Integrating EEG and MEG information to enhance motor-imagery classification in brain-computer interface
Marie-Constance Corsi, Mario Chavez, Denis Schwartz, Laurent Hugueville, Ankit Khambhati, Danielle Bassett, Fabrizio De Vico Fallani

To cite this version:
Marie-Constance Corsi, Mario Chavez, Denis Schwartz, Laurent Hugueville, Ankit Khambhati, et al.. Integrating EEG and MEG information to enhance motor-imagery classification in brain-computer interface. BIOMAG 2018 - 21st International Conference on Biomagnetism, Aug 2018, Philadelphia, United States. <hal-01966311>
Brain-computer interface (BCI) is a powerful tool for rehabilitation and communication that mainly relies on the electroencephalography (EEG). Despite its clinical applications, BCI faces both engineering and user-oriented challenges to improve its spreading. In this work, we assess the possibility of integrating electroencephalographic (EEG) and magnetoencephalographic (MEG) signals to enhance the classification performance in motor imagery-based BCI. By adopting a matching-score fusion approach (in an offline fashion) that optimizes the choice of the features in each individual, we reached an average classification improvement of 12.8% as compared to separate EEG and MEG classifiers. These results could promote multimodal BCIs development.

Methods

BCI protocol

Fifteen healthy subjects (aged 28±13 ± 410 years, seven women) participated to the protocol.

Fusion approach

No artifact removal method applied here to simulate online scenarios.

Classification fusion enables a significant performance improvement

![Fig. 3: AUC distributions across the IS subjects, for all the modalities, and for different numbers of features within the alpha-band. White circles correspond to the the median values. In all frequency bands, the type of modality significantly affected the AUC values (ANOVA, p < 0.05), whereas the number of features did not have a significant impact (p > 0.05).](image)

Inter-subject variability: attributed weights

![Fig. 4: Contribution of different modalities to the individual performance. Pie diagrams show the i values (in percentage) obtained for each modality via the fusion approach](image)

Acknowledgments

This work was partially supported by French program “Investissements d’Avenir” ANR-10-IDHU-05, “ANRINH CRNE” ANR-15-NEUC-0008-02 and by Army Research Office (W911NF-14-1-0679).