makes
the second assertion of Proposition 3 applicable in the case 7(p*) > 0. Next,
it allows (recall that p* < oo and a = 1) to rewrite Zs(1) appeared in
Proposition 4 as Z(1) = [v, V].

19. Consider the case 7(p*) > 0.

Taking into account that L € [Lo, Lso] we remark that in view of Nikol’skii
(1977) [Theorem 6.9.1, Section 6.9] Ny (5, L) C By a(coLeo), where cg is

-1
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independent of L. Thus, Theorem 2 is applicable with u = co, q = p* and
D = ¢gLsoVQ. Choose v = v and remark that the statements of Propositions
3 and 4 hold since v = v. The assertion of the theorem is obtained from
(6.21), (6.22), third bound in Lemma 4, (6.23), (6.19) and the first assertion
of Theorem 2 by the same computations that led to (6.25).

20, Consider the case 7(p*) < 0. Since Zy () > 0 we have 3 (p*) < 0
in view of (6.14) of Lemma 3. This in its turn implies that p* > p in this
case because we consider only class parameters belonging to P, 7. Since
the definition of the anisotropic Nikol’skii class implies that Ny g4 (5, E) C
By 4(Loo), we assert that the second assertion of Theorem 2 is applicable
with u = 00, q = p* and D = Ly V ). Choose v = v and note that
vV = vy in the considered case. Thus, we deduce from (6.21), (6.22), (6.23)
and (6.19), denoting F = Ny 4(5, L) NFy (R, Q),

w(1)s (p,00) v (p—p™)

®)7 W)= 500 p o) | sty ]
supR{P ) ] < Ceadn T+ (ea + co)bh ()0 + 8,707 |
€
and the assertion of the theorem follows in this case. Theorem 4 is proved.

7. Proofs of Propositions 3 and 4. Without further mentioning we
will assume that n is large enough to provide a=24, < 1.

LEMMA 5. For any E, 7, i, p>1 and a € [0,1] the following is true.
-1
1/y(a) = 1/8(a) = [1(00)B(0)]  [1/w(a) — 1/v(a)].
7.1. Proof of Proposition 3. We start the proof with several remarks

which will be useful in the sequel First, obviously there exists 0 < T :=
(ﬁ A p) < oo independent of L such that

(7.1) lim sup sup  sup
N0 4,e{0,1} s€[1,00] vE[v,1VV] j=1

- {|1n<hj<v,1>>>+\ln <hj<v,s>)\} o

Inn

Next, for any s € [1,00] and any v > 0

d
n o o w@)  2s—w(a)/B(a)
71—1 #7;(0,5) “1=2p(0) 21 Ew) (a725,) 5@y stelo)
n
Jj=1

(7.2) = 2L_ﬁa21;23_1(v).

1) Let us proceed to the proof of the first assertion. First we remark that
foralln >3



ORACLE INEQUALITIES AND ADAPTATION 43

(7.3) h(v,1) € (0,1)¢, Vv e [v,1].
Indeed for any v > 0 we have since L < Ly,

s w(a) _ w(a)(2+1/B(e)) _
(7.4) ﬁ?ﬂ"] (’U, 1) < (a—25n) THw(a) "9 1fw(a) . 7€ Tso-

Therefore, for any v € [v, 1] one has in view of the definition of v

g w@) | w(a)(@+1/8(a)) o
7 (0,1) < (0726,) Ty T <1 e T,

Note that for any j € J

1 1
n;(v,1) = (LL;lv) fi <wfi <1, Vo < 1.
and the proof of (7.3) is completed since h;(-,1) < n;(-,1) by construction.

Set Ty = [T + 2] 225 “f(a)L_ﬁ and remark that in view of (7.1),
(7.2) and (7.3) for all n large enough and any v € [v, 1]

(T+2)Inn _ T, L7 Inn
Ty (hy(v, 1)) 7 nTT (30, 1)) 4
ToL7 Inn
n H;lzl (7~7j(7)7 1))1+2uj (@)

Here we have taken into account that h;(v,s) > e‘lnj(v, s). Since

Gn(h(v,1)) <

_2 2@ 2-w(a)/B(a)
= TpaTFe@ Sty THw(@)

(7.5)

_2 el 2-w(@)/sa) 2
ThaTFel@ § v el <Tpa*v & v 2>V,

denoting a = \/55/70 we assert that
Gn(ﬁ(v, 1)) <av, Yovelv,1].

