R. P. Rother, L. Bell, P. Hillmen, and M. T. Gladwin, The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease, JAMA, vol.293, p.1653, 2005.

D. J. Schaer, P. W. Buehler, A. I. Alayash, J. D. Belcher, and G. M. Vercellotti, Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins, Blood, vol.121, pp.1276-84, 2013.

A. N. Higdon, G. A. Benavides, B. K. Chacko, X. Ouyang, M. S. Johnson et al., Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy, Am J Physiol Heart Circ Physiol, vol.302, pp.1394-409, 2012.

F. Vallelian, J. W. Deuel, L. Opitz, C. A. Schaer, M. Puglia et al., Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress, Cell Death Differ, vol.22, pp.597-611, 2015.

L. R. Vasconcellos, F. F. Dutra, M. S. Siqueira, P. , H. A. Dahan et al., Protein aggregation as a cellular response to oxidative stress induced by heme and iron, Proc Natl Acad Sci U S A, vol.113, pp.7474-82, 2016.

R. Martins and S. Knapp, Heme and hemolysis in innate immunity: adding insult to injury, Curr Opin Immunol, vol.50, pp.14-20, 2017.

F. F. Dutra and M. T. Bozza, Heme on innate immunity and inflammation, Front Pharmacol, vol.5, p.115, 2014.

M. Frimat, F. Tabarin, J. D. Dimitrov, C. Poitou, L. Halbwachs-mecarelli et al., Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome, Blood, vol.122, pp.282-92, 2013.

L. T. Roumenina, J. Rayes, S. Lacroix-desmazes, and J. D. Dimitrov, Heme: modulator of plasma systems in hemolytic diseases, Trends Mol Med, vol.22, pp.200-213, 2016.

J. D. Dimitrov, L. T. Roumenina, V. R. Doltchinkova, N. M. Mihaylova, S. Lacroix-desmazes et al., Antibodies use heme as a cofactor to extend their pathogen elimination activity and to acquire new effector functions, J Biol Chem, vol.282, pp.26696-706, 2007.

L. T. Roumenina, J. Rayes, M. Frimat, and V. Fremeaux-bacchi, Endothelial cells: source, barrier, and target of defensive mediators, Immunol Rev, vol.274, pp.307-336, 2016.

S. Petrillo, D. Chiabrando, T. Genova, V. Fiorito, G. Ingoglia et al., Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis, Cell Death Differ, 2017.

M. J. Tracz, J. Alam, and K. A. Nath, Physiology and pathophysiology of heme: implications for kidney disease, J Am Soc Nephrol, vol.18, pp.414-434, 2007.

S. K. Kanakiriya, A. J. Croatt, J. J. Haggard, J. R. Ingelfinger, S. S. Tang et al., Heme: a novel inducer of MCP-1 through HO-dependent and HO-independent mechanisms, Am J Physiol Renal Physiol, vol.284, pp.546-54, 2003.

K. A. Nath, J. P. Grande, J. J. Haggard, A. J. Croatt, Z. S. Katusic et al., Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease, Am J Pathol, vol.158, pp.893-903, 2001.

J. A. Graw, C. Mayeur, I. Rosales, Y. Liu, V. Sabbisetti et al., Haptoglobin or hemopexin therapy prevents acute adverse effects of resuscitation after prolonged storage of red cells clinical perspective, Circulation, vol.134, pp.945-60, 2016.

B. D. Goldstein, M. G. Rozen, and R. L. Kunis, Role of red cell membrane lipid peroxidation in hemolysis due to phenylhydrazine, Biochem Pharmacol, vol.29, pp.1355-1364, 1980.

E. Tolosano, E. Hirsch, E. Patrucco, C. Camaschella, R. Navone et al., Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice, Blood, vol.94, pp.3906-3920, 1999.

G. Ingoglia, C. M. Sag, N. Rex, D. Franceschi, L. Vinchi et al., Hemopexin counteracts systolic dysfunction induced by heme-driven oxidative stress, Free Radic Biol Med, vol.108, pp.452-64, 2017.

J. D. Belcher, C. Chen, J. Nguyen, L. Milbauer, F. Abdulla et al., Heme triggers TLR4 signaling leading to endothelial cell activation and vasoocclusion in murine sickle cell disease, Blood, vol.123, pp.377-90, 2014.

F. Vinchi, D. Franceschi, L. Ghigo, A. Townes, T. Cimino et al., Hemopexin therapy improves cardiovascular function by preventing hemeinduced endothelial toxicity in mouse models of hemolytic diseases, Circulation, vol.127, pp.1317-1346, 2013.

V. Audard, S. Moutereau, G. Vandemelebrouck, A. Habibi, M. Khellaf et al., First evidence of subclinical renal tubular injury during sickle-cell crisis, Orphanet J Rare Dis, vol.9, p.67, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00986267

N. Sundaram, M. Bennett, J. Wilhelm, M. O. Kim, G. Atweh et al., Biomarkers for early detection of sickle nephropathy, Am J Hematol, vol.86, pp.559-66, 2011.

