Integrating EEG and MEG information to enhance motor-imagery classification in brain-computer interface
Marie-Constance Corsi, Mario Chavez, Denis Schwartz, Laurent Hugueville, Ankit Khambhati, Danielle Bassett, Fabrizio de Vico Fallani

To cite this version:
Marie-Constance Corsi, Mario Chavez, Denis Schwartz, Laurent Hugueville, Ankit Khambhati, et al.. Integrating EEG and MEG information to enhance motor-imagery classification in brain-computer interface. BIOMAG 2018 - 21st International Conference on Biomagnetism, Aug 2018, Philadelphia, United States. hal-01966311

HAL Id: hal-01966311
https://hal.archives-ouvertes.fr/hal-01966311
Submitted on 28 Dec 2018
Brain-computer interface (BCI) is a potential tool for rehabilitation and communication that mainly relies on the electroencephalography (EEG). Despite its clinical applications, BCI faces both engineering and user-oriented challenges to improve its spreading. In this work, we assess the possibility of integrating electroencephalographic (EEG) and magnetoencephalographic (MEG) signals to enhance the classification performance in motor imagery-based BCI. By adopting a matching-score fusion approach (in an offline fashion) that optimizes the choice of the features in each individual, we reached an average classification improvement of 12.8% as compared to separate EEG and MEG classifiers. These results could promote multimodal BCIs development.

Methods

BCI protocol

Fifteen healthy subjects (aged 28±13 to 410 years, seven women) participated to the protocol.

Fusion approach

No artifact removal method applied here to simulate online scenarios.

Fig. 1: BCI experiments performed at the CENIR: MEG and EEG are simultaneously recorded with, respectively, an Elekta Neuromag TRIUX machine® (324 planar gradiometers and 102 magnetometers) and a 74 EEG-channel system. The task consists in a 2D, 2-target, right-justified box task where the subject performs a sustained MI (grasping) of the right hand to hit up-targets, while remaining at rest to hit down-targets.

Fig. 2: Classifier fusion approach for a given frequency bin. The variables p and λ stand for the posterior probability and the weight parameter associated with the modality j.

Semi-automatic procedure to extract features:

Focus on motor area contralateral to the imagined movement

Nonparametric cluster-based permutation t-test between power spectra of MI and rest epochs

Extraction of the Ni most discriminant features within the standard frequency bands

Results

Classification fusion enables a significant performance improvement

Fig. 3: AUC distributions across the 15 subjects, for all the modalities, and for different numbers of features within the alpha-band. White circles correspond to the median values. In all frequency bands, the type of modality significantly affected the AUC values (ANOVA, p < 0.05), whereas the number of features did not have a significant impact (p > 0.05).

Inter-subject variability: attributed weights

Fig. 4: Contribution of different modalities to the individual performance. Pie-diagrams show the i values (in percentage) obtained for each modality via the fusion approach.

Acknowledgments

This work was partially supported by French program "Investissements d’Avenir" ANR-10-IDAHU-05, "ANNIH CRINS" ANR-15-NEUC-0006-02 and by Army Research Office (W911NF-14-1-0679).