The first assertion is established.
2) Before proving the second assertion, let us make several remarks.

19. For any u € [1, 00| the following is true.

1
(7.6)  m(viu) = (LL;'V)%, j € Joo;
1 w(a)T(p+)B(0) B
(77) ?’] (V7 u) = (LLJ—l) v (a725n) vjl2(a)+w(a)/u] , j c \.700

The equality (7.6) follows directly from the definition of 7;(v,u) since, re-
mind v; = f§;,q; = 00 if j € Jx. Thus, let us prove the equality (7.7).

0 uv(a) _uu(e)(2+1/5(e)) _
n/% (v,u) = (LL; )P (a726,) s vP* T wbe V) € Jo.
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Here we used that g; = p4 for any j € Jso. Using the definition of v we get

v(0) | w(a)T(00)5(0) v(@)(2+1/7())
0% (v,u) = (LL;")"* (a726,) wse et [pe— TG

for any j € Jo Using the definition of z(a) we obtain

o w(a) | w(@)7(0)B(0) _ w(@)@2+1/y(e)) | _ @(@)7(0)B(0)p+
A= utv(a) + z(a)tw(a)/u [p:t u+tv(a) } - z(a)tw(a)/u

PR [14w(e) /u—w(a)r(c0)B(0){ 1/7(a)~1/8(a) }]
(uto(a) (z(a)Fw(a)/u) :
We obtain applying Lemma 5

A = @(@)7(0)60)p+ | wv(a)w(a)[l/s+1/v(e)] _ w(@)7(p+)B(0)ps
z(@)+w(a)/u (utv(@))(z()+w(a)/u) z(@)+w(@)/u -

Thus, (7.7) is established.
20, Next, let us prove that

(7.8) b(v,u) € (0,1]%, Vu e (1,00].

If Joo # 0, which is equivalent to p* = oo, the definition of v implies that
v <1 for all n large enough, since 7(p*) = 7(c0) > 0 and in view of (6.16).
We deduce from (7.6)

1
hi(v,u) <7;(v,u) = (LL;'v) % <vPi <1, Vj € Tu
and (7.8) is proved for any j € Jo.
It remains to note that 7(py) > 7(p*) since p* > pi and therefore, if
7(p*) = 0 we have h;(v,u) < 7;(v,u) <1, for any j € Js and all n large
enough in view of (6.16), (7.7) and since LLj_1 < 1. Thus, (7.8) is proved.

3%, For any u € (1, 00| one has

d
—1— . _ w()T(00)B(0)/B(a)+1
(79) a2, [] 7 M vow) < T @) (072,) T e
Jj=1

d
@10) a2 [[a v < TO) ()
j=1 1+2p, () 1H2p;(a)
where T'(a) = _ inf H (LLj_l) % H (LLj_l) N
Le[LoLool? je 7. €T

Indeed, we have in view of (7.6), (7.7) and the definition of v

w(a)7(p4)B(0) w(a)T(0)B(0)
~1+2p (a _ _ +
H;{l:l . H; ( )(V’u) > T=1(a) (a726,,) @@/l F B @)=t +w(@)/

d - L ) w(a)7(p4)B(0) 4 w(@)r(0)B(0)
HJZI TIJ (V, u) 2 T— (0) (a— 677/) Y4 (0)[z(e)+w(a)/u] ' Boo(0)[z(a)+w(a)/u] ,

1 _ H2p(@) 1 _ _ 142p(a)
where we have put B(@) Zjejoo B 7 yxla) Zjejoo el Note

that for any « € [0, 1]
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7(p+) 7(00) (1+2p(@))7(r)) 7(00) _ 7(00)
ra@) T Ble) = i€ By T Be(@) = B@ T

and (7.9) and (7.10) are established.

