
HAL Id: hal-01966243
https://hal.science/hal-01966243

Submitted on 27 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Division of Amyloid Fibrils: Systematic
Comparison of Fibril Fragmentation Stability by Linking

Theory with Experiments
David Béal, Magali Tournus, Ricardo Marchante, Tracey Purton, David

Smith, Mick F Tuite, Marie Doumic, Wei-Feng Xue

To cite this version:
David Béal, Magali Tournus, Ricardo Marchante, Tracey Purton, David Smith, et al.. The Division
of Amyloid Fibrils: Systematic Comparison of Fibril Fragmentation Stability by Linking Theory with
Experiments. iScience, 2020, 23 (9), �10.1016/j.isci.2020.101512�. �hal-01966243�

https://hal.science/hal-01966243
https://hal.archives-ouvertes.fr


1 

 

The Division of Amyloid Fibrils  

 

 

David M. Beal1, Magali Tournus2, Ricardo Marchante1,6, Tracey Purton1, David P. Smith3, 

Mick F. Tuite1, Marie Doumic4,5, Wei-Feng Xue1* 

 

1 Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK, 

2 Centrale Marseille, I2M, UMR 7373, CNRS, Aix-Marseille univ., Marseille, 13453, France 

3 Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK 

4 INRIA Rocquencourt, équipe-projet MAMBA, domaine de Voluceau, BP 105, 78153 

Rocquencourt, France  

5 Wolfgang Pauli Institute, University of Vienna, Vienna, Austria  

6 Current address: Institute for Genetics and CECAD Research Center, University of Cologne, 

Joseph-Stelzmann Str. 26, 50931 Cologne, Germany 

 

* Correspondence to: W.F.Xue@kent.ac.uk; Tel +44-(0)1227 824821 

 

Running title: The Division of Amyloid Fibrils 

 

Key words: amyloid / prion and prion-like / atomic force microscopy / fragmentation / breakage 

/ stability / mechanical stability / self-similar length distribution / long-time asymptotics 

  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/506386doi: bioRxiv preprint first posted online Dec. 26, 2018; 

http://dx.doi.org/10.1101/506386
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

ABSTRACT 

The division of amyloid protein fibrils is required for the propagation of the amyloid state, and 

is an important contributor to their stability, pathogenicity and normal function. Here, we 

combine kinetic nano-scale imaging experiments with analysis of a mathematical model to 

resolve and compare the division of amyloid fibrils. Our theoretical results show that the 

division of any type of filament is uniquely described by a set of three characteristic properties, 

resulting in self-similar length distributions distinct to each fibril type and conditions applied. 

By applying these results to profile the dynamical stability towards breakage for four different 

amyloid types, we reveal particular differences in the division properties of disease- and non-

disease related amyloid, the former showing lowered intrinsic stability towards breakage and 

increased likelihood of shedding smaller particles. Our results enable the comparison of protein 

filaments’ intrinsic dynamic stabilities, which are key to unravelling their toxic and infectious 

potentials. 
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INTRODUCTION 

Amyloid fibrils, proteinaceous polymers with a cross-beta core structure, represent an 

important class of bio-nanomaterials 1,2. They are also important biological structures 

associated with devastating human diseases such as Alzheimer’s disease, Parkinson’s disease, 

Creutzfeldt-Jakob disease (CJD), systemic amyloidosis and type 2 diabetes 3, as well as vital 

biological functions such as adhesion and biofilm formation, epigenetic switches, and hormone 

storage (e.g. 1,2,4-9). Division of amyloid fibrils, for example enzyme-mediated fibril 

fragmentation, is a crucial step in the lifecycle of amyloid (Fig. 1a) 10, and enables the 

propagation of the amyloid protein conformation and biological information encoded therein. 

However, it is not understood why amyloid division processes give rise to varied biological 

impacts ranging from normal propagation of functional amyloid assemblies to the creation of 

molecular species involved in disease, e.g. small cytotoxic amyloid species and infective prions, 

which are transmissible amyloid particles.  

 

The stability of these fibrillar bio-polymers are also important to the understanding of protein 

misfolding associated with disease progression and biological roles of functional amyloid 

assemblies (e.g. 11). In terms of disease association, there is much debate as to how amyloid 

aggregates are associated with cellular toxicity, with evidence of both prefibrillar oligomers 

and fibrillar species 12,13 giving rise to disease related phenotypes. While it is hypothesised that 

all proteins can undergo conversion into an amyloid state 14, why most proteins do not form 

amyloid under physiological conditions or produce amyloid particles that are non-toxic, non-

transmissible or non-disease associated is not clear. In this debate, it has been suggested that 

fibrils are not merely the end product of amyloid aggregation, but rather elicit profound 
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biological responses through fibril fragmentation and oligomer shedding 12, which are the 

consequences of amyloid fibrils division due to lack of fibril stability. 

 

Amyloid fibrils have remarkable physical properties, such as their tensile strength comparable 

to that of steel and an elasticity similar to spider silk 15. As proteinaceous polymers, they also 

offer the potential for modification by rational design, which makes them an ideal target for 

the development of biologically compatible nanomaterials 2,7,16,17. This interest in amyloid as a 

bio-nanomaterial has led to a search for proteins and peptides which can undergo conversion 

into a stable amyloid conformation while lacking the properties that associate them with 

toxicity, infectivity and disease. Though the precise properties that associate some amyloid to 

disease or to biological function are not resolved, the potential for different morphologies 

(sometimes referred to as ‘strains’) to elicit different results 11,18,19 could be attributed to the 

stability of amyloid fibrils towards division or their mechanical properties 20,21. Thus, the 

stability of amyloid fibrils is an important factor which modulates their biological function of 

amyloid. 

 

The kinetics of the nucleated growth of amyloid fibrils are profoundly influenced by secondary 

processes such as fibril fragmentation/breakage 22,23 and secondary surface nucleation 24,25 (Fig. 

1a). These processes determine the rate of the exponential growth phase of amyloid assembly 

alongside with elongation growth at fibril ends 22,26. As one of the key secondary processes, 

fibril fragmentation stands out compared to the other three main processes (Fig. 1a) in that it 

reduces aggregate size at the same time as it increases the number of aggregates 21. In this 

aspect, fibril fragmentation results in the division of amyloid fibrils analogous to a microbial 

or cellular division processes. Resistance towards fibril division by fragmentation is linked to 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/506386doi: bioRxiv preprint first posted online Dec. 26, 2018; 

http://dx.doi.org/10.1101/506386
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

the mechanical stability of amyloid fibrils, which has implications for both the development of 

nanomaterials and on the understanding of amyloid disease associated biological processes.  

