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Abstract

Null hypothesis significance testing is often criticized because attaining statistical significance does

not necessarily imply that the posterior probability is low relative to to the prior probability. That

discrepancy between significance testing and Bayesian hypothesis testing occurs whenever the statistical

power is low.

However, if both the significance level and the power are small, then the Bayesian model would assign

a low prior probability to the observation that the data achieved statistical significance. That conflict

between the model and the data may indicate that the model needs revision. More formally, if the

achieved significance level is sufficiently small while the posterior probability is insufficiently small, then

the model will fail a prior predictive model check, being found inadequate for inference and decision

purposes.

That result leads to a simple way to calibrate a p value by transforming it into an upper bound

on the posterior probability of the null hypothesis for any Bayesian model that would pass the prior

predictive check. The calibration may be calculated from a prior probability of the null hypothesis and

the stringency of the prior predictive check without more detailed Bayesian modeling. An advantage

of an upper bound as opposed to the usual lower bounds is that it justifies concluding that the null

hypothesis has a low posterior probability.

Keywords: hypothesis testing; model checking; objective Bayes factor; p value calibration; relative belief

ratio; reproducibility crisis



1 Introduction

The mounting opposition against null hypothesis significance testing ranges from warnings about misusing it

(Wasserstein and Lazar, 2016) to its outright banning from journal publication (Trafimow and Marks, 2015).

The most trenchant criticisms come from supporters of the likelihood principle, especially Bayesians.

Example 1. Regarding a 5-sigma test associated with the discovery of the Higgs boson, O’Hagan (2012)

remarked,

Five standard deviations, assuming normality, means a p-value of around 0.0000005. . . . Rather

than ad hoc justification of a p-value, it is of course better to do a proper Bayesian analysis. . .

. We know that given enough data it is nearly always possible for a significance test to reject the

null hypothesis at arbitrarily low p-values, simply because the parameter will never be exactly

equal to its null value. And apparently the LHC has accumulated a very large quantity of data.

So could even this extreme p-value be illusory?"

Hypothetically, the discovery could well be illusory with very high probability, for a traditional Bayesian

analysis with strictly positive probability of a simple null hypothesis (one with all of its mass at a point in

hypothesis space) and a diffuse alternative hypothesis can yield a very high posterior probability of the null

hypothesis in spite of the low p value (Lindley, 1957). N

That phenomenon of a high posterior probability of the null hypothesis relative to its prior probability

in spite of a very low p value is called the Jeffreys-Lindley paradox; see Cousins (2017) for a review. The

root of the paradox is exposed by a normal model that approximates many more complex Bayesian models

and that Held and Ott (2016) and others have used to calibrate p values.

Example 2. Consider a normal random variable X of unit mean and unknown standard deviation θ. The

null hypothesis is H0 : θ = 1, the alternative hypothesis is H1 : θ = 1.1, and the observed value of X is x = 3,

which implies that the two-sided p value is 0.003, just under α = 0.005, the significance level recommended

by Benjamin et al. (2017). However, even when reducing the observation that X = x to the observation that

p (H0;X ) ≤ α, the posterior probability of H0 is not necessarily very low compared to its prior probability.
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Rather, Bayes’s theorem says the posterior odds of H0 is

Prob (H0| p (H0;X ) ≤ α)

Prob (H1| p (H1;X ) ≤ α)
=

Prob (H0)

Prob (H1)

Prob (p (H0;X ) ≤ α|H0)

Prob (p (H0;X ) ≤ α|H1)
=

Prob (H0)

Prob (H1)

α

power (α)
, (1)

which is the product of prior odds of H0 and the Bayes factor, where power (α) is the statistical power, the

probability of the observation that p (H0;X ) ≤ α conditional on H1. In this case, power (α) = 0.11. If the

prior odds is 10, an empirically supported default (Benjamin et al., 2017), then the posterior odds is about

10 (0.005/0.1) = 1 : 2 by equation (1), and thus Prob (H0| p (H0;X ) ≤ α) ≈ 1/3. N

Applying generally, equation (1) reveals two facts relevant to the relationship between posterior proba-

bility and the p value. First, the Bayes factor measures the posterior odds relative to the prior odds and

thus, indirectly, the posterior probability relative to the prior probability. Second, the Bayes factor increases

with α and decreases with power (α). Putting both facts together, observing a p value less than a very low

significance level is compatible with a relatively high posterior probability if the statistical power is low. That

effect of power is illustrated graphically in Trafimow (2003), which records much of the reasoning behind the

p-value ban (Trafimow and Marks, 2015).