49, Simple algebra shows that for any u € [1, oo

_ w(e)7(0)B(0)/B(a)+1
(725, v (v,

1
w(e)B(0)’

and we deduce from (7.9) for any u € (1, 00| (recall that 3 = 2 if u = 00)

(7.11) 7 (v w) < 2T (a)av T (v).

||::]&

Let us also prove that for any u € [1, 00| and all n large enough

1
(7.12) v>vi=(a725,) TR = 5(v) > 2

The latter inclusion follows from (6.9). Indeed, if 7(c0) < 0 then v > 1 > w.
If 7(00) > 0 then in view of (6.16)

we)r()BO) _ 1 _ Ltw(a)/u <0
a)re(@/u ~ F/A@) Eere@ul7E@] <D

so v > v. Note at last that for any u € (1, o0]

w(a)7(u)B(0)
(7.13) Vi (v) = 2(a26,) S@ el

5% Let us proceed to the proof of the second assertion. Choose a? <
a*T(a)/(4Tp) < 1. We get from (7.1), (7.9) and (7.11) similarly to (7.5)

Toon
~ 142 (a
H;'l 1 (nj(VM)) 2w

27 1a?v? 7 (v).

F2(h(v,u)) < < 2TT Ha)a*vZ3 H(v)

(7.14)

IN

Thus to prove the assertion all we need to show is that h(v,u) € H(v), ie.
Gn(ﬁ(v, u)) < av. Let us distinguish three cases.

5%. Let 7(00) > 0. We remark that the definition of v in this case yields
v <1 for all n large enough and we obtain from (7.11) and (7.12) that

(7.15) S H{1 #5(9 (y u) < T (a)av.

Then we have in view of (7.1), (7.8), (7.9) and (7.15) similarly to (7.5)
Todn

~ 1420 (a

[12, (@ (v,w)) 2@

< ToT Y a)a®v < av.

(7.16)  Gn(h(v,u)) <
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5%. Let 7(c0) < 0,7(p*) > 0 and a # 1. Then by imposed assumption
u < u*, and, therefore, 7(u) > 0. We get from (7.13), (6.16) and (7.14)

(7.17) Gn(E(V,u)) = Fg(f;(v,u)) < d’v < av.
5%. Let 7(c0) < 0,7(p*) > 0, a = 1. We have as previously
G2 (i < (T+2)Inn (T+2)lnn
( (u)) -, H;-lzl (h] (V, u))1+2uj(a) n H;l:1 hj (V, u)
_ _ T(0)a 26,
(7.18) < 21T Y (1) Tya'v?3 7 (v) [A}
’ oY ¥ H;l:1 nj(v, u)

Here we have used (7.11) and put 77 = T-1(0)L~Y5©) Our goal now is to
show that for any u € [1, 00] and all n large enough

d
(7.19) T(0)a 2603 (v) [[ B (v,w) < L.
j=1

In view of (7.10) and of the definition of 3(-) in order to establish (7.19) it
suffices to show that z(1)/w(1)—1+2/u > 0. Since we assumed 7(00) < 0 and
7(p*) > 0, the required results follows from (6.13). Thus, (7.19) is proved.
Then choosing a such that Tp(27~(1)T1)"/?a® < a, we obtain from (7.18)
and (7.19) that

Gn (H(v, u)) < To(2TY(a)T1)Y?a?v < av.

for all all n large enough. The second assertion is proved. ]

7.2. Proof of Proposition 4. We start the proof with several remarks
which will be useful in the sequel.
19, Let us show that for all n large enough

(7.20) h(v,u) € (0,1]%, Vo € Ty(a), Yu>y.