 

The division of amyloid polymers into small more infective particles is key to the spreading of 

prion phenotypes 20,27. In addition, the smaller particles generated by fibril fragmentation show 

enhanced cytotoxicity when compared with the larger parent fibrils 21, likely due to an greater 

propensity to interact with cell membranes, entering cells by endocytosis, interacting with the 

lysosome and inducing cytotoxicity by disrupting proteostasis 20,28,29. The stability of amyloid 

fibrils towards division is, therefore, an important characteristic of amyloid fibrils that must be 

considered if we are to understand the biological activity and nanomaterial properties of 

amyloid. Because protein filaments formed from different precursors show a variety of 

suprastructures and size distributions (e.g. 15,18,21,30), no unifying theory has been developed for 

the division of amyloid fibrils. As consequence, the stability towards division for different 

types of amyloid fibrils with varied suprastructures that ranges from inert network of long 

filaments to infectious particles is yet to be systematically measured, determined and compared. 

 

The mechanism and the rate of division for amyloid filaments has been subjected to theoretical 

considerations 22,23,31,32 and experimental investigations involving fibril fragmentation promoted 

by mechanical perturbations 22,33,34. The fragmentation of protein filaments is a length 

dependent process whereby longer particles break more easily than short ones. This length-

dependent breakage of amyloid fibrils can follow a strong, non-linear dependence where longer 

fibrils are progressively less stable towards breakage per monomeric unit relative to their 

shorter counterparts 33. Thus, the fibrils’ resistance to division, and in turn the inherent stability 

of the fibrils, is an important and measurable property 33 that will help to rationalise phenomena 

such as prion strains, polymorphism, transmission, amyloid toxicity, biofilm formation and 
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epigenetic regulation (e.g. 11,20,21,27,35-41) and leading to a better understanding of amyloid-

associated diseases.  

 

We have previously shown that the time evolution of amyloid fibril length distributions 

obtained by nano-scale atomic force microscopy (AFM) imaging contain valuable information 

on the rate, length-dependence and position-dependence of fibril fragmentation that can be 

extracted 33. However, since fibril division is itself a strongly length-dependent process, 

systematic comparison of the stability of fibrils towards division and their division rates has 

been hampered by the varied length distributions of different types of amyloid fibrils. Currently, 

the links between data and theory that would allow direct comparison of the fibrils’ division 

propensities are also missing. Here, we have developed an analytical approach that enables 

direct determination of the dynamic stability of amyloid fibrils towards division from fibril 

length distributions. We have developed a new theory on amyloid fibril division that shows 

how the division mechanism of amyloid fibrils, and their stability towards division dictates the 

exact shape of the resulting length distributions. We then established an analytical method to 

extract a set of unique and intrinsic properties of the fibril division processes from image data 

of fibrils undergoing division experimentally promoted by mechanical perturbation. 

Demonstrating the utility of our combined experimental and theoretical approach, we 

determined and compared the division of fibril samples formed from human α-synuclein (α-

Syn) associated with Parkinson’s disease with fibrils formed from β-lactoglobulin (β-Lac) and 

lysozyme (Lyz). We have also reanalysed and compared previously published fibril 

fragmentation data of β2-microglobulin (β2m) under the same mechanical perturbation regime 

33. Comparison of the dynamic stability of these fibrils types of different origin revealed 

different division properties, with fibrils formed from the human Parkinson’s disease-

associated α-synuclein being the least stable and prone to generate small sub 100 nm particles 
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that may possess enhanced cytotoxic and prion-like infectious potential 42. The ability to assess 

and compare the division properties of amyloid fibrils enables the prediction of an amyloid’s 

propensity to generate toxic and infectious particles, and therefore has a significant impact on 

the understanding of their roles in biology, in diseases, and their application as a functional 

bio-nanomaterial.  

 

 

RESULTS 

 

Amyloid fibrils of diverse suprastructures and length distributions fragment to different 

extents upon mechanical perturbation 

 

To demonstrate that the fibril division rates, indicative of their dynamic stability towards 

division, can be assessed and compared for amyloid fibrils with diverse suprastructures and 

length distributions, we first collected experimental AFM image data sets of amyloid fibrils, 

pre-formed from different precursors, undergoing division through fragmentation promoted by 

mechanical stirring. These experiments were designed to isolate the fibril division processes 

from other growth processes and to generate data that contain sufficient quality and quantity 

of information on the division of fibril particles under identical mechanical perturbation 

regimes to enable comparison. Here, we chose to investigate the human disease-associated 

amyloid system α-Syn alongside bovine β-Lac and chicken egg white Lyz as biophysical 

model systems not directly related to human disease. Samples were formed containing long-

straight fibrils from these three proteins in vitro. Lyz and β-Lac were both converted to their 

fibrillar amyloid form by heating under acidic conditions (pH 2.0). α-Syn fibrils were prepared 

from freshly purified recombinant α-Syn monomers at 37oC under physiological pH. For each 
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fibril sample, 500 µl of 120 µM monomer equivalent fibril solutions in their respective fibril 

forming buffer were then stirred at 1000 rpm by a 3 x 8mm magnetic stirrer bar in a 1.5ml glass 

chromatography vial using the same mechanical perturbation method as previously reported 33 

using an Ika Squid stirrer plate with a digital display. The in vitro-formed fibril samples were 

initially dispersed by 5-10 min of stirring and were subsequently deposited onto freshly cleaved 

mica surfaces and imaged by AFM (Fig. 2 left most column).  

 

As seen in the leftmost column of images in Fig 2., the initial samples after brief stirring to 

disperse the fibril particles show long, straight, elongated, unbranched nano-structures 

expected for amyloid fibrils. However, whereas Lyz and α-synuclein form fibrils that exhibit 

more flexibility and curvature, β-Lac forms comparably straighter, more rigid assemblies 

consistent with previous observations (e.g. 15,34,43,44). Importantly, all of the samples showed 

well-dispersed fibril particles that can be individually measured after the brief stirring treatment, 

as the samples did not show strong propensity for clumping on the surface substrates.  

