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Abstract: Applications such as autonomous navigation, robot vision, autonomous flying, etc., require1

depth map information of the scene. Depth can be estimated by using a single moving camera2

(depth from motion). However, traditional depth from motion algorithms have low processing speed3

and high hardware requirements that limits the embedded capabilities. In this work, we propose4

a hardware architecture for depth from motion that consists of a flow/depth transformation and5

a new optical flow algorithm. Our optical flow formulation consists in an extension of the stereo6

matching problem. A pixel-parallel/window-parallel approach where a correlation function based in7

the Sum of Absolute Differences computes the optical flow is proposed. Further, in order to improve8

the Sum of Absolute Differences performance, the curl of the intensity gradient as preprocessing step9

is proposed. Experimental results demonstrated that it is possible to reach higher accuracy (90% of10

accuracy) compared with previous FPGA-based optical flow algorithms. For the depth estimation,11

our algorithm delivers dense maps with motion and depth information on all the image pixels, with12

a processing speed up to 128 times faster than previous works and making it possible to achieve high13

performance in the context of embedded applications.14

Keywords: Depth estimation; monocular systems; optical flow; smart cameras; FPGA15

1. Introduction16

Smart cameras are machine vision systems which, in addition to image capture circuitry, are17

capable of extracting application-specific information from the captured images. For example, for18

video surveillance, image processing algorithms implemented inside the camera fabric could detect19

and track pedestrians [1], but for a robotic application, computer vision algorithms could estimate20

the system egomotion [2]. In recent years, advances in embedded vision systems such as progress in21

microprocessor power and FPGA technology allowed the creation of compact smart cameras with22

increased performance for real world applications [3–6]. As result, in current embedded applications,23

image processing algorithms inside the smart cameras fabric deliver an efficient on-board solution24

for: motion detection [7], object detection/tracking [8,9], inspection and surveillance [10], human25

behavior recognition [11], etc. Another algorithm that could be highly used by smart cameras are26

computer vision algorithms since they are the basis of several applications (automatic inspection,27

controlling processes, detecting events, modeling objects or environments, navigation and so on).28

Unfortunately, mathematical formulation of computer vision algorithms is not compliant with the29

hardware technologies (FPGA/CUDA) often used in smart cameras. In this work, we are interested30

in depth estimation from monocular sequences in the context of a smart camera because depth is the31

basis to obtain useful scene abstractions, for example: 3D reconstructions of the world and the camera32

egomotion.33
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1.1. Depth estimation from monocular sequences34

In several applications, like autonomous navigation [12], robot vision and surveillance [1],35

autonomous flying [13], etc., there is a need for determining the depth map of the scene. Depth36

can be estimated by using stereo cameras [14], by changing focal length [15], or by employing a single37

moving camera [16]. In this work we are interested in depth estimation from monocular sequences38

by using a single moving camera (depth from motion). This choice is motivated because monocular39

systems have higher efficiency compared with other approaches, simpler and more accurate than40

defocus techniques and, cheaper/smaller compared with stereo-based techniques. In monocular41

systems, depth information can be estimated based on two or multiple frames of a video sequence. For42

two frames, image information may not provide sufficient information for accurate depth estimation.43

The use of multiple frames improves the accuracy, reduces the influence of noise and allows the44

extraction of additional information which cannot be recovered from just two frames, but the system45

complexity and computational cost is increased. In this work, we use information from two consecutive46

frames of the monocular sequence since our algorithm is focused for smart cameras and in this context47

hardware resources are limited.48

1.2. Motivation and scope49

In the last decade several works have demonstrated that depth information is highly useful for50

embedded robotic applications [1,12,13]. Unfortunately, depth information estimation is a relatively51

complex task. In recent years, the most popular solution is the use of active vision to estimate depth52

information from the scene [17–21], i.e., LIDAR sensors or RGBD cameras that can deliver accurate53

depth maps in real time, however they increase the systems size and cost. In this work, we propose54

a new algorithm and an FPGA hardware architecture for depth estimation. First, a new optical55

flow algorithm estimates the motion (flow) at each point in the input image. Then, a flow/depth56

transformation computes the depth in the scene. For the optical flow algorithm: an extension of the57

stereo matching problem is proposed. A pixel-parallel/window-parallel approach where a Sum of58

Absolute Differences computes the optical flow is implemented. Further, in order to improve the Sum59

of Absolute Differences performance, we propose the curl of the intensity gradient as preprocessing60

step. For the depth estimation proposes: we introduce a flow/depth transformation inspired in the61

epipolar geometry.62

2. Related work63

In previous works, depth estimation is often estimated by using a single moving camera. This64

approach is called depth from motion and consists in computing the depth from the pixel velocities65

inside the scene (optical flow). i.e., optical flow is the basis for depth from motion.66