In view of the definition of 7;(-,u),j =1,...,d,

s ) uw(o) _uw(@)(2+1/B(a)) _
(7.21) ﬁfﬂ” (v,u) = (LL; )7 {a=26, }nrete o urel@) | j e Ja

Therefore, for any v € [v, 1] one has, taking into account that L < Ly,

Bir; B uw(e) q_ uw(a)(2+1/5(a)) S
7O (o) < {a2a, y iy ST S e g

It remains to note that v > v for all n large enough and, therefore,

(7.22) n;(v,u) <1, j € Joo, Yo € [v,1]NZTy(e).
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We also have in view of the definition of n;(-,u),j =1,...,d,
1
n;(v,u) = (LL; ') % <1, j € Ju,
for any v < 1. This together with (7.22) proves (7.20) in the cases when
Zu(a) = [v,1]. Noting that p* < oo is equivalent to Jo, = (), we deduce from

(7.21) forany v > 1 and any j =1,...,d

. ww(@) . uw(e)(2+1/8(e) uw(a) .
77’]@;7"] (U,u) < {a—z(sn}quw(a) oF T utw(o) < {a—25n}u+w(a)v—%a(p u)

Thus, for any v > 1, j =1,...,d and for all n large enough

o Birs B o) o
(7:23) 77 (0,0) < 1 e ayz0y + {0728} 7@ 0@ 1L o),

where we denoted v=viifa#land v=vifa=1.
Let « = 1,p* < 00,7(p*) > 0. Then v = v and we have for any j =

1,...,d and v € [1,v], using the definition of v,
uw(l) (0% ww(1)7(0)B(0) PrT(p*)w(1)
{a*zdn}“ﬂ%l) 2(D)Fw(1)/u — {a725n}z<1>+w<1>/u — 0, n — oo,

in view of (6.15). Hence, (7.20) follows from (7.23) in this case.
Let @ = 1,7(p*) < 0. Then v = vy and we have for any v € [1, va] in view
of the definition of vo

~B;T; ~Bjrj ) U‘TT% —s1(p*u) _ -
T]] (’U,ll) ST’] (Vz,u)— {Cl 5%} Vy _17 j_1>7d
and, therefore (7.20) follows from (7.23) in this case.

Let o # 1,u < oo. First we note that 7(c0) < 0 and u >y imply
1-—u/w(0)+1/8(0)=1-u+ur(u) <l-u+ur(y) <1l-u<0,
since either y = p* that is equivalent to 7(p*) < 0 or y = u* and then
T(y) = 0. Thus vi — oo,n — oo and, therefore, in view of (7.23) for any

v e [l,vi] and j =1,...,d one has

g B _uw(a) s (p*
775]” (0,0) < L prwy>0) + {0720, } 2@ vy =W W o)

Note that 1 —u/w(0) +1/8(0) = 30 (p*,u)[1/u+ 1/w(0)] — (u —p*)[1/u+
1/w(0)] and, therefore

o (p* ) uw(0) —520(p*,0) —25 " ure®
T 2 ey = Vi < {ame, )0,

It remains to note that if 7(co) > 0 then u* = oo and, therefore u = oo. It
implies vi = 1 and Zy(a) = [v,1] and this case has been already treated.
This completes the proof of (7.20).

20, Remark that there obviously exists 0 < S := S(g, 7 /l’,p) < o0
independent of L such that

d

lim (Inn)™' sup sup  sup Z ’ In (hj(v,u))} =S.

n—00 a€e{0,1} u€ll,oo0] vELy(a) =1
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Hence, in view of (7.20) one has for all n large enough and v € Zy(«)

d
(120) Fu(fo.w) < 8+ nTan [] (o) #*)
j=1

d
(7.25)  Gu(h(v,w)) < (S+2)n "nn ] (hj(v,w) 7.
j=1

Taking into account that hj;(v,u) > e_lﬁj(v,u) and setting Sp = [S +

1
2] 251 1 LTFD we obtain from (7.2) for any a € [0, 1] and v € Zy, ()
d
(7.26) (S +2)n " n(n) [ (hy(v,5)) 72 < 2550%0%57 1 (v).
j=1

From now on we choose a < a/(25p) < 1. It yields in view of (7.24), (7.26)
(7.27) F? (fi(v,u)) < a*v?37 (v), Yo € Ty(a).