 

The samples were then continuously stirred for up to 15 days and 1-5 µl samples were taken 

out periodically and imaged using AFM to visualise their fragmentation under mechanical 

perturbation (Fig. 2). For each sampling time-point, an identical AFM specimen preparation 

procedure was used for each amyloid type, and 20 µm x 20 µm surface areas were imaged at 

2048 x 2048 pixels resolution in order to enable quantitative analysis of individual fibril 

particles as previously described 45. In total, fragmentation of two independent fibril samples 

was followed for each fibril type, and 171 images with at least 300 particles for each sample 

and time point were analysed, giving a total dataset containing physical measurements of more 

than 220,000 individual fibril particles for the three amyloid types (Supplementary Table S1). 
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Quantitative single-particle measurements of fibril length and height distributions (Fig. 3, 

leftmost column corresponding to images in Fig. 2. leftmost column) reveal that the fibrils have 

substantially different initial dimensions. Analysis of their height distributions show that the 

initial fibril heights, indicative of the width of the fibrils, are around 7 nm for α-Syn fibrils, 

and around 3 nm for both β-Lac and Lyz fibrils. The initial length distributions for the different 

fibril types were also dissimilar, with both Lyz and α-Syn forming fibrils of up to ~10 µm in 

length whereas β-Lac formed shorter particles with lengths of up to ~2 µm under the conditions 

employed.  

 

Qualitative inspection of the AFM images over the duration of the experiment (Fig. 3) showed 

that the amyloid fibrils were fragmented into much smaller particles under the applied 

mechanical perturbation (Fig. 2 and Fig. 3) as expected. However, the rate of division and 

shortening of the particles’ lengths was seen to differ between the three different fibril types 

analysed (Fig. 3 and Supplementary Fig. S1). Analysis of the time evolution of the fibril 

height and length distributions obtained by quantification of individual particles in the AFM 

images over the course of the experiment confirmed that fibril fragmentation did not cause 

detectable changes in fibril morphology and fibril width through lateral association and 

dissociation. Average fibril heights in the AFM images, indicative of fibril widths, remained 

consistent throughout the experiment for Lyz and α-Syn, the same were also largely observed 

for β-Lac, with the exception that a small second population of taller polymers at the very end 

of the fragmentation time-course after 432000 s were exhibited (height graphs in Fig. 3 and 

Supplementary Fig. S1). Hence division of the fibrils under mechanical perturbation applied 

has resulted in a retention of morphology and a shortening of average fibril length. 
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To confirm that the changes in fibril length by fibril division did not cause disaggregation or 

release of monomer/small oligomers (e.g. dimers), we next determined the residual monomer 

concentration of the samples. For each fibril type, aggregates were pelleted by centrifugation 

(75k rpm, 15 min) after fragmentation time-course and the presence of monomer in the 

supernatants was quantified by SDS-PAGE. The comparison between the initial samples and 

those fragmented over two weeks showed no large changes in the protein composition of the 

supernatants, with differences of less than 2% for all amyloid systems analysed (Lyz: 1.4%, β-

Lac: <1%, and α-Syn: 1.3%, Supplementary Fig. S2). These data confirmed that the time-

dependent imaging experiments we carried out pertain almost exclusively to the fibril division 

processes along the length of the pre-formed fibrils, and therefore, contain valuable information 

on their division rates and their stability towards division. 

 

Time evolution of fibril length distributions result in a time-independent, characteristic, 

self-similar distribution shapes  

 

The fibril samples formed from different protein precursors have different initial length 

distributions (as seen in Fig. 2 and Fig. 3). However, fibril division is itself a strongly length-

dependent process 33 as short fibril particles will be more resistant towards division compared 

to longer particles, irrespectively of any differences in the intrinsic stability of the different 

fibril types towards division. Therefore, to compare the stability of amyloid fibrils with 

different suprastructures and length distributions towards division, a new approach to extract 

information intrinsic to each fibril type independent of their experimentally different initial 

length distributions must be developed. Consequently, in parallel with the experiments 

described above, we mathematically analysed the division equation of amyloid fibrils so that 

key information on the stability of amyloid fibrils towards division could be resolved. We first 
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describe mathematically the division of amyloid fibrils using a continuous framework based 

on the partial differential equation (PDE) Eq. (1). Since the number of monomers inside a fibril 

observed in the image data is large, typically in the order of 102 or more, we assumed 

continuous variables x and y that correspond to the length of fibrils (for example as defined in 

Fig 1b where y is the length of the parent fibril and x is the length of one of the daughter fibrils). 

This approach has the advantage that the infinite set of ordinary differential equations (ODEs) 

normally used to describe the length-dependent division processes (e.g. 22,23,33) can now be 

collapsed into a single continuous PDE that can be treated analytically. Denoting u(t,x) as the 

distribution of fibrils of length x at time t in number concentration units (e.g. Molar units), Eq. 

(1) is the mathematical translation of the division model described by the schematics in Fig.1b-

d: 

𝜕
𝜕𝑡 𝑢 𝑡, 𝑥 = 	−𝛼𝑥*𝑢 𝑡, 𝑥 + 	2

1
𝑦 𝜅0

𝑥
𝑦 𝛼𝑦*𝑢(𝑡, 𝑦)𝑑𝑦

4

567

 

  Eq. (1) 

In Eq. (1), from the law of mass action, 8
89
𝑢 𝑡, 𝑥  denotes the time (t) evolution of the 

concentration of fibrils with length x. Here, we model the total division rate constant of fibrils 

of size x as 𝐵 𝑥 = 𝛼𝑥* 31, with the term −𝛼𝑥*𝑢 𝑡, 𝑥  denoting the rate of loss of fibrils with 

length x by division into smaller fibrils. The probability that after dividing, a given parent fibril 

of length y gives rise to a daughter fibril fragments of length x and y-x depends on the ratio of 

the lengths (x/y) 33 and is given by the probability density function ;
5
𝜅0

7
5

. The second term 

in Eq. (1), 2 ;
5
𝜅0

7
5
𝛼𝑦*𝑢(𝑡, 𝑦)𝑑𝑦4

7  , therefore, denotes the total gain of fibrils with length 

x by division of all fibrils with length y that are larger than x. Thus, equation 1 describes a 

fundamental division process that is analogous to the division of cells 46,47, and we have 

mathematically proven that its behaviour is entirely and uniquely dictated by three properties: 
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a that describes the magnitude of the division rate constant, g that describes the fibril length 

dependence of the division rate constant, and k0 that describes the probability of division at any 

given position along a fibril, also called the fragmentation kernel 48. We then proceeded to solve 

Eq. (1) analytically with regard to a, g  and k0 using theoretical results shown in 47 and 48 (see 

Supplementary information). From our solution, we note four key predictive insights that 

emerged from our analysis (Fig. 4).  