2.1. FPGA architectures for optical flow67

In [22], a hardware implementation of a high complexity algorithm to estimate the optical68

flow from image sequences in real time is presented. In order to fulfil with the architectural69

limitations, the original gradient-based optical flow was modified (using a smoothness constraint for70

decreasing iterations). The developed architecture can estimate the optical flow in real time and can be71

constructed with FPGA or ASIC devices. However, due to the mathematical limitations of the CPU72

formulation (complex/iterative operations), speed processing is low, compared with other FPGA-based73

architectures for real-time image processing [23,24]. In [25], a pipelined optical-flow processing system74

that works as a virtual motion sensor is described. The proposed approach consists of several spatial75

and temporal filters (Gaussian and gradient spatial filters and IIR temporal filter) implemented in76

cascade. The proposed algorithm was implemented in an FPGA device, enabling the easy change77

of the configuration parameters to adapt the sensor to different speeds, light conditions and other78

environmental factors. This makes possible the implementation of an FPGA-based smart camera for79
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optical flow. In general, the proposed architecture reaches a reasonable hardware resources usage80

but accuracy and processing speed is low (lower than 7 fps for 640×480 image resolution). In [26], a81

tensor-based optical flow algorithm is presented. This algorithm was developed and implemented82

using FPGA technology. Experimental results demonstrated high accuracy compared with previously83

FPGA-based algorithms for optical flow. In addition, the proposed design can process 640×480 images84

at 64 fps with a relatively low resource requirement, making it easier to fit into small embedded85

systems. In [27], a highly parallel architecture for motion estimation is presented. The developed86

FPGA-architecture implements the Lucas and Kanade algorithm [28] with the multi-scale extension for87

the computation of large motion estimations in an FPGA. Although the proposed architecture reaches88

a low hardware requirement with a high processing speed, the use of huge external memory capacity89

is needed. Further, in order to fulfil with the hardware limitations, the accuracy is low (near 11% more90

error compared with the original CPU version of the Lukas and Kanade algorithm). Finally, in [29],91

an FPGA-based platform with the capability of calculating real-time optical flow at 127 frames per92

second for a 376×240 pixel resolution is presented. Radial undistortion, image rectification, disparity93

estimation and optical flow calculation tasks are performed on a single FPGA without the need of94

external memory. So, the platform is perfectly suited for mobile robots or embedded applications.95

Unfortunately, accuracy is low (qualitatively lower accuracy than CPU based approaches).96

2.2. Optical flow methods based in learning techniques97

There are some recent works that addresses the optical flow problem via learning techniques [30].98

In 2015 [31] proposed the use of convolutional neuronal networks (CNNs) as an alternative framework99

to solve the optical flow estimation problem. Two different architectures were proposed and compared:100

a generic architecture and another one including a layer that correlates feature vectors at different101

image locations. Experimental results demonstrated a competitive accuracy at frame rates of 5 to102

10 fps. On the other hand, in 2017 [32] developed a stacked architecture that includes warping of103

the search image with intermediate optical flow. Further, in order to achieve high accuracy on small104

displacements, authors introduced a sub-network specializing on small motions. Experimental results105

demonstrated that it is possible to reach more than 95% of accuracy, decreasing the estimation error by106

more than 50% compared with previous works.107

3. The proposed algorithm108

In Fig. 1 an overview of our algorithm is shown. First, given an imager as sensor, two consecutive109

frames ( ft(x, y), ft+1(x, y)) are stored in local memory. Then, an optical flow algorithm computes 2D110

pixel displacements between ft(x, y) and ft+1(x, y). A dynamic template based on the optical flow111

previously computed (∆x,t−1(x, y), ∆y,t−1(x, y)) computes the search region size for the current optical112

flow. Then, let the optical flow for the current frame be (∆x(x, y), ∆y(x, y)), the final step is depth113

estimation for all the pixels in the reference image D(x, y). In the following subsections, details about114

the proposed algorithm are presented.115

Figure 1. Block diagram of the proposed algorithm
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3.1. Frame buffer116

The first step in our mathematical formulation is image storage, considering that in most cases the117

imager provides data as a stream, some storage is required in order to have two consecutive frames118

available at the same time t. More information/details about the storage architecture are presented119

in Section 4.1. For mathematical formulation, we consider the first frame (frame at t time) as ft(x, y)120

while the second frame (frame at t + 1 time) is ft+1(x, y).121

3.2. Optical flow122

In previous works, iterative algorithms, such as the Lucas Kanade [28] or the Horn–Schunck [33]123

algorithms have been used on order to compute optical flow across video sequences, then, given dense124

optical flow, geometric methods allow to compute the depth in the scene. However, these algorithms125

[28,33] have iterative operations that limit the performance for smart camera implementations. In126

order to avoid the iterative and convergence part of the traditional formulation we replace that with a127

correlation metric implemented inside a pixel-parallel/window-parallel formulation. In Fig. 2 an128

overview of our optical flow algorithm is shown. Let ( ft(x, y), ft+1(x, y) be two consecutive frames129

from a video sequence , curl of the intensity gradient d f (x,y)
dx are computed, see Eq. 1, where ∇ is130

the Del operator. Let curl be a vector operator that describes the infinitesimal rotation, then, at131

every pixel the curl of that pixel is represented by a vector where attributes (length and direction)132

characterize the rotation at that point. In our case, we use only the norm of Curl(x, y), as shown in133