39. Since (7.27) holds, to finish the proof of Proposition (4) all we need to
show is that Gy, (h(v,u)) < av,Vv € Zy(c). Let us distinguish three cases.

3%a. Let p* = oo or a # 1,u = oo. First we note that in these cases

Zu(a) = [v,1]. Next in view of the second inequality in (7.24), (7.20), (7.26)
and (7.27) we obtain for any v € Z,,(«)

S+2)1
< y ( + ) nTi+2M.(a) < a2v23—1(v) < av.
n Ty (Ry(v,a))

(7.28)  Gn(h(v,u))

To get the last inequality we have used that a < 1, 3(-) > 2 and v < 1.
3%. Let a # 1,p* < 0o,u < co. We have in view of (7.25) and (7.26)

Gy (h(v,u)) < a®v?%37(v), Yo € Zy(0).

Here we have also used that uj(oz) = 0 for all j. Simple algebra shows
uw(0) u—w(0)—w(0)/B(0)
that v3 ' (v) = {a 720, }vF@y O , u # oo, and since u — w(0) —

w(0)/5(0) > 0 for any u > u*, the result follows from

SUDy ez, (0) V3 (V) = vz~ (vi) = 1.
3%. Let a = 1,p* < oco. For any v € Zy(1) we have in view of the second
inequality in (7.24) and (7.26), denoting S = So L1/,
(S+2)Inn (S+2)Inn

a1, (hy(o,w) 24 n T, (hi(v,w)

G (h(v, ) <

(7.29)

IN

d
Sia?a?v?3 7L (v)a=2, H ﬁ;l(v, u).
=1

Our goal now is to show that for all n large enough
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(7.30) sup a 20,3 " n; (v,u)
’UEIu(].) H J

Denoting P(v) = a= 26,3 1 (v) H;l 1M, (v,u) we easily compute

1 9 2uw(1)(Y+1/u) 2uw(1l)m(u)
(7.31) Pw)=2"Ha"%6,} O p wred | oy > 0.
It yields obviously

d
(7.32) sup a 20,37 (v Hﬁj—l (v,u) < max [P(v), P(¥)],
’UEIu( )
where v € {Vv,vg}. We deduce from (7.31) that for any u € [1, 0]
IR = V7S VI

(7.33) P(v)=2""{a"%6,} 275 =0, n— oco.

3%1. Consider the case Zy (o) > 0. Here v = V.

If 7(p*) > 0 then v = v. Moreover y = u* since u* = oo if 7(c0) > 0 and
T(u*) = 0if 7(c0) < 0. Hence 2(1)/w(1) —1+42/u > 0 in view of (6.13) and

we have in view of the definition of v
uw(1)(1/w()— l/w(0)+2/U)+ uw?(1)7(c0)B(0)7 (1)

(7.34) P(v)=2" 1{(2 n} w(D+ [uta(D][=(a) Fw(a)/d] |
Note that,
w1 (1 (1)=1/w(0)+2/w) , we()7(e0)BO)r(u)
(D tu t o0 re(D/a]
w01/ w@r(e) _ 4 w)[l-1/u]
=1 - 0eom ~ mienm =1 T 20temm > 0

To get the last inequality we have used that

1- 28>0 & 2(1)/w(l) —1+2/u>0.

Thus, we conclude that P(v) < 1, for all large n, which together with (7.33)
implies (7.30) in the considered case.
If 7(p*) < 0 then v = v and moreover y = p*. Also, s (p*,u) < 0

thanks to (6.14) of Lemma 3. We have in view of the definition of vg
wo)A/w@)—1/w(0)+2/u) | [uw(1)]? 7 (w)

(7.35) P(vy) =2"Ha"%5,} w(DFu L wutw(D)?

After routine computations we come to the following equality

uw(1)(1/w()=1/w(0)+2/u) | [uw(D)]?r(u) 2uw(1)p*[Y—(X+1)(y)*1+1/u] > 0.

w(l)+u s (pru)utw(Z 1 (p0)[utw(1)]

Hence, P(v2) < 1 for all n large enough, which together with (7.33) allows
us to assert (7.30) in the considered case.