On the other hand, when both the significance level and the power are low, Prob (p (H0;X ) ≤ α) is also

low, for

Prob (p (H0;X ) ≤ α) = Prob (H0)α+ Prob (H1) power (α) ,

which means the Bayesian model behind power (α) did a poor job predicting the observation that p (H0;X ) ≤

α. Thus, when a null hypothesis achieves a very low p value and yet not a relatively low posterior probability,

there may be substantial disagreement between the model and the data, suggesting that the model be revised

in the direction of the data. The underlying principle is to use models suitable for inference and decision

making that are reasonably consistent with the data. That principle is often formalized in terms of using

prior predictive p values to check Bayesian models for how well they predict the data (e.g., Micheas and

Dey, 2003).

A simple way to perform such a prior predictive model check requires little more information than a p

value that tests H0, a prior probability of H0, and the stringency of the check (Sec. 2). That check supports

the intuition that null hypotheses with very low p values tend to have relatively low posterior probabilities

unless the Bayesian model is inadequate as a predictor of the observation that p (H0;X ) ≤ α (Theorem 1).
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Some corollaries for calibrating the p value appear in Section 3.

Implications for the practice of both Bayesian and frequentist hypothesis testing without setting a fixed

significance level are discussed in Section 4. Its p value calibration provides an upper bound of the posterior

probability of H0 instead of the lower bound provided by the methods reviewed in Held and Ott (2018). A

small upper bound has the advantage that it enables the conclusion that H0 is improbable in light of the

data, whereas a small lower bound would only warrant the conclusion that H0 could be improbable in light

of the data (Sellke et al., 2001; Bickel, 2018c).

2 Defense of significance testing on the basis of Bayesian model

checking

Let X denote a random sample from the probability density function fθ for a θ in a set Θ of possible

parameter values. A Bayesian model M is a pair (π, {fθ : θ ∈ Θ}), where π is a prior distribution of θ (Hill,

1990; Bickel, 2015). In short, X ∼ fϑ and ϑ ∼ π under model M , where ϑ is the true value of the parameter

as a random variable. M says the observed sample x is a realization of X . PM will stand for the joint

probability distribution of X and ϑ according to M .

For a θ0 ∈ Θ, H0 stands for the null hypothesis that ϑ = θ0, and H1 for the alternative hypothesis that

ϑ 6= θ0. PM (H0) and PM (H1) abbreviate PM (ϑ = θ0) and PM (ϑ 6= θ0), respectively.

The function p (H0; •) has these properties:

1. The random variable p (H0;X ), conditional on ϑ = θ0, is uniformly distributed between 0 and 1, that

is, p (H0;X ) ∼ U(0, 1) given that X ∼ fθ0 .

2. The random variable p (H0;X ), conditional on ϑ 6= θ0, is strictly stochastically less than a U (0, 1)

random variable.

It follows that p (H0; x) is an observed p value for testing H0 versus H1. While the following results are

stated for simplicity as if p (H0;X ) ∼ U(0, 1) were exact, they hold approximately for approximate p values,

including those for which p (H0;X ), conditional on ϑ = θ0, converges to U(0, 1) in distribution.

Similarly, a prior predictive p value for checking the model M is approximately distributed as U (0, 1)

under M , that is, given that X ∼ fϑ and ϑ ∼ π. Such a quantity may be constructed by calibrating p (H0;X )
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in the same way that posterior predictive p values are calibrated; see, for example, Hjort et al. (e.g., 2006)

and Zhao and Xu (e.g., 2014). Toward that end, let FM denote the cumulative distribution function (CDF)

of p (H0;X ) given that X ∼ fϑ and ϑ ∼ π. Unless PM (H0) = 1, FM is not the CDF of U (0, 1). However,

since FM (p (H0;X )) ∼ U(0, 1) under M , the random variable FM (p (H0;X )) is a prior predictive p value

for checking M and is appropriately written as ppred (M ;X ). The corresponding observed prior predictive p

value for checking M is ppred (M ; x) = FM (p (H0; x)).

If the p value for testing H0 is sufficiently low and yet the posterior probability of H0 is sufficiently high,

then the Bayesian model fails the model check based on the prior predictive p value.