Eq. 2 and, as illustrated in Fig. 3 . This operation increases the robustness under image degradations134

(color/texture repetition, illumination changes, noise), therefore, simple similarity metrics [34] deliver135

accurate pixel tracking, simpler than previous tracking algorithms [28,33]. Given the curl images for136

two consecutive frames (Curlt(x, y), Curlt+1(x, y), dense optical flow (∆x(x, y), ∆y(x, y), illustrated137

in Fig. 4) in the reference image is computed as shown in Fig. 5. This process assumes that pixel138

displacements between frames is such as it exists an overlap on two successive "search regions". A139

search region is defined as a patch around a pixel to track. Considering that between ft and ft+1, the140

image degradation is low, any similarity-based metric have to provide good accuracy. In our case, this141

similarity is calculated by a SAD (Sum of Absolute Difference). This process is defined in Eq. 3; where142

r is the patch size (see Fig. 5). (Curlt(x, y), Curlt+1(x, y)) are curl images on two consecutive frames.143

x, y are the spatial coordinates of pixels in ft and, a, b are the spatial coordinates within a search region144

constructed in ft+1 (see Eq. 4 and 5); where ∆′x(t−1), ∆′y(t−1) are a dynamic search template, computed145

as shown in Section 3.3. k is the search size and s is a sampling value defined by the user. Finally,146

optical flow at the current time (∆x(x, y), ∆y(x, y)) is computed by Eq. 6.147

148

Figure 2. The optical flow step: first, curl images (Curlt(x, y)), (Curlt+1(x, y)) are computed. Then,
given the curl images for two consecutive frames, pixels displacements ∆x(x, y), ∆y(x, y) (optical flow
for all pixels in the reference image) are computed using a dynamic template based on the optical flow
previously computed (∆x,t−1(x, y), ∆y,t−1(x, y)).
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(a) input ( f (x, y)) (b) output Curl(x, y)

Figure 3. Curl computation example. Input image taken from the KITTI benchmark dataset [35]

(a) ∆x(x, y) (b) ∆y(x, y))

Figure 4. Optical flow example. Image codification as proposed in the Tsukuba benchmark dataset [36]

Curl(x, y) = ∇× d f (x, y)
dx

=
∂

∂y
∂ f (x, y)

∂x
− ∂

∂x
∂ f (x, y)

∂y
(1)

Curl(x, y) = | ∂

∂y
∂ f (x, y)

∂x
− ∂

∂x
∂ f (x, y)

∂y
| (2)

where149

∂ f (x, y)
∂x

= Gx(x, y) = f (x + 1, y)− f (x− 1, y)

∂ f (x, y)
∂y

= Gy(x, y) = f (x, y + 1)− f (x, y− 1)

∂

∂y
∂ f (x, y)

∂x
= Gx(x, y + 1)− Gx(x, y− 1)

∂

∂x
∂ f (x, y)

∂y
= Gy(x + 1, y)− Gy(x− 1, y)

150

SAD(a, b) =
u=r

∑
u=−r

v=r

∑
v=−r

|Curlt(x + u, y + v)| − |Curlt+1(x + u + a, y + v + b)| (3)

a = ∆′x(t−1)(x, y)− k : s : ∆′x(t−1)(x, y) + k (4)

b = ∆′y(t−1)(x, y)− k : s : ∆′y(t−1)(x, y) + k (5)

[∆x(x, y), ∆y(x, y)] = arg min(a,b)SAD(a, b) (6)
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Figure 5. The proposed optical flow algorithm formulation: patch size = 10, search size = 10, sampling
value = 2. For each pixel in the reference image ft, n overlapped regions are constructed in ft+1, n
region center that minimizes or maximizes any similarity metric is the tracked position (flow) of the
pixel (x, y) at ft+1.

3.3. Search template151

In optical flow, the search window size defines the maximum allowed motion to be detected in the152

sequence, see Fig. 4. In general, let p be a pixel in the reference image ( ft), whose 2D spatial location is153

defined as (xt, yt), the same pixel in the tracked image ( ft+1) has to satisfy xt+1 ∈ xt − k : 1 : x + k,154

yt+1 ∈ y− k : 1 : yt + k, where k is the search size for the tracking step. In practice, large search region155

sizes increase the tracking performance since feature tracking could be carried out in both slow and156

fast camera movements. However, large search sizes decrease the accuracy, i.e., if the search region size157

is equal to 1, then, xt+1 ∈ xt − 1 : 1 : xt + 1, yt+1 ∈ yt − 1 : 1 : yt + 1 so, there are 9 possible candidates158

for the tracking step and the mistake possibility is equal to 8, this considering that camera movement159

is slow and therefore pixel displacements between images are close to cero. In other scenario, if the160

search region size is equal to 10, then, xt+1 ∈ xt − 10 : 1 : xt + 10, yt+1 ∈ yt − 10 : 1 : yt + 10 so, there161