 

Firstly, we note that given enough time, the decay of the average fibril length will converge to 

the same rate independently of the initial fibril lengths. This result comes from that after a 

sufficiently long time, the reduction of average length of the fibril length distribution can be 

described as a power law versus time (Eq. 2):  

𝜇(𝑡) 	= 	𝐶 · 𝑡?;/* 

  Eq. (2) 

where 𝜇(𝑡) is the experimentally tractable time-dependent mean length of the fibril length 

distribution defined as: 

𝜇(𝑡) 	= 	 𝑥 · 𝑓 𝑡, 𝑥 𝑑𝑥
4

0

 

  Eq. (3) 

and 𝑓 𝑡, 𝑥  is the normalised fibril length distribution that can be assessed using the 

experimental image data: 

𝑓 𝑡, 𝑥 	= 	
𝑢 𝑡, 𝑥
𝑢 𝑡, 𝑥 𝑑𝑥4

0

 

  Eq. (4) 
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Here, as seen in Eq. (2), the mean length of a sample is predicted to tend towards a straight line 

when plotted on a log-log plot with the slope of the line representing -1/g (Eq. 3, black line in 

Fig. 4b).  

 

Secondly, we note that given enough time, the fibril length distribution will converge to the 

same shape independently of the initial state of the fibril length distribution. After a sufficiently 

long time ( 𝑡 ≫ 𝑡0 ), the distribution of fibril-lengths tends towards a time-independent 

distribution shape that scales only with t and g, but does not depend on the initial length 

distribution 𝑓 𝑡 = 𝑡0, 𝑥 . This shape 𝑔 𝑥D  can be obtained when the length-distributions are 

rescaled and expressed as the following: 

 

𝑔 𝑥D ≈ 𝑓 𝑡, 𝑥 · 𝑡?
;
*, 𝑥D = 	𝑥𝑡

;
*, 𝑡 ≫ 𝑡0 

  Eq. (5) 

(see Supplementary information). This point is of key importance for characterising and 

predicting fibril division processes because it establishes that for any fibril type under certain 

conditions: 1) a distinct fibril length distribution shape will be reached independently of the 

initial fibril length distribution, and 2) the length distribution and the average length will shrink 

as function of time in a predictive manner as fibrils continue to divide (e.g. black line in Fig. 

4b for the mean length) but the shape of the distribution will not change as function of time, 

i.e. the length distribution can be rescaled to the same 𝑔 𝑥D  using Eq. (5) at any time t along 

the black line in Fig. 4b. We refer to this scaling property and shape invariance property of the 

length distributions as ‘self-similarity’ (Fig. 4a).  
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The existence of the self-similar length distribution that is initial distribution-independent and 

shape invariant, as well as the predictable decay of fibril lengths as fibrils divide (e.g. the 

reduction of the average length in Fig. 4b) can be seen as a characteristic behaviour specific to 

individual fibril types under distinct conditions. This fibril division behaviour can, therefore, 

be classed as an intrinsic dynamic stability of the fibrils. One way to visualise this property is 

shown in Fig. 4b represented by the black line, here referred to as the fibril type’s ‘stability 

line’ under the conditions applied. Any fibril populations above this stability line are relatively 

unstable and will rapidly divide, pushing the average length towards the stability line (yellow 

coloured near-vertical arrows showing rapid decay of unstable fibril lengths), while any fibril 

populations below the stability line are comparatively stable or metastable and will only slowly 

evolve towards the black stability line through division (green coloured near-horizontal arrows 

showing slow decay of stable fibril lengths towards the black line). Importantly, this result also 

indicates that the dynamic stability of fibrils towards division represented by the stability line: 

1) can be determined from experimental data, 2) is intrinsic to fibril type and conditions applied, 

and 3) can be compared independently of varied starting fibril length distributions, if the 

characteristic self-similar length distributions that contain information about the intrinsic 

dynamic stability of the fibrils is reached (e.g. the stability line is reached in an experiment of 

sufficiently long length of time). 

 

Thirdly, we note that the probably of division in the centre of a fibril as compared to shedding 

of small particles from fibril edge can be determined. The self-similar length distribution shape 

contains information about k0, which describes how likely a fibril will divide in the middle 

compared to shedding a small fragment from the edge. Fig. 4c shows how different self-similar 

fibril length distributions are indicative of different k0 probability functions. As seen in Fig. 4c, 

k0 indicative of fibril types that are more likely to divide in the middle will result in fibril length 
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distributions with a distinct peak and low relative population of small fragments. In contrast, 

k0 indicative of fibril types and conditions that promote equal likelihood of division along the 

fibril or even favouring the shedding of fragments from fibril edges will result in self-similar 

fibril length distributions that have large relative population of small fibril fragments that may 

possess enhanced cytotoxic and/or infective potential compared to k0 favouring division in the 

centre of the fibrils. 

 

Finally, the dynamic stability of fibrils towards division can be determined. The first order 

division rate constant 𝐵 𝑥 = −𝛼𝑥* that describes the division of the fibrils as a function of 

their length x can be directly evaluated from the self-similar distribution shape as a can be 

determined from g and f(t, x) when t>>t0 (see Supplementary information): 

𝛼 ≈
1
𝛾

𝑡?;

𝑥*𝑓 𝑡, 𝑥 𝑑𝑥4
0

, 𝑡 ≫ 𝑡0 

  Eq. (6) 

Here, the precise numerical values of both a and g will be indicative of the intrinsic dynamic 

stability of the fibrils as the division rate constant B(x) is determined by both a and g. The 

effect of different values of a and g on fibril stability is visualised in Fig. 4d and Fig. 4e as 

characteristic average length versus time (the stability lines) plotted in log-log plots. The 

enumeration of the stability line described by B(x) will subsequently enable direct quantitative 

comparison of the fibrils’ stabilities towards division. 
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The division properties of amyloid fibrils can be obtained from image data and their 

complex stability towards division can be compared 

 

Applying the results of our mathematical analysis to our experimental AFM image data sets, 

we next demonstrated how the parameters g, a, and the characteristic self-similar length-

distribution 𝑔 𝑥D  indicative of k0 can be extracted and meaningfully compared as a measure 

of the fibrils’ intrinsic stability towards division. We first determined the g values for each of 

the fibril types, by globally fitting modified version of Eq. (2) to the time evolution of average 

fibril length (Materials and methods, Fig. 5). We also reanalysed previously published data set 

on β2m fibril fragmentation under the same mechanical perturbation conditions 33 using our 

new theoretical results above and included the reanalysis in the comparison.  