39c3. Consider the case Zy u(a) < 0. Here v = vg. If m(u) < 0 when
vz = oo and obviously P(V3):O. If w(u) > 0 then P(V3) = 1 in view of
(7.31) and the definition of v3. This completes the proof (7.30).

Finally in the case 3%c, choosing a < 1/1/S1, we deduce from (7.29) and
(7.30) that for all n large enough G, (ﬁ(v, u)) < /Staav < av,v € Zy(1).
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8. Appendix. Proof of Proposition 2. In view of Lemma 5 in Lepski
(2015), if 7(p*) > 0 then

(81) Nﬁd(/ga E) - N(j’,d(’?? CQE)7

where ¢o is independent on L. Note also that v < Bjforany j=1,...,d.

19, Let (7?, 5’) be either (5, F) or (’7, (j’) and without further mentioning
the couple (57, q_’) is used below under the condition 7(p*) > 0. We obviously
have for any heH

bh,£,5(%) = $UPpers nen | Jp Ke(w) [f (& + uhej) — f(x)]v1(du)|
= SUPpeH: h<h ‘ fR Ke(u) [Auh,jf(x)]’/l(du)‘-
For j =1,...,d we have

Jre Koo(w) A F (@) (du) = i S50, (O)( 1)”1%/6@(%) [Apu i ()] (du)
1)t lfR’CZ )i 1(Z)(_1)i+€[Aizh,jf(x)]yl(dz)

=(— 5_1 fR Ko(z [Aih] f(:c)}yl(dz).
The last equality follows from the definition of the ¢-th order difference
operator determined in Definition 1. Hence, for any j € J. we have in view
of the definition of the Nikol’skii class (remind that v; = §;,7 € Jx)
bn,f,5llc < Ljsuppey: h<n h;rj Jz |Ke(2)|12[™ 1 (d2).
This yields for any h € H

(82) h) < Clehﬂ—j7

B .o
j:oozN’F,d (187L) (
and the first and the second assertions are proved for any j € J.

Let j € Joo. Choosing k from the relation eX = h (recall that h € H), we
have for any = € R¢

bh,1.j(x) = supg<x | Je Ke(2) [Aiek’j f()] V1(dz)‘
=: limy, oo SUPj<j<k ‘ Jz Ke(2) [Aiek f(x)]ul(dz)’.

Using monotone convergence theorem and the triangle inequality
[Bnp 5, =l oo supicparc || fr Ke(2)[AL ; FO)]m(d2)][,

< Zlk(:—oo H fRICZ(Z [Aiek f()]yl dZ Hsj'

By the Minkowski inequality for integrals [see, e.g., (Folland 1999, Section
6.3)], we obtain

Hbv,f,jHSj < Zz:—oo fR ’ICZ |HAzek stj Vl(d2)7 Jj=1,...,d.
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Taking into account that f € Nf’d(ﬁ, E) and (8.1), we have for any h € H
and j =1,...,d,

k
83 sl < | [ @I Pn@]| 3 ¢ <aznm,

k=—o00
This proves the first and the second assertions for any j € Jno.
20 Set F = Nﬁd(ﬁ E) and recall that

B;,sj,F(h) 1= SUP feF D heH: h<h H e Ke(u) [f (x + “hej) - f(fv)] Vl(d“>Hsj

< SUp e Zhe%: h<h th,f,szj'
Hence, the third assertion follows from (8.2) and (8.3). ]

Proof of Lemma 3. Note that
2(a) +w(@)u = w(@)(2 + 1/8()BO)r (") + 1 — w(a) 2+ 1/8(a) (")
Fw(a)/u = w(@)(2+ 1/8(@)BO)r(p*) — (7)1 (1 + w(a)/w)a (", ),
and (6.15) follows. On the other hand we have
z(a)/w(e) — 14 2/u= (2+2X)B(0)7(c0) +2Y +2/u

and (6.13) is checked if 7(c0) > 0 since X, Y > 0. If 7(c0) < 0 and 7(p*) > 0
then we note first that necessarily u* > p* since 7(u*) = 0 and 7(+) is strictly
decreasing. Hence y = u* and we have