are 100 possible candidates for the tracking step and the mistake possibility is equal to 99. In our162

work, we propose to use the feedback of the previous optical flow step as a dynamic search size for163

the current step so, if camera movement in t− 1 is slow, small search sizes closer to the pixels being164

tracked (xt, yt) are used. On the other hand, given fast camera movements small search sizes far to165

the pixels being tracked are used. This makes the tracking step compute accurate results without166

outliers, furthermore, the use of small search sizes decreases the computational resources usage. For167

practical purposes we use a search region size equal to 10 since it provides a good tradeoff between168

robustness/accuracy and computational resources. So, let ∆x,t−1(x, y), ∆y,t−1(x, y) be the optical flow169

at time t− 1, the search template for the current time is computed as shown in Eq. 7 - 8, where k is the170

template size.171

∆′x(x + u, y + v) =
u=k,v=k

∑
u=−k,v=−k

(mean
u=k,v=k

∑
u=−k,v=−k

∆x,t−1(x, y)) (7)
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∆′y(x + u, y + v) =
u=k,v=k

∑
u=−k,v=−k

(mean
u=k,v=k

∑
u=−k,v=−k

∆y,t−1(x, y)) (8)

3.4. Depth estimation172

In previous works it was demonstrated that monocular image sequences provide only partial173

information about the scene due to the computation of relative depth, unknown scale factor, etc. [37].174

In order to recover the depth in the scene it is necessary to have assumptions about the scene and its175

2-D images. In this work we assume that environment within the scene is rigid, then, given the optical176

flow of the scene (which represents pixel velocity across time), we suppose that depth in the scene is177

proportional to the pixel velocity. i.e., far objects have to be associated with a low velocity value while178

closer objects are associated with high velocity values. This could be considered as an extension of the179

epipolar geometry in which disparities values are proportional with the depth in the scene, as shown180

in Fig. 6.181

(a) depth from epipolar geometry (b) depth from motion

Figure 6. (a) Epipolar geometry: depth in the scene is proportional to the disparity value, i.e., far
objects have low disparity values while closer objects are associated with high disparity values. To
compute the disparity map (disparities for all pixels in the image) a stereo pair (two images with
epipolar geometry) are needed. (b) Single moving camera: in this work we suppose that depth in the
scene is proportional to the pixel velocity across the time. To compute the pixel velocity, optical flow
across two consecutive frames has to be computed.

So, let ∆x(x, y), ∆y(x, y) be the optical flow (pixel velocity) at t time, depth in the scene depth(x, y)182

is computed as proposed in Eq. 9, where depth(x, y) is the norm of the optical flow. In Fig. 7 an183

example of depth map computed by the proposed approach is shown.184

depth(x, y) = ||[∆x(x, y), ∆y(x, y)]|| =
√

∆x(x, y)2 + ∆y(x, y)2 (9)
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(a) input image (b) depth map

Figure 7. Depth estimation using the proposed algorithm

4. The FPGA architecture185

In Fig. 8, an overview of the FPGA architecture for the proposed algorithm is shown. The186

architecture is centered on an FPGA implementation where all recursive/parallelizable operations187

are accelerated in the FPGA fabric. First, the "frame buffer" unit reads the pixel stream (pix [7:0])188

delivered by the imager. In this block, frames captured by the imager are feed to/from an external189

DRAM memory and delivers pixel streams for two consecutive frames in parallel (pix1 [7:0], pix2 [7:0]).190

"Circular buffers" implemented inside the "Optical flow" unit are used to hold local sections of the191

frames that are being processed and allow for local parallel access that facilitates parallel processing.192

Finally, optical flow streams (pix3 [7:0], pix4 [7:0]) are used to computed the depth in the scene (pix7193

[7:0]). In order to hold optical flow previously computed (which are used for the dynamic search194

template computation) a second "frame buffer" is used. In the following subsections details about the195

algorithm parallelization are shown.196

Figure 8. FPGA architecture for the proposed algorithm

4.1. Frame buffer197

Images from the image sensor are stored in an external DRAM that holds an entire frame from the198

sequence, and later the DRAM data is read by the FPGA to cache pixel flow of the stored frame into199

circular buffers. In order to deliver two consecutive frames in parallel two DRAM chips in switching200

mode are used. i.e.:201

1. t1: DRAM 1 in write mode (storing frame 1), DRAM 2 in read mode (invalid values), frame 1 at202

output 1, invalid values at output 2.203

2. t2: DRAM 1 in read mode (reading frame 1), DRAM 2 in write mode (storing frame 1), frame 1 at204

output 2, frame 1 at output 2.205
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3. t3: DRAM 1 in write mode (storing frame 3), DRAM 2 in read mode (reading frame 2), frame 3 at206

output 2, frame 2 at output 2 and so on.207

In Fig. 9, an overview of the "frame buffer" unit is shown. Current pixel stream (pix [7:0]) is208

mapped at output 1 (pix1 [7:0]) while output 2 (pix2 [7:0]) delivers pixel flow for a previous frame.209

For the external DRAM control, data [7:0] is mapped with the read/write pixel stream, address [31:0]210

manages the physical location inside the memory and the ”we” and ”re” signals enable the write/read211

process respectively, as shown in Fig. 9.212

Figure 9. FPGA architecture for the "frame buffer" unit. Two external memories configured in switching
mode makes possible to store the current frame (time t) into a DRAM configured in write mode while
another DRAM (in read mode) deliver pixel flow for a previous frame (frame at time t− 1).