 

Table 1. Parameters from the division analysis of the different fibril types  

Sample  g ± SE   a / s-1 (log a ± SE) B (100 nm) / s-1 (log B ± SE) Width / nm 

a-Syn 2.0 ± 0.3  1.1·10-11 (-11.0 ± 0.8) 9.2·10-8 (-7.0 ± 0.3) 6.8 ± 0.6 

b-Lac 5.7 ± 0.8  5.7·10-22 (-21.2 ± 2.4) 1.2·10-10 (-9.9 ± 0.8) 3.0 ± 0.5 

Lyz 1.7 ± 1.0  9.2·10-11 (-10.0 ± 2.9) 2.0·10-7 (-6.7 ± 1.0) 3.1 ± 0.4 

b2m* 3.4 ± 0.4 4.4·10-15 (-14.4 ± 1.3) 2.5·10-8 (-7.6 ± 0.4) 5.4 ± 0.6 

* Reanalysis of data from Xue and Radford 2013 33. 

 

The constant g relating to the fibril length dependence of the division rate constant was 

determined using Eq. (7) (Materials and Methods). The power law relationships Eq. (2) 

described by the g values determined by global analysis were visualised on a log-log plot of 

mean fibril length vs. time in Fig. 5, together with the measured mean fibril lengths. The 

resulting g values are listed in Table 1. A g value of 1 would suggest that the division rate of 
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fibrils is only dependent on the number of division sites per fibril, which is linearly related to 

the number of monomers in the fibrils and in turn to the length of the fibrils. However, the g 

values for α-Syn, β-Lac and β2m are all significantly larger than 1, indicating highly length 

dependent microscopic division rates for division sites in these fibril types. Out of the four 

fibril types analysed, only the division of Lyz fibrils yielded a g value closest to 1 suggesting 

the division rates for Lyz fibrils may only depend on the number of available division sites 

along the fibrils. As seen in Fig. 5, the later time points for all of our fibril types follow a 

straight line on the log-log plots (solid section of the fitted lines in Fig. 5), indicating that the 

self-similar distribution shapes, and hence the stability line, were sufficiently reached in all 

cases. The analysis also revealed that all of the fibril types analysed approached the self-similar 

distribution shapes in less than 5 hr, with the exception of the Lyz samples that reached the 

self-similar distribution in approximately 24 hr.  

 

The α values were subsequently calculated (listed in Table 1) with equations Eq. (6) using all 

of the fibril length distributions at time points after reaching the near-characteristic self-similar 

distribution shapes. Only time points with length distributions that approached the self-similar 

distribution (represented by the solid lines in Fig. 5) were used and averaged for each fibril 

type. Once both α and g values have been extracted from the length-distribution data, the 

division rate constant B(x) can be obtained for fibrils of any length x. Table 1 shows the 

division rate constant calculated for example fibrils of 100 nm. The stability line for the fibrils 

types characterised by the B(x) or by fibril mean length as function of time was also visualised 

and compared independently of initial fibril length (Fig. 6a and 6b).  

 

Next, we determined the shape of the self-similar length distributions for each fibril type by 

rescaling the experimental length distributions to 𝑔 𝑥D  with Eq. (5) using the g values 
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obtained above. As with the evaluation of α values, only time points where the length 

distributions closely approached the self-similar distribution (time points in the section 

represented by the solid lines in Fig. 5) where averaged to obtain 𝑔 𝑥D  for each fibril type 

(Supplementary Fig. S3). Fig. 6c shows how the self-similar length distribution shapes f(t, x) 

compare with each other at extended times (2 weeks) when calculated using 𝑔 𝑥D  

(Supplementary Fig. S3) with Eq. (5). As seen in Fig 6c, Lyz fibrils have a tendency to 

produce high relative populations of small particles less than 100 nm long followed by α-Syn 

and then β2m. On the other hand, the division of β-Lac fibrils resulted in a lower relative 

population of small particles over the same long time scale used for the other fibril types. 

 

Finally, to validate our model and the predictive power of our approach, we performed direct 

simulations of the fibril division time-course (Fig. 7) using only the individual sets of division 

parameters obtained for each of our fibril types. For each simulation, we used the initial 

experimental length distributions (dashed lines in Fig. 7) directly as the starting points for the 

simulations and solved the large set of ordinary differential equations describing the chemical 

master equation for the system 33 to see whether our analytical model was able to predict their 

full division behaviour and the time evolution of the fibril length distributions for each fibril 

type. As seen in Fig. 7, the result of the numerical simulations based on our results show 

remarkable agreement with the experimental data. This unequivocal result validated the fact 

that the set of three properties g, a, and k0 are indeed capable of fully and uniquely describing 

the complex amyloid division processes, and the enumeration of these properties yield valuable 

insights. Such insights allow meaningful comparison of the amyloid fibrils’ intrinsic stability 

towards division. 
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DISCUSSION 

Understanding of the properties that underline the biological activities of amyloid nano-

structures, such as their cytotoxic and infectious potentials, is crucial for the understanding of 

why some amyloid is associated with devastating human diseases. The division of amyloid 

fibrils, for example through fibril fragmentation by mechanical perturbation 22,33, enzymatic 

action 49,50 or other cellular or environmental perturbations, is a key step in their life-cycle that 

results in the exponential growth in the number of amyloid particles. Simultaneously, daughter 

particles resulting from the division of parent fibrils cause a reduction in the overall size 

distribution as division proceeds. These two consequences of division are undoubtedly linked 

to the enhancement of the cytotoxic and infectious potentials of disease-associated amyloid 20,21. 

The amyloid fibrils’ resistance towards division, i.e. the stability of the amyloid fibrils towards 

division, therefore, rationalise the two fundamental requirements for pathogenicity associated 

with amyloid. Akin to uncontrolled division of cells or any pathogenic microorganisms, the 

division step in the amyloid life cycle (Fig. 1) could be a key determinant in their overall 

potential to be associated with properties in the amyloid and prion associated pathology. 