M. Kasztan, B. M. Fox, J. S. Speed, D. Miguel, C. Gohar et al., Long-term endothelin-A receptor antagonism provides robust renal protection in humanized sickle cell disease mice, J Am Soc Nephrol, vol.28, pp.2443-58, 2017.

J. H. Baek, D. '-agnillo, F. Vallelian, F. Pereira, C. P. Williams et al., Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy, J Clin Invest, vol.122, pp.1444-58, 2012.

M. C. Marinozzi, L. Vergoz, T. Rybkine, S. Ngo, S. Bettoni et al., Complement factor B mutations in atypical hemolytic uremic syndromedisease-relevant or benign?, J Am Soc Nephrol, vol.25, pp.2053-65, 2014.

J. W. Deuel, C. A. Schaer, F. S. Boretti, L. Opitz, I. Garcia-rubio et al., Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response, Cell Death Dis, vol.7, p.2064, 2016.

K. A. Nath, J. J. Haggard, A. J. Croatt, J. P. Grande, K. D. Poss et al., The indispensability of heme oxygenase-1 in protecting against acute heme protein-induced toxicity in vivo, Am J Pathol, vol.156, issue.10, pp.65024-65033, 2000.

I. C. Vermeulen-windsant, M. G. Snoeijs, S. J. Hanssen, S. Altintas, J. H. Heijmans et al., Hemolysis is associated with acute kidney injury during major aortic surgery, Kidney Int, vol.77, pp.913-933, 2010.

W. K. Han, V. Bailly, R. Abichandani, R. Thadhani, and J. V. Bonventre, Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury, Kidney Int, vol.62, pp.237-281, 2002.

J. S. Bond and R. J. Beynon, Meprin: a membrane-bound metallo-endopeptidase, Curr Top Cell Regul, vol.28, pp.263-90, 1986.

S. Djudjaj, M. Papasotiriou, R. D. Bülow, A. Wagnerova, M. T. Lindenmeyer et al., Keratins are novel markers of renal epithelial cell injury, Kidney Int, vol.89, pp.792-808, 2016.

H. Yu, Y. Yanagisawa, M. A. Forbes, E. H. Cooper, R. A. Crockson et al., Alpha-1-microglobulin: an indicator protein for renal tubular function, J Clin Pathol, vol.36, pp.253-262, 1983.

M. Allhorn, T. Berggård, J. Nordberg, M. L. Olsson, and B. Akerström, Processing of the lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties, Blood, vol.99, pp.1894-901, 2002.

M. G. Olsson, M. Allhorn, L. Bülow, S. R. Hansson, D. Ley et al., Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for ?(1)-microglobulin, Antioxid Redox Signal, vol.17, pp.813-859, 2012.

C. Herzog, R. S. Haun, V. Kaushal, P. R. Mayeux, S. V. Shah et al., Meprin A and meprin alpha generate biologically functional IL-1beta from pro-IL-1beta

, Biochem Biophys Res Commun, vol.379, pp.904-912, 2009.

T. R. Keiffer and J. S. Bond, Meprin metalloproteases inactivate interleukin 6, J Biol Chem, vol.289, pp.7580-7588, 2014.

Y. K. Lim, A. Jenner, A. B. Ali, Y. Wang, S. I. Hsu et al., Haptoglobin reduces renal oxidative DNA and tissue damage during phenylhydrazineinduced hemolysis, Kidney Int, vol.58, pp.1033-1077, 2000.

F. F. Dutra, L. S. Alves, D. Rodrigues, P. L. Fernandez, R. B. De-oliveira et al., Hemolysis-induced lethality involves inflammasome activation by heme, Proc Natl Acad Sci U S A, vol.111, pp.4110-4118, 2014.

J. M. Herter, J. Rossaint, T. Spieker, and A. Zarbock, Adhesion molecules involved in neutrophil recruitment during sepsis-induced acute kidney injury, J Innate Immun, vol.6, pp.597-606, 2014.

K. Singbartl, S. A. Green, and K. Ley, Blocking P-selectin protects from ischemia/ reperfusion-induced acute renal failure, FASEB J, vol.14, pp.48-54, 2000.

K. J. Kelly, W. W. Williams, R. B. Colvin, and J. V. Bonventre, Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury, Proc Natl Acad Sci U S A, vol.91, pp.812-818, 1994.

F. A. Wagener, E. Feldman, T. De-witte, and A. Ng, Heme induces the expression of adhesion molecules ICAM-1, VCAM-1, and E selectin in vascular endothelial cells, Proc Soc Exp Biol Med, vol.216, pp.456-63, 1997.

S. Meher, T. S. Mishra, P. K. Sasmal, S. Rath, R. Sharma et al., Role of biomarkers in diagnosis and prognostic evaluation of acute pancreatitis, J Biomark, vol.2015, pp.1-13, 2015.