4.2. Optical flow213

For the "Optical flow" unit, we consider that flow estimation problem can be a generalization214

of the dense matching problem. i.e., stereo matching algorithms track (searching on the horizontal215

axis around the search image), all pixels in the reference image. Optical flow aims to track all pixels216

between two consecutive frames from a video sequence (searching around spatial coordinates of the217

pixels in the search image). Then, it is possible to extend previous stereo matching FPGA architectures218

to fulfil with our application domain. In this work, we extended the FPGA architecture presented in219

[24], since it has low hardware requirements and high parallelism level. In Fig. 10, the developed220

architecture is shown. First, the "curl" units deliver curl images in parallel, see Eq. 2. More details221

about the FPGA architecture of this unit are shown in Section 4.2.2. The "circular buffer" units are222

responsible for data transfers in segments of the image (usually several rows of pixels). So, the core of223

the FPGA architecture are the circular buffers attached to the local processors that can hold temporarily224

as cache, for image sections from two frames, and that can deliver parallel data to the processors. More225

details about the FPGA architecture of this unit are shown in Section 4.2.1. Then, given optical flow226

previously computed, 121 search regions are constructed in parallel, see Fig. 5 and Eq. 4 - 5. For our227

implementation, the search region size is equal to 10, therefore, the center of the search regions are all228

the sampled pixels within the reference region. Given the reference region in ft(x, y) and 121 search229

regions in ft+1(x, y), search regions are compared with the reference region (Eq. 3) in parallel. For230

that, a pixel-parallel/window-parallel scheme is implemented. Finally, in the "flow estimation" unit a231

multiplexer tree can determine the a, b indices that minimize Eq. 3, and therefore, the optical flow for232

all pixels in the reference image, using Eq. 6.233
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4.2.1. Circular buffer234

In [23] we proposed a circular buffer schema in which input data from the previous n rows of an235

image can be stored using memory buffers (block RAMs/BRAMs) until the moment when a n× n236

neighborhood is scanned along subsequent rows. In this work, we follow a similar approach to achieve237

high data reuse and high level of parallelism. Then, our algorithm is processed in modules where all238

image patches can be read in parallel. First, a shift mechanism "control" unit manages the read/write239

addresses of n + 1 BRAMs, in this formulation n BRAMs are in read mode and one BRAM is in write240

mode in each clock cycle. Then, data inside the read mode BRAMs can be accessed in parallel and241

each pixel within a n× n region is delivered in parallel a n× n buffer, as shown in Fig. 11, where242

the "control" unit delivers control data (address and read/write enable) for the BRAM modules, one243

entire row is stored in each BRAM. Finally the "data" unit delivers n× n pixels in parallel. In our244

implementation, there is 1 circular buffer of 13×13 pixels/bytes, 1 circular buffer of 17×17 and 2245

circular buffers of 3×3. For more details see [23].246

(a) General formulation of a 3× 3 circular buffer

(b) FPGA architecture for the circular buffers

Figure 11. The circular buffers architecture. For a n× n patch, a shift mechanism "control" unit manages
the read/write addresses of n + 1 BRAMs. In this formulation n BRAMs are in read mode and one
BRAM is in write mode in each clock cycle. Then, the n× n buffer delivers logic registers with all pixels
within the patch in parallel.
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4.2.2. Curl estimation247

In Fig. 12, the curl architecture is shown. First, one "circular buffer" holds 3 rows of the frame248

being processed and allows for local parallel access of a 3× 3 patch that facilitates parallel processing.249

Then, image gradients ( ∂ f (x,y)
∂x , ∂ f (x,y)

∂y ) are computed. Another "circular buffer" holds 3 rows of the250

gradient image previously computed and delivers a 3× 3 patch for the next step. Second derivatives251

( ∂
∂y

∂ f (x,y)
∂x , ∂

∂x
∂ f (x,y)

∂y ) are computed inside the "derivative" unit. Finally, the curl of the input image is252

computed by the "curl" unit.253

Figure 12. FPGA architecture for the "curl" unit

4.3. Depth estimation254

In Fig. 13, the depth estimation architecture is shown. Let "pix1 [7;0]", "pix2 [7:0]" be the pixel255

stream for the optical flow at current frame (Eq. 6); first, the "multiplier" unit computes the square value256

of the input data. Then, the "adder" unit carries out the addition process for both components (∆2
x, ∆2

y).257

Finally, the "sqrt" unit computes the depth in the scene, using Eq. 9. In order to achieve high efficiency258

in the square root computation, we adapted the architecture developed by Yamin Li and Wanming259