 

Here, we have developed a theory, as well as an experimental approach utilising our theoretical 

insights to resolve the amyloid fibrils’ dynamic stability towards division. These represent a 

step change in how we can study amyloid fibril division, which essentially is the replication 

step in the amyloid lifecycle. It also allows the direct comparison between amyloid particles of 

different molecular types and determine the difference in division and stability between those 

that are and are not disease associated. Specifically, we have compared a diverse set of amyloid 

assemblies consisting of human α-Syn (a neurodegenerative disease-associated amyloid, 

sample formed under physiological solution conditions), human β2m (a systemic amyloidosis 

disease-associated amyloid, sample formed under acidic pH, data from Xue and Radford 2013 
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33), bovine β-Lac and hen egg white Lyz (both biophysical model systems not directly related 

to human disease). By analysing and comparing their division behaviour fully and uniquely 

described by the triplet of parameters: a (magnitude of the division rate constant), g (fibril 

length dependence of the division rate constant), and k0 (probability of division at any given 

position along a fibril) under identical mechanical perturbation for long timescales using our 

approach, we show a remarkable difference in the stability of these different amyloid 

assemblies relative to each other and how they divide (summarised in Fig. 8). Interestingly, for 

the four fibril types we included here, the disease associated human α-Syn fibrils demonstrate 

lowest overall stability towards division followed by Lyz, human β2m and finally β-Lac 

particles that are most stable towards division (Fig 8. last row). Based on the comparison of 

the a and g parameters that together describe the division rates, the likelihood that small α-Syn 

particles (<100 nm long) will divide is similar to that of Lyz particles of identically length 

despite having more than double the mean width (and thus around 4 times bigger cross-

sectional area, Table 1 and Fig. 8). More importantly, the division of α-Syn particles also 

results in a larger relative concentration of small particles compared to β2m and β-Lac. These 

results show that human α-Syn amyloid fibrils are unstable assemblies capable of a more rapid 

shedding of small particles that could well possess enhanced cytotoxic and infectious potentials 

51 through division compared with the other fibril types investigated here. Thus, our results also 

directly suggest a testable causality link between the low stability of α-Syn fibrils towards 

division and recent observations that human α-Syn may behave in a prion-like manner in cell 

to cell propagation and their cytotoxicity 52. 

 

Since the division of amyloid fibrils is an integral part in the propagation of the amyloid 

conformation (Fig. 1), the nanoscale materials properties of amyloid underpin processes which 

drive the proliferation of amyloid, as well as their varied roles in biology. Therefore, it is 
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important to appreciate the suprastructural properties of amyloid (e.g. clustering, bundling, 

twist, stiffness, width distribution, orientation distribution, and length distribution etc) at 

mesoscopic (nanometre to micrometre) length scales, as these properties will influence how 

individual amyloid fibrils divide. Our data show that despite all amyloid consisting of a cross-

beta core structure, their ability to resist division through fragmentation promoted by 

mechanical perturbation varies strongly between fibril types. Since the stability of amyloid 

fibrils towards division will depend on their suprastructural properties, which in turn depends 

on their precise structure at atomic level, mesoscopic level structural properties may well be 

the missing link between amyloid structure and the varied biological effects and consequences 

that different amyloid types evoke under different conditions. Thus, it should be possible to 

generate a structure activity relationship (SAR) correlating the suprastrucutral properties of 

amyloid, their ability to divide, and their cytotoxic and/or infectious potentials. Understanding 

this SAR for amyloid assemblies could lead to designer bio-safe polymers with tuned 

mechanical and nanomaterials properties as well as rationalise the disease associated properties 

of amyloid structures. 

 

Analogous to the diverse response of soluble folded proteins towards unfolding by chemical 

denaturants, thermal melting and mechanical force etc., the stability of amyloid fibrils could 

also vary depending on the nature of the perturbation. Indeed, amyloid fibrils may break down 

in the presence of chemical, thermal or enzymatic action 15,49,50,53-55, and their relative resistance 

or stability towards different stresses, including those associated with physiological changes 

involved in human disorders, is not known. In particular, understanding how enzymatic action 

by chaperones such as Hsp104 or ClpB promote amyloid division, degradation and/or 

propagation of amyloid conformation 56,57 in relevant cases may be key in resolving the 

complex behaviour of the amyloid lifecycle in a biological context. In summary, the combined 
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theoretical and experimental work we report here will enable the characterisation and 

comparison of the amyloid division processes and the relative stabilities of amyloid assemblies. 

Both properties are fundamental in understanding the lifecycle of disease-associated amyloid 

as well as the normal roles of functional amyloid in biology.  

 

 

MATERIALS AND METHODS 

 

Preparation of protein monomers 

Hen egg white Lyz and bovine β-Lac proteins were both purchased from Sigma-Aldrich and 

used with no further purification. Production and purification of human α-Syn monomers was 

achieved according to the method of Cappai et al 58, with the addition of a stepped ammonium 

sulphate precipitation (30% to 50%) step prior to anion exchange chromatography. The protein 

was buffer exchanged using PD10 desalting column (GE Healthcare) prior to loading onto the 

anion exchange resin. 

 

In vitro formation of amyloid fibril samples 

The conversion of Lyz and β-Lac to amyloid fibres was achieved under acidic and heated 

conditions. Both proteins were dissolved in 10 mM HCl to a concentration of 15mg/ml and 

then incubated for 4 hr at 25 °C. The resulting solutions were filtered through a 0.2 µm syringe 

filter and diluted to a concentration of 10mg/ml (Lyz = 699 µM and β-Lac = 547 µM). 500 µl 

aliquots were then heated without agitation for differing periods of time, with Lyz heated at 

60 °C for 2 days and β-Lac heated at 90 °C for 5 hr. α-Syn fibrils were formed by buffer 

exchange of purified monomers into fibril forming buffer (20mM Sodium phosphate, pH7.5) 

using a PD-10 column (GE Healthcare). The resulting α-Syn solution was passed through a 0.2 
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µm syringe filter. Protein concentration was subsequently determined via absorbance at 280nm, 

and the sample solution were diluted to 300 µM and incubated at 37 °C in a shaking incubator 

with agitation set at 200 rpm for at least two weeks. 

 

Controlled fibril fragmentation through mechanical perturbation 

Parent fibril solutions were diluted to 120 µM using the appropriate fibril forming buffer for 

each protein in a snap cap vial containing an 8 x 3 mm PTFE coated magnetic stirrer bar and 

then subjected to stirring at 1000 rpm on an IKA squid stirrer plate with digital speed display.  