Theorem 1. If p (H0; x ) ≤ α, then ppred (M ; x) ≤ γ for every γ ∈ ]0, 1] such that

PM (H0| p (H0;X ) ≤ α) ≥
PM (H0)

γ
α. (2)

Proof. For any γ ∈ ]0, 1] satisfying equation (2),

PM (H0)

γ
α ≤ PM (H0| p (H0;X ) ≤ α)

=
PM (H0)PM (p (H0;X ) ≤ α|ϑ = θ0)

PM (p (H0;X ) ≤ α)

=
PM (H0)F M (α|H0)

PM (H0)F M (α|H0) + PM (H1)F M (α|H1)
,

where F M (•|H0) and F M (•|H1) are the CDFs of p (H0;X ) conditional on ϑ = θ0 and ϑ 6= θ0, respectively.

(The asymmetry is intended, for no p (H1;X ) is necessary.) Therefore, by the definition of ppred (M ; x ), by

p (H0; x) ≤ α, and by p (H0;X ) ∼ U(0, 1) conditional on ϑ = θ0,

ppred (M ; x) = FM (p (H0; x))

= PM (H0)F M (p (H0; x) |H0) + PM (H1)F M (p (H0; x) |H1) (3)

≤ PM (H0)F M (α|H0) + PM (H1)F M (α|H1)

≤
PM (H0)F M (α|H0)

PM (H0)α/γ
=

α

α/γ
= γ.
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Example 3. Returning to Example 1’s p (H0; x ) ≈ 5×10−7, make the conservative choices PM (H0) = 10/11

and α = 5× 10−6. By Theorem 1, any Bayesian model M for which

PM (H0| p (H0;X ) ≤ α) '
10/11

5× 10−3
5× 10−6 ≈ 10−3

would have a prior predictive p value less than γ = 5× 10−3. N

3 Calibration of significance testing on the basis of Bayesian model

checking

While the calibrations of this section are stated in terms of a significance level α, that level need not be fixed

but can be optimized for the data, as will be seen in Section 4.

Corollary 1. If p (H0; x) ≤ α for an α ∈ ]0, 1] and ppred (M ; x ) > γ for a γ ∈ ]0, 1], then

PM (H0| p (H0;X ) ≤ α) <
PM (H0)

γ
α. (4)

Proof. According to Theorem 1,

p (H0; x) ≤ α and ¬

(

PM (H0| p (H0;X ) ≤ α) <
PM (H0)

γ
α

)

=⇒ ¬
(

ppred (M ; x) > γ
)

. (5)

Since p (H0; x) ≤ α and ppred (M ; x ) > γ by assumption, equation (5) can only be true if equation (4) is

true.

Two upper bounds that do not depend on PM (H0) are also available: one on the relative belief ratio,

and the other on the Bayes factor. If p (H0; x ) ≤ α , the relative belief ratio (Evans, 2015) favoring H0 over

H1 under model M is

RM (H0| p (H0;X ) ≤ α) =
PM (H0| p (H0;X ) ≤ α)

PM (H0)
.

Whereas the posterior probability quantifies the degree to which the data set as evidence for H0 is sufficient

for a conclusion about H0, the relative belief ratio quantifies the relevancy of the evidence to whether or not
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H0 holds (Bickel, 2018a). The next result is an immediate consequence of Corollary 1.

Corollary 2. If p (H0; x) ≤ α for an α ∈ ]0, 1] and ppred (M ; x ) > γ for a γ ∈ ]0, 1], then

RM (H0| p (H0;X ) ≤ α) <
α

γ
.

Similarly, if p (H0; x) ≤ α , the Bayes factor favoring H0 over H1 is

BM (p (H0;X ) ≤ α) =
PM (p (H0;X ) ≤ α|H0)

PM (p (H0;X ) ≤ α|H1)
.

Like the relative belief ratio, the Bayes factor quantifies the relevancy rather than the sufficiency of the

evidence (Lavine and Schervish, 1999). It has the same prior-free upper bound.

Corollary 3. If p (H0; x) ≤ α for an α ∈ ]0, 1] and ppred (M ; x ) > γ for a γ ∈ ]0, 1], then

BM (p (H0;X ) ≤ α) <
α

γ
.