T. Reinheckel, B. Nedelev, J. Prause, A. W. Schulz, H. U. Lippert et al., Occurrence of oxidatively modified proteins: an early event in experimental acute pancreatitis, Free Radic Biol Med, vol.24, issue.97, pp.271-273, 1998.

W. Druml, A. N. Laggner, K. Lenz, G. Grimm, and B. Schneeweiss, Pancreatitis in acute hemolysis, Ann Hematol, vol.63, pp.39-41, 1991.

M. A. Dragon-durey, S. K. Sethi, A. Bagga, C. Blanc, J. Blouin et al., Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome, J Am Soc Nephrol, vol.21, pp.2180-2187, 2010.

M. Saruc, H. Yuceyar, N. Turkel, O. Ozutemiz, I. Tuzcuoglu et al., An experimental model of hemolysis-induced acute pancreatitis, Braz J Med Biol Res, vol.36, pp.879-86, 2003.

M. Saruc, N. Ozden, and H. Yuceyar, How hemolysis causes acute pancreatitis, Med Sci Monit, vol.8, pp.51-53, 2002.

M. Saruç, H. Yuceyar, N. Turkel, O. Ozutemiz, I. Tuzcuoglu et al., The role of heme in hemolysis-induced acute pancreatitis, Med Sci Monit, vol.13, pp.67-72, 2007.

R. T. Figueiredo, P. L. Fernandez, D. S. Mourao-sa, B. N. Porto, F. F. Dutra et al., Characterization of heme as activator of toll-like receptor 4, J Biol Chem, vol.282, pp.20221-20230, 2007.

S. M. Camus, D. Moraes, J. A. Bonnin, P. Abbyad, P. et al., Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease, Blood, vol.125, pp.3805-3819, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186628

G. Balla, G. M. Vercellotti, U. Muller-eberhard, J. Eaton, and H. S. Jacob, Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species, Lab Invest, vol.64, pp.648-55, 1991.

S. M. Camus, B. Gausserès, P. Bonnin, L. Loufrani, L. Grimaud et al., Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease, Blood, vol.120, pp.5050-5058, 2012.

M. D. Maines and J. C. Veltman, Phenylhydrazine-mediated induction of haem oxygenase activity in rat liver and kidney and development of hyperbilirubinaemia. Inhibition by zinc-protoporphyrin, Biochem J, vol.217, pp.409-426, 1984.

P. Masaratana, G. O. Latunde-dada, N. Patel, R. J. Simpson, S. Vaulont et al., Iron metabolism in hepcidin1 knockout mice in response to phenylhydrazineinduced hemolysis, Blood Cells Mol Dis, vol.49, pp.85-91, 2012.

K. D. Poss and S. Tonegawa, Heme oxygenase 1 is required for mammalian iron reutilization, Proc Natl Acad Sci U S A, vol.94, pp.10919-10943, 1997.

N. Radhakrishnan, S. P. Yadav, A. Sachdeva, P. K. Pruthi, S. Sawhney et al., Human heme oxygenase-1 deficiency presenting with hemolysis, nephritis, and asplenia, J Pediatr Hematol Oncol, vol.33, pp.74-82, 2011.

O. Adedoyin, R. Boddu, A. M. Traylor, J. M. Lever, S. Bolisetty et al., Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells, Am J Physiol Renal Physiol, 2017.

K. E. Anderson, J. R. Bloomer, H. L. Bonkovsky, J. P. Kushner, C. A. Pierach et al., Recommendations for the diagnosis and treatment of the acute porphyrias, Ann Intern Med, vol.142, pp.439-50, 2005.

M. P. Soares, Y. Lin, J. Anrather, E. Csizmadia, K. Takigami et al., Expression of heme oxygenase-1 can determine cardiac xenograft survival, Nat Med, vol.4, pp.1073-1080, 1998.

R. Gozzelino, V. Jeney, and M. P. Soares, Mechanisms of cell protection by heme oxygenase-1, Annu Rev Pharmacol Toxicol, vol.50, pp.323-54, 2010.

M. Wagner, P. Cadetg, R. Ruf, L. Mazzucchelli, P. Ferrari et al., Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts, Kidney Int, vol.63, pp.1564-73, 2003.

R. A. Thomas, A. Czopek, C. O. Bellamy, S. J. Mcnally, D. C. Kluth et al., Hemin preconditioning upregulates heme oxygenase-1 in deceased donor renal transplant recipients: a randomized, controlled, phase IIB trial, Transplantation, vol.100, pp.176-83, 2016.

F. Vinchi, C. Da-silva, M. Ingoglia, G. Petrillo, S. Brinkman et al., Hemopexin therapy reverts heme-induced pro-inflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease, Blood, vol.127, pp.473-86, 2015.

S. Ghosh, O. A. Adisa, P. Chappa, F. Tan, K. A. Jackson et al., Extracellular hemin crisis triggers acute chest syndrome in sickle mice, J Clin Invest, vol.123, pp.4809-4829, 2013.