Non-Gaussian disorder average in the Sachdev-Ye-Kitaev model

Abstract : We study the effect of non-Gaussian average over the random couplings in a complex version of the celebrated Sachdev-Ye-Kitaev (SYK) model. Using a Polchinski-like equation and random tensor Gaussian universality, we show that the effect of this non-Gaussian averaging leads to a modification of the variance of the Gaussian distribution of couplings at leading order in N. We then derive the form of the effective action to all orders. An explicit computation of the modification of the variance in the case of a quartic perturbation is performed for both the complex SYK model mentioned above and the SYK generalization proposed in D. Gross and V. Rosenhaus, JHEP 1702 (2017) 093.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01965321
Contributeur : Inspire Hep <>
Soumis le : mercredi 26 décembre 2018 - 01:12:01
Dernière modification le : mardi 19 février 2019 - 11:22:35

Lien texte intégral

Identifiants

Citation

T. Krajewski, M. Laudonio, R. Pascalie, A. Tanasa. Non-Gaussian disorder average in the Sachdev-Ye-Kitaev model. 2018. 〈hal-01965321〉

Partager

Métriques

Consultations de la notice

109