Chu [38]. This architecture uses a shift register mechanism and compares the more significant/less260

significant bits to achieving the root square operation without using embedded multipliers.261

Figure 13. FPGA architecture for the "depth estimation" unit

5. Result and discussion262

The developed FPGA architecture was implemented in an FPGA Cyclone IV EP4CGX150CF23C8263

of Altera. All modules were designed via Quartus II Web Edition version 10.1SP1 and, all modules264

were validated via post-synthesis simulations performed in ModelSim Altera. For all tests, we consider265

k = 3, s = 2 (Eq. 4 and 5) since these values provided a relatively "good" performance for real world266

scenarios . In practice, we recommend these values as reference. Higher k = 3, s = 2 values could267

provide higher accuracy, however, processing speed and hardware requirements can be increased. On268

the other hand, lower k = 3, s = 2 values should provide higher performance in terms of hardware269

requirements /processing speed but accuracy could decrease. The full hardware resource consumption270

of the architecture is shown in Table 1. Our algorithm formulation allows for a compact system271

design; it requires 66% of the total logic elements of the FPGA Cyclone IV EP4CGX150CF23C8. For272
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memory bits, our architecture uses 74% of the total resources, this represents 26 block RAMs consumed273

mainly in the circular buffers. These hardware utilization enables to target a relatively small FPGA274

device and therefore could be possible a small FPGA-based smart camera, suitable for real-time275

embedded applications. In the following subsections comparisons with previous work are presented.276

For optical flow, comparisons with previous FPGA-based optical flow algorithms are presented. For277

depth estimation, we presented a detailed discussion about the performance and limitations of the278

proposed algorithm compared with the current state of the art.279

5.1. Performance for the optical flow algorithm280

Table 1. Hardware resource consumption for the developed FPGA architecture.

Consumption/image resolution
Resource 640×480 320×240 256×256

Total logic elements 69,879 (59%) 37,059 (31%) 21,659 (18%)
Total pins 16 (3%) 16 (3%) 16 (3%)

Total Memory Bits 618,392 (15%) 163,122 (4%) 85,607 (2%)
Embedded multiplier elements 0 (0%) 0 (0%) 0 (0%)

Total PLLs 1 (25%) 1 (25%) 1 (25%)

In comparison with previous work, in Table 2 we present hardware resource utilization between281

our FPGA architecture and previous FPGA-based optical flow algorithms. There are several works282

[22,25–27] whose FPGA implementations aims to parallelize all recursive operations in the original283

mathematical formulation. Unfortunately, most popular formulations such as those based in KTL284

[28] or Horn-Schunck [33], have iterative operations that are hard to parallelize. As result, most285

previous works have relatively high hardware occupancy/implementations compared with a full286

parallelizable design approach. Compared with previous works, our FPGA architecture outperform287

most previous works, for similar image resolution, less logic elements and memory bits than [25,29],288

and less logic elements and memory bits than [27]. [27] decreases the memory usage by a multiscale289

coding which makes possible to store only half of the original image, however, this reduction involves290

pixel interpolation for some cases and this increases the logic elements usage. For [22], the authors291

introduced an iterative-parallel approach; this makes possible to achieve low hardware requirements292

but processing speed is low. Finally, for [26], a filtering-based approach makes possible to achieve low293

hardware requirements with relatively high accuracy and high processing speed but the algorithmic294

formulation requires to store several entire frames, requiring large external memory (near 250 MB for295

store 3 entire frames), this increase the system size and cost.296

Table 2. Hardware resource consumption comparisons

Method Logic elements Memory bits Image resolution

Martín et al. [22] (2005) 11,520 147,456 256×256
Díaz et al. [25] (2006) 513,216 685,670 320×240
Wei et al. [26] (2007) 10,288 256 MB (DDR) 640×480

Barranco et al. [27] (2012) 82,526 573,440 640×480
Honegger et al. [29] (2012) 49,655 1,111,000 376×240

Our work* 69,879 624,244 640×480
Our work* 37,059 163,122 320×240
Our work* 21,659 85,607 256×256

*Operating frequency = 50 MHz
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In Table 3, speed processing for different image resolutions is shown. We synthesized different297

versions of our FPGA architecture (Fig. 8), and we adapted the circular buffers in order to work with298

all tested image resolutions. Then, we carried out post-synthesis simulation in ModelSim Altera. In299

all cases, our FPGA architecture reached real-time processing. When compared with previous work300

(Table 4), our algorithm provided the highest speed processing, it outperforms several previous work301

[22,25–27,29], and for HD images, our algorithm reaches real-time processing: more than 60 fps for302

1280×1024 image resolution.303

Table 3. Processing speed for different image resolutions

Resolution Frames/s Pixels/s

1280×1024 68 90,129,200
640×480 297 91,238,400
320×240 1,209 92,880,000
256×256 1,417 92,876,430