2(a)/w(e@) —1+2/u=2{Y — (X + 1)y '+ 1/u} = 2Zy (o) > 0
and (6.13) is established. Let us prove (6.14). We obviously have
%a(p*,U)(u-F)W(a)) =2[Y — (X +1)/p* + 1/u] + 7(p*) — 1+ 1/u.

p*uw(«a

If 7(p*) < 0 then necessarily y = p* and, therefore, for any u > 1

7o (p*,u)(u+ w(a))
pruw(a)

= —2Zyu(a)+7(p")—1+1/u<0,

since we have supposed that Zy (o) > 0.

Let us prove (6.16). If 7(co0) > 0 then z(a) > 1 and (6.16) follows. If
Zy w(a) >0, 7(p*) > 0 then (6.16) follows from (6.13) since u > 1.

It remains to prove (6.17). If a # 1 (6.17) is trivial because pu(a) =Y =
X =0. If @ = 1, noting that r; < p* <y for any j =1,...,d, we have

Y~ X 410y~ 4 1uz a1 - 7)) - 1y + 1/u> (1)~ 1y + 1/u

and (6.17) follows. To get the last inequality we have used that 7(u*) = 0
and that 7(-) is strictly decreasing, so 7(y) < 0. []
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Proof of Lemma 4. First we remark that h;(-,1) = h;(-,00) = h;(-,00) <
a
(LL;")%, j € Jwo. Then, we get from (6.2) and (6.4) for any j € Ju

hj(v,1)) = h;(v,00))

B eia(30) (
)(h (v,00)) <cv, Yo >0.

B ool (5.L) (
jooNgq(B.L
It yields in particular that for any v > 0
(84) J(Rh(1,1),0) 2 Tnos I (A(v,00),0) 2 Toe, I (5(1,00),0) 2 Tnx,
Thus, putting

d
= Z U*TJL;J' [hj(v, 1)]rjﬁj + v %(Inn/n) H )i 2ms (),
j€Ts0 j=1
we obtain in view of (6.2), Propositions 3, 4, (8.4) and the definition of
h(-;s),s € {1,000} that for any v € Z(«) and v € [v, 1] respectively

(85) AF(U,NRd(g, E), OO) S Cl Z ,U—’I‘ij] ( )] Jﬁ]
j€Joo
< Cy0v(@)ymw(@)2+1/6(a),

oL wl@)  y(a)(241/8(a))
(8.6) Ar(0,Nzq(B,L)) < CyAg(v) < Csdy' @ o7 wl@

To get (8.6) we have used that for all n large enough and all v € [v, 1]
Fo(R(v,1))) < Co(lnn/n) TT5_, (hj(v, 1)) =2,

where C5 is independent of L. This follows from assertions (7.1) and (7.3)

established in the proof of Proposition 3. The first and second assertions of

the lemma follow now from (8.5) and (8.6) respectively.

Moreover, if 7(p*) > 0 we get in view of (6.3), Propositions 3 and (8.4)
w(a)7(p)B(0)
VPA#(v,Nrg(B,L),00) < C1 Y v LY [b(v,00)]"" < Cpy @
]EJoo
and the third assertion of the lemma is established. [ |

Proof of Lemma 5. Note that

1) — 1/8(0) = 1/72(a) = 1/f(0) = Sz 5 [r(r)) f7(p) — 1]
= [BO)7 ()] Tiez S5 /ry — 1/p2)
= [r(p)B(0)] " [1/w(a) = 1/(Bx(a)pa)]-

Moreover, in view of the latter inequality
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Hw(a) = 1/v(a) = 1/w(a) = 1/(p£yx())
= 1/w(a) = 1/(p+Bx(a)) — [r(p)BO0)p=] ' [1/w(@) — 1/(B(a)p=)]
= {1 [rp)8(O0)p=] "} [1/w(0) — 1/ (Bx(a)p)].
Note that 1 — [7(p+)B(0)p+] = 7(00)/7(p+) and the lemma follows. &
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