At appropriate time points, small aliquots of the fibril samples were removed, diluted with 

fibril forming buffer (deposition concentration for α-synuclein is 0.48 µM, β-lactoglobulin is 

0.6 µM and Lyz is 6 µM), and 20 µl were immediately taken and incubated for 5 min on freshly 

cleaved mica surfaces (Agar Scientific F7013). The mica surfaces were subsequently washed 

with 1 ml of syringe filtered (0.2 µm) mQ H2O and dried under a gentle stream of N2(g).   

 

Determination of residual monomer concentration 

Residual monomer concentration for each fragmentation sample were measured using SDS-

PAGE after centrifugation (75000 rpm, 15 min) with 100 µl of the 120 µM fragmentation 

reaction and 100 µl of 120 µM non-fragmented parent fibrils samples. The top 10µl of the 

solutions were then removed and treated with 4x loading dye and boiled at 95 °C for 5 min 

(Lyz samples were heated to 65 °C and beta-mercaptoethanol was not added due to 

decomposition of samples). The samples were then run against a serial dilution of monomeric 

protein standards on either a Tris-Tricine gel or a 15% Tris-Glycine gel at 180V and 

subsequently stained with Coomassie blue. Analysis of the protein bands were carried out by 

densitometry for comparison of bands to the serial dilution bands. 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/506386doi: bioRxiv preprint first posted online Dec. 26, 2018; 

http://dx.doi.org/10.1101/506386
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

AFM imaging and image analysis  

The fibril samples were imaged on a Bruker Multimode 8 scanning probe microscope with a 

Nanoscope V controller, using the ScanAsyst peak-force tapping imaging mode. Bruker 

ScanAsyst probes (Silicone nitride tip with tip height = 2.5-8 µm, nominal tip radius = 2 nm, 

nominal spring constant 0.4 N/m and nominal resonant frequency 70 kHz) were used 

throughout. Multiple 20 µm x 20 µm areas of the surface were scanned at a resolution of 2048 

x 2048 pixels. The images were then processed and flattened using Bruker Nanoscope Analysis 

software to remove tilt and bow. The images were then imported into Matlab, length of 

individual fibril particles was measured and the sample length and height distributions were 

obtained as previously described 45,59.  

 

Data analysis of fibril division properties 

The normalised length distribution of the fibril samples measured by AFM at time t, 𝑓 𝑡, 𝑥 , is 

linked to the concentration of fibrils solution 𝑢 𝑡, 𝑥  in Eq. (1) by the relation in Eq. (4). Mean 

lengths for each time point 𝜇(𝑡) were calculated from the experimental 𝑓 𝑡, 𝑥  distributions 

and Eq. (2) and (3) where used to first extract g from the datasets. Because some unknown 

number of experimentally measured length distributions at early time points in the experiments 

may be at considerably distance from the self-similar distribution shape and the stability line 

(i.e. where Eq. (2) does not apply), we fit the following equation Eq. (7) to the average length 

as function of time data instead of Eq. (2) directly in order to determine the number of 

experimental time points consistent with the self-similar distribution shape objectively without 

human input: 

𝜇(𝑡) = 	𝐶 · 𝑡?;/*; 			𝑡 > 𝑡I	
	𝜇(𝑡) = 	𝐶 · 𝑡I?;/*; 			𝑡 ≤ 𝑡I	

 

  Eq. (7) 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/506386doi: bioRxiv preprint first posted online Dec. 26, 2018; 

http://dx.doi.org/10.1101/506386
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

Eq. (7) was fit to the average length 𝜇(𝑡) as function of time t, with C and ts as parameters 

individual to each experimental dataset and g as a global parameter for datasets from the same 

fibril type. Subsequently, the 𝑔 𝑥D  and a values were calculated with Eq. (5) and (6), 

respectively, both using g calculated above and experimental normalised length distributions 

𝑓 𝑡, 𝑥  where t > ts. For both the 𝑔 𝑥D  distributions and a values, averages were obtained for 

each fibril type. The self-similar distribution shapes 𝑔 𝑥D  were used to calculate length 

distribution at any time using the reverse of Eq. (5). The a and g values were used to calculate 

the division rate constant 𝐵 𝑥 = −𝛼𝑥* for fibrils of any length x. Supplementary information 

section contains further information on the mathematical considerations of our division model. 

 

Direct numerical simulation of fibril division processes 

To validate the a and g values obtained from our analysis, direct numerical simulations to 

calculate the time evolution of the fibril length distributions were carried out by numerically 

solving the full ODE system describing the master equation mostly as described in Xue and 

Radford 2013 33 but with few modifications. Firstly, numerical integrations of the master 

equation were solved for fibril species containing up to 30,000 instead of 20,000 monomeric 

units in order to retain concentration errors introduced by numerical inaccuracy and truncation 

of larger species to <1%. Secondly, the number of division sites were assumed to be equal to 

the number of monomers-1 and the unit used for the length of fibrils were interconverted in the 

simulations from nanometres (x in [nm] units) to the number of monomers (i number of 

monomers) using the numbers of monomers per nm length unit Nl 33 as conversion factor. 

Subsequently, assuming that division sites along the fibrils operate independently, the 

microscopic rate constant on per division site basis is B(i)k0 divided by the number of 

monomers-1. Thirdly, as 𝑔 𝑥D  shape for Lyz and a-Syn fibril divisions suggest a k0 function 
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that result in similar division rates in the fibril centre and fibril edge, simulations for these two 

fibril types were carried out using Eq. S6 in Xue and Radford 2013 instead of Eq. S8. Finally, 

the experimental distribution at the first time-points (including all the experimental noise) were 

directly used as the initial distribution (dashed lines in Fig. 6) instead of parameterised 

distributions 59 in the simulations since our model has shown that the self-similar distribution 

shape will be reached independently of the initial length distribution.  
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FIGURES 

 

 

 

Figure 1. Schematic illustration of fibril division in the amyloid lifecycle. (a) The lifecycle 

of amyloid assembly where soluble monomeric protein (circles) are converted into the amyloid 

state with a cross-β conformation (the parallelograms). The coloured arrows represent the four 

main processes in amyloid assembly: primary nucleation (red), which may occur as 

homogeneous nucleation in solution or heterogeneous nucleation at interfaces; secondary 

nucleation (purple), which may occur as heterogeneous nucleation at surfaces presented by 

preformed aggregates; elongation growth at fibril ends (blue); and fibril division through for 

example fibril fragmentation or breakage (yellow, yellow box). The arrows may represent 

consecutive reversible steps and the thickness of the arrows symbolizes the relative rates 

involved in the processes. (b) A simple model of fibril division, where a given parent fibril 
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particle of length y divide to give rise to two daughter fibril particles of size x and y-x. (c) The 

division model assumes that each mother fibril particle divides into exactly two daughter 

particles at each microscopic reaction step. (d) The division model assumes that the division 

rate for each microscopic step is identical as long as the resulting two particles have the same 

size.  