*Operating frequency = 50 MHz

Table 4. Processing speed comparisons

Method Resolution Frames/s Pixels/s

Martín et al. [22] 256×256 60 3,932,160
Díaz et al. [25] 320×240 30 2,304,000
Wei et al. [26] 640×480 64 19,550,800

Barranco et al. [27] 640×480 31 9,523,200
Honegger et al. [29] 376×240 127 11,460,480

Our work 640×480 297 91,238,400

In Fig. 14, qualitative results for this work compared with previous work are shown. In a first304

experiment we used the ”Garden” dataset since previous work [22,25,26] used this dataset as reference.305

When compared with previous work (Fig. 14), our algorithm provides high performance under306

real world scenarios, it outperforms several previous work [22,25,26], quantitatively closer to the307

ground truth (error near to 9%) compared with other FPGA-based approaches. In a second experiment308

quantitative and qualitative results for the KITTI dataset [39], are shown. In all cases our algorithm309

provides high performance, it reaches an error near to 10% with several test sequences, as shown in310

Fig. 15. In both experiments we compute the error by comparing the ground truth Ωx(x, y), Ωy(x, y)311

(provided with the dataset) with the computed optical flow ∆x(x, y), ∆y(x, y). First, we compute the312

local error (the error magnitude at each point of the input image) as defined in Eq. 10; where i, j is the313

input image resolution. Then, a global error (Ξ) can be computed as shown in Eq. 11; where i, j is the314

input image resolution. ξ(x, y) is the local error at each pixel in the reference image and the global315

error (Ξ) is the percentage of pixels in the reference image in which local error is higher to zero.316

ξ(x, y) =
x=i

∑
x=1

y=j

∑
y=1

√
Ωx(x, y)2 + Ωy(x, y)2 −

√
∆x(x, y)2 + ∆y(x, y)2 (10)

Ξ =
100%

i · j ·
x=i

∑
x=1

y=j

∑
y=1

{
1 i f ξ(x, y) >= 0
0 otherwise

(11)

317
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(a) input image (b) ground truth (c) Martín et al. [22]

(d) Wei et al. [26] (e) Díaz et al. [25] (f) this work (error = 9%)

Figure 14. Accuracy performance for different FPGA-based optical flow algorithms.

(a) input image (b) ground truth (c) flow estimation (error = 11%)

(a) input image (b) ground truth (c) flow estimation (error = 12%)

(a) input image (b) ground truth (c) flow estimation (error = 11%)

(a) input image (b) ground truth (c) flow estimation (error = 12%)

Figure 15. Optical flow: quantitative/qualitative results for the KITTI dataset
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5.2. Performance for the depth estimation step318

In Fig. 15, quantitative and qualitative results for the KITTI dataset [39], are shown. In all cases319

our algorithm provides rough depth maps compared with stereo-based or deep learning approaches320

[40,41] but with real-time processing and with the capability to be implemented in embedded hardware,321

suitable for smart cameras. To our knowledge, previous FPGA-based approaches are limited; there are322

several GPU-based approaches but in these cases most of the effort was for accuracy improvements and323

real-time processing or embedded capabilities were not considered so, in several cases, details about324

the hardware requirements or the processing speed are not provided [42–44]. In Table 5 quantitative325

comparisons between our algorithm and the current state of the art are presented. For previous326

works, the RMS error, hardware specifications and processing speed were obtained from the published327

manuscripts while for our algorithm we computed the RMS error as indicated by the KITTI dataset,328

[45]. For accuracy comparisons, most previous works [42–44,46–48] outperform our algorithm (near329

15% more accurate than ours); however, our algorithm outperform all of them in terms of processing330

speed (a processing speed up to 128 times faster than previous works) and with embedded capabilities331

(making it possible to develop a smart camera/sensor suitable for embedded applications).332

Table 5. Depth estimation process in the literature: performance and limitations for the KITTI dataset.

Method Error (RMS) Speed Image resolution Approach

Zhou et al. [42](2017) 6.8% - 128×416 DfM-based* -
Yang et al. [46](2017) 6.5% 5 fps 128×416 CNN-based* GTX 1080 (GPU)

Mahjourian et al. [47](2018) 6.2% 100 fps 128×416 DfM-based* Titan X (GPU)
Yang et al. [43](2018) 6.2% - 830×254 DfM-based* Titan X (GPU)

Godard et al. [44](2018) 5.6% - 192×640 CNN-based* -
Zou et al. [48](2018) 5.6% 1.25 fps 576×160 DfM-based* Tesla K80 (GPU)

Our work 21.5% 192 fps 1241×376 DfM-based Cyclone IV (FPGA)
*DfM: Depth from Motion, CNN: Convolutional Neural Network

(a) input image (b) ground truth (c) depth estimation (error = 21%)

(a) input image (b) ground truth (c) depth estimation (error = 22%)

(a) input image (b) ground truth (c) depth estimation (error = 21%)

(a) input image (b) ground truth (c) depth estimation (error = 22%)