Proof. By Corollary 1,

PM (H0)α/γ

1− PM (H0)α/γ
>

PM (H0| p (H0;X ) ≤ α)

PM (H1| p (H0;X ) ≤ α)
=

PM (H0)

PM (H1)

PM (p (H0;X ) ≤ α|H0)

PM (p (H0;X ) ≤ α|H1)

∴
PM (p (H0;X ) ≤ α|H0)

PM (p (H0;X ) ≤ α|H1)
<

PM (H1)

PM (H0)

PM (H0)α/γ

1− PM (H0)α/γ
=

PM (H1)α/γ

1− (1− PM (H1))α/γ

=
PM (H1)α/γ

1− α/γ + PM (H1)α/γ
=

1

1 + 1−α/γ
PM (H1)α/γ

=
1

1 + γ−α
PM (H1)α

≤
1

1 + γ−α
α

=
1

γ/α
=

α

γ
.

To use the corollaries to calibrate the p value p (H0; x), their condition that ppred (M ; x ) > γ needs to

be consistent with p (H0; x) and PM (H0).
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Theorem 2. Consider a PM (H0) ∈ [0, 1], a p (H0; x) ∈ ]0, 1], a γ ∈ ]0, 1], and a conditional probability

distribution PM (•|H0). There is a conditional probability distribution PM (•|H1) that satisfies ppred (M ; x) >

γ if and only if it also satisfies these equivalent constraints:

γ < 1− (1− p (H0; x))PM (H0) (6)

PM (H0) <
1− γ

1− p (H0; x )
. (7)

Proof. By equation (3), an PM (•|H1) such that ppred (M ; x) > γ exists if and only if

γ < PM (H0)F M (p (H0; x ) |H0) + PM (H1)F M (p (H0; x) |H1)

= PM (H0) p (H0; x) + (1− PM (H0))F M (p (H0; x ) |H1)

and thus if and only if a β ∈ [0, 1] exists such that

γ < PM (H0) p (H0; x) + (1− PM (H0)) (1− β) .

That assertion of existence is equivalent to

γ < sup
β∈[0,1]

PM (H0) p (H0; x) + (1− PM (H0)) (1− β)

= PM (H0) p (H0; x) + 1− PM (H0) ,

which is equivalent to constraint (6) and thus also to constraint (7).

Each constraint has a different purpose. Constraint (6) prevents setting γ so high that no Bayesian

model can pass the check without lowering its PM (H0). On the other hand, constraint (7) prevents using a

PM (H0) that is too close to 1 with a corollary’s upper bound based on a given value of γ.

7



4 Implications for hypothesis testing in Bayesian and frequentist

practice

Whereas Theorem 1 has direct implications for Bayesian hypothesis testing, its corollaries and Theorem 2

have implications for frequentist hypothesis testing.

If a Bayesian data analysis does not yield a low posterior probability of the null hypothesis H0, the

result may be checked first by computing p (H0; x), a p value testing H0. If it is low, then the next step

is to formally check the Bayesian model using a prior predictive p value. Theorem 1 provides an unusually

simple way to perform that check. The main limitation from a Bayesian perspective is that the posterior in

Theorem 1 conditions on p (H0;X ) ≤ α rather than on X = x .

Frequentist hypothesis testing yields a p value in need of careful interpretation (Wasserstein and Lazar,

2016). The corollaries of the theorem provide equally simple ways to transform the p value to upper bounds

on the posterior probability of H0 and on related, prior-free quantities under a Bayesian model M that need

not be specified. The upper bounds depend on the significance level α, which need not be fixed ahead of

time contra recommendations of the American Statistical Association (Wasserstein and Lazar, 2016), but

may instead be optimized in light of the data. Specifically, taking the least upper bound of each corollary’s

upper bound results in αopt = p (H0; x) as the optimal value of α. Corollaries 1, 2, and 3 then suggest using

(PM (H0) /γ) p (H0; x), (1/γ) p (H0; x), and (1/γ) p (H0; x) as the optimal upper bounds for the posterior

probability, relative belief ratio, and Bayes factor, respectively:

PM (H0| p (H0;X ) ≤ p (H0; x)) <
PM (H0)

γ
p (H0; x)

= P upper
M

(

H0| p (H0;X ) ≤ αopt
) def
= inf

α≥p(H0;x)

PM (H0)

γ
α (8)

RM (H0| p (H0;X ) ≤ p (H0; x )) <
1

γ
p (H0; x )

= Rupper
M

(

H0| p (H0;X ) ≤ αopt
) def
= inf

α≥p(H0;x)

α

γ

8



Figure 1: Upper bounds of the posterior odds that the data came from H0, as a function of p (H0; x ).
PM (H0) is 1/2 (black) or 10/11 (gray, following Benjamin et al. (2017)); γ is 5 × 10−3 (solid) or 5 × 10−2

(dashed).