 

 

 

Figure 2. AFM imaging of amyloid fibrils undergoing division through fragmentation 

promoted by mechanical stirring. Hen egg white Lyz, bovine milk β-Lac, and human α-Syn 

amyloid fibril samples (all 120 µM monomer equivalent concentration) were stirred for up to 

15 days. Samples were taken out periodically, deposited on mica and imaged using AFM. 
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Typical AFM images representing 10x10 µm surface areas are show together with 4x 

magnified insets. The scale bar represents 2 µm in all images.  

 

 

 

Figure 3. Fibril length and height distributions extracted from AFM images of the fibril 

undergoing fragmentation by mechanical perturbation. Normalised length (upper row of 

each sample) and height (lower row of each sample) distributions of fibril particles 

corresponding to the same AFM images in Fig. 2 are shown as histograms. The histograms are 

shown using the same length and height scales, respectively, for comparison.  

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/506386doi: bioRxiv preprint first posted online Dec. 26, 2018; 

http://dx.doi.org/10.1101/506386
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

 

Figure 4. Illustration of the key insights emerging from the mathematical analysis of the 

division model. The behaviour of the division equation Eq. (1) is entirely and uniquely dictated 

by a set of three properties: a, g, and k0. Several key predictive insights emerged from the 

analytical solution of Eq. (1) with regard to these three properties. (a) Illustration of the concept 

of ‘self-similarity’ where the three example length distributions in the left panel are self-similar 

since they can be rescaled to show the same distribution shape in the right panel. After a 

sufficiently long time, the distribution of fibril lengths tends towards this type of time-
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independent self-similar distribution shape that does not depend on the initial length 

distributions. The shape of this self-similar distribution g(xg) can be visualised when the fibril 

lengths x is rescaled to xg as function of time and g using Eq. (5). (b) After a sufficiently long 

time where the self-similar length distribution shape is reached, the reduction in the average 

length of the fibril length distribution can be described as a power law versus time. The decay 

of mean length of a sample is predicted to tend towards a straight line, the ‘stability line’, when 

plotted on a log-log plot with the slope of the line representing -1/g (black line in b, d and e). 

The stability line with mean fibril lengths also does not depend on the initial length distribution 

(coloured lines in b). The existence of the initial distribution independent self-similar shape 

and the predictable decay of fibril lengths as fibrils divide, i.e. the reduction of the average 

length (black lines in b, d and e), can be seen as a characteristic behaviour specific to individual 

fibril types under distinct conditions (c) The self-similar length distribution shape contains 

information about k0, which describes how likely a fibril will divide in the middle versus 

shedding a small fragment from the edge. A k0 indicative of fibril types that are more likely to 

divide in the middle will result in fibril length distributions with a distinct peak and low relative 

population of small fragments (dark green and light green curves). In contrast, k0 indicative of 

fibril types and conditions that promote equal likelihood of division along the fibril or even 

favour shedding of small fragments from fibril edges will result in self-similar fibril length 

distributions that have a larger relative population of small fibril fragments (yellow and orange 

curves) compared to k0 values favouring division in the centre of the fibrils. (d) and (e) 

illustrates how the black stability line describing the decay of fibril lengths in (a) is dictated by 

the parameters a and g, respectively. For each panel, the colour bar to the right illustrate the 

different properties associated with the colours in the panel (e.g. division in the centre vs. at 

the edge of a fibril for panel c, and division of a long vs. a short fibril in panel e) 
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Figure 5. Fitting the fibril division model to fibril length decay data extracted from AFM 

images. The analytical solution of our division model shows the decay of average length as 

function of the gamma parameter in equation Eq. (2) and Eq. (7). Equation Eq. (7) was fitted 

to the decay of average fibril length during division for each of the fibril types analysed 

(including previously published data for β 2m fragmentation under the same mechanical 

perturbation conditions 33). The solid fitted lines represent the time regime where the length 

distributions closely approached the stability line and the self-similar distribution shape where 

Eq. (2) is valid (Materials and Methods). 
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Figure 6. Comparing the stability towards division of different amyloid fibril types. The 

decay of mean lengths (a), the division rate constants as function of fibril length (b), and the 

self-similar length distribution shapes (c) for hen egg Lyz (blue), bovine milk β-Lac (yellow), 

human α-Syn (red) and human β2m (black, data from Xue and Radford 2013 33) amyloid fibril 

samples undergoing division by fibril fragmentation under mechanical perturbation. All curves 

were calculated using a, g, and g(xg) obtained from our analysis of the experimental AFM 

images. In (a), the thicker portion of the lines denote the time range where the characteristic 

self-similar length distribution shape is observed in the imaging experiments (i.e. 

corresponding to the time regime represented by the solid fitted lines in Fig. 5), and crosses 

are the experimental data points that have closely reached the self-similar distribution shapes 

shown in the same plot. In (b), the thicker portion of the lines denote the range of fibril lengths 

observed experimentally on the AFM images. In (c), the distributions were calculated using 

self-similar distributions g(xg) in Supplementary Fig. S3 after two weeks. 
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Figure 7. Validation of the division parameters a, g  and k0 and their predictive power. 

Full direct simulation of fibril fragmentation processes using a, g  and k0 determined from the 

image data. For each fibril type, the initial normalised frequency distribution (dashed lines in 

top row) were used directly as the initial state for the simulations. The resulting simulated 

evolution of length distributions solely based on the calculated a and g values and estimated 

shapes k0 (see Materials and methods) are compared with the experimental data show as 

histograms.  
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Figure 8. Schematic summary of the fibril division properties and their consequences 

compared between each of the fibril types. Comparison of the fibril division profiles reveal 

differences in the dynamical stability towards breakage for the four different types of amyloid 

fibrils, and suggest that disease-related amyloid have lowered stability towards breakage and 

increased likelihood of shedding smaller particles compared to amyloid not related to disease. 

In the illustrations, the fibril width, number and number of breakage symbols are not to scale 

and denote the relative rankings for the different properties. 
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