Figure 16. Depth estimation: quantitative/qualitative results for the KITTI dataset
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Finally, in Fig. 17 an example of 3D reconstruction using our approach is shown. Our depth maps333

allow for a real-time dense 3D reconstruction. Previous works like the ORB-SLAM [49] or LSD-SLAM334

[50] compute motion and depth in 2 to 7% of all image pixels, while ours compute 80% of the image335

pixels. Then, our algorithm improves by around 15 times the current state of the art, making possible336

real-time dense 3D reconstructions and with the capability to be implemented inside FPGA devices,337

suitable for smart cameras.338

339

(a) Input image

(b) Depth map

(c) 3D reconstruction

Figure 17. The KITTI dataset: Sequence 00; 3D reconstruction by the proposed approach. Our algorithm
provides rough depth maps (lower accuracy compared with previous algorithms) but with real-time
processing and with the capability to be implemented in embedded hardware; as result, real-time dense
3D reconstructions can be obtained and, these can be exploited by several real world applications such
as, augmented reality, robot vision and surveillance, autonomous flying, etc.
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6. Conclusions340

Depth from Motion is the problem of depth estimation using information from a single moving341

camera. Although several Depth from Motion algorithms were developed, previous works have low342

processing speed and high hardware requirements that limits the embedded capabilities. In order to343

solve these limitations in this work we have proposed a new depth estimation algorithm whose FPGA344

implementation deliver high efficiency in terms of algorithmic parallelization. Unlike previous works,345

depth information is estimated in real time inside a compact FPGA device, making our mathematical346

formulation suitable for smart embedded applications.347

Comparted with the current state of the art, previous algorithms outperform our algorithm in348

terms of accuracy but our algorithm outperforms all previous approaches in terms of processing speed349

and hardware requirements; these characteristics makes our approach a promising solutions for the350

current embedded systems. We believed that several real world applications such as augmented reality,351

robot vision and surveillance, autonomous flying, etc., can take advantages by applying our algorithm352

since it delivers real-time depth maps that can be exploited to create dense 3D reconstructions or other353

abstractions useful for the scene understanding.354

Author Contributions: Conceptualization, Abiel Aguilar-González, Miguel Arias-Estrada and François Berry.355

Investigation, Validation and Writing—Original Draft Preparation: Abiel Aguilar-González. Supervision and356

Writing—Review & Editing: Miguel Arias-Estrada and François Berry.357

Funding: This research received no external funding.358

Acknowledgments: This work has been sponsored by the French government research program "Investissements359

d’avenir" through the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), by the European Union through the360

program Regional competitiveness and employment, and by the Auvergne region. This work has been sponsored361

by Campus France through the scholarship program "bourses d’excellence EIFFEL", dossier No. MX17-00063 and362

by the National Council for Science and Technology (CONACyT), Mexico, through the scholarship No. 567804..363

Conflicts of Interest: The authors declare no conflict of interest.364

365

1. Hengstler, S.; Prashanth, D.; Fong, S.; Aghajan, H. MeshEye: a hybrid-resolution smart camera mote for366

applications in distributed intelligent surveillance. Proceedings of the 6th international conference on367

Information processing in sensor networks. ACM, 2007, pp. 360–369.368

2. Aguilar-González, A.; Arias-Estrada, M. Towards a smart camera for monocular SLAM. Proceedings of369

the 10th International Conference on Distributed Smart Camera. ACM, 2016, pp. 128–135.370

3. Carey, S.J.; Barr, D.R.; Dudek, P. Low power high-performance smart camera system based on SCAMP371

vision sensor. Journal of Systems Architecture 2013, 59, 889–899.372

4. Birem, M.; Berry, F. DreamCam: A modular FPGA-based smart camera architecture. Journal of Systems373

Architecture 2014, 60, 519–527.374

5. Bourrasset, C.; Maggianiy, L.; Sérot, J.; Berry, F.; Pagano, P. Distributed FPGA-based smart camera375

architecture for computer vision applications. Distributed Smart Cameras (ICDSC), 2013 Seventh376

International Conference on. IEEE, 2013, pp. 1–2.377

6. Bravo, I.; Baliñas, J.; Gardel, A.; Lázaro, J.L.; Espinosa, F.; García, J. Efficient smart cmos camera based on378

fpgas oriented to embedded image processing. Sensors 2011, 11, 2282–2303.379

7. Köhler, T.; Röchter, F.; Lindemann, J.P.; Möller, R. Bio-inspired motion detection in an FPGA-based smart380

camera module. Bioinspiration & biomimetics 2009, 4, 015008.381

8. Olson, T.; Brill, F. Moving object detection and event recognition algorithms for smart cameras. Proc.382

DARPA Image Understanding Workshop, 1997, Vol. 20, pp. 205–208.383

9. Norouznezhad, E.; Bigdeli, A.; Postula, A.; Lovell, B.C. Object tracking on FPGA-based smart cameras384

using local oriented energy and phase features. Proceedings of the Fourth ACM/IEEE International385

Conference on Distributed Smart Cameras. ACM, 2010, pp. 33–40.386
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