BM (p (H0;X ) ≤ p (H0; x)) <
1

γ
p (H0; x)

= Bupper
M

(

p (H0;X ) ≤ αopt
) def
= inf

α≥p(H0;x)

α

γ
,

where γ satisfies Theorem 2’s constraint (6).

For the first upper bound, Figure 1 displays P upper
M (H0| p (H0;X ) ≤ αopt) / (1− P upper

M (H1| p (H0;X ) ≤ αopt))

for different values of p (H0; x ), PM (H0), and γ. While the results certainly depend on the choices of PM (H0)

and γ, the overall message is clear: low p values tend to lead to low posterior probabilities that the data

came from the null hypothesis.

Not requiring the prior probability PM (H0), either of the other two upper bounds, Rupper
M (H0| p (H0;X ) ≤ αopt)

and Bupper
M (p (H0;X ) ≤ αopt), might be reported in order to allow each reader to combine it with a different

prior if necessary. Objectivity in that sense is often cited as a reason to report Bayes factors rather than pos-

terior probabilities (e.g., Wellcome Trust Case Control Consortium, 2007; Bickel, 2018b). However, Figure 2

suggests that Bupper
M (p (H0;X ) ≤ αopt), the Bayes factor bound, is too conservative unless PM (H0) ≤ 1/2.

For that reason, Rupper
M (H0| p (H0;X ) ≤ αopt), the optimal upper bound on the relative belief ratio,

is preferable as a prior-free summary of the test result. Each recipient of the report may easily multiply

Rupper
M (H0| p (H0;X ) ≤ αopt) by a hypothetical or estimated value of PM (H0) that satisfies constraint (7).

The resulting product is P upper
M (H0| p (H0;X ) ≤ αopt), the optimal upper bound on the posterior probability.

If P upper
M (H0| p (H0;X ) ≤ αopt) is sufficiently low, the null hypothesis may be considered false for decision

9



Figure 2: Upper bounds of the posterior probability of H0 as a function of the prior probability PM (H0)
given p (H0; x) = 10−3 and γ = 5 × 10−3. The gray curve is derived from Bupper

M (p (H0;X ) ≤ αopt) and
Bayes’s theorem; the black curve is P upper

M (H0| p (H0;X ) ≤ αopt) = PM (H0)R
upper
M (H0| p (H0;X ) ≤ αopt).

making purposes since its posterior probability according to a model M passing the check is even lower.

When warranted, that can be formalized in terms of minimizing posterior expected loss or, considering

[0, P upper
M (H0| p (H0;X ) ≤ αopt)[ as an imprecise probability, in terms of a generalization of minimizing

posterior expected loss (e.g., Troffaes, 2007).

Example 4. Example 3, continued. Let M be any Bayesian model that passes the model check. Since

constraint (7) is satisfied, Corollary 1 yields equation (8) and thus

PM

(

H0| p (H0;X ) / 5× 10−7
)

/
10/11

5× 10−3
5× 10−7 ≈ 10−4,

indicating that the low p value is not illusory. N

Example 5. Bernardo (2011) tested the null hypothesis H0 that there is no measured effect due to ex-

trasensory perception and that, in light of the sample with a size of about 106, there is not even a very small

systematic error in the measurements. In the discussion, Luis Pericchi reported that, in spite of the p value

of 3× 10−4, PM (H0|X = x ) would be over 95% if PM (H0) = 1/2 (Bernardo, 2011). By contrast, following

the procedure of Example 4 with γ = 5× 10−3, formula (8) yields

PM

(

H0| p (H0;X ) ≤ 3× 10−4
)

/
5× 10−1

5× 10−3
3× 10−4 ≈ 3× 10−2 = 0.03,
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indicating a high posterior probability that there is some systematic error. This case obeys constraint (7):

PM (H0) <
1− γ

1− p (H0; x)
=

1− 5× 10−3

1− 3× 10−4
= 99.5%. (9)

If the systematic bias could be ruled out, then H0 would say there is no measured effect due to extrasensory

perception, in which case PM (H0) would be closer to 100% than is allowed by equation (9), and thus formula

(8) would not apply. N
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