FPGA-based smart camera for accurate chlorophyll estimations

Abstract : In this work, a new chlorophyll estimation approach based on the reflectance/trans-mittance from the leaf being analyzed is proposed. First, top/underside images from the leaf under analysis are captured, then, the base parameters (reflectance/trans-mittance) are extracted. Finally, a double-variable linear regression model estimates the chlorophyll content. In order to estimate the base parameters, a novel optical arrangement is presented. On the other hand, in order to provide a portable device, suitable for chlorophyll estimation under large scale food crops, we have implemented our optical arrangement and our algorithmic formulation inside an FPGA-based smart camera fabric. Experimental results demonstrated that the proposed approach outperforms (in terms of accuracy and processing speed) most previous vision-based approaches, reaching more than 97% accuracy and delivering fast chlorophyll estimations (near 5ms per estimation).
Type de document :
Article dans une revue
International Journal of Circuit Theory and Applications, Wiley, 2018, 〈10.1002/cta.2489〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

Contributeur : Abiel Aguilar-González <>
Soumis le : dimanche 23 décembre 2018 - 21:32:49
Dernière modification le : jeudi 21 février 2019 - 10:34:09
Document(s) archivé(s) le : dimanche 24 mars 2019 - 13:01:07


Fichiers produits par l'(les) auteur(s)



Madain Perez-Patricio, Abiel Aguilar-González, Jorge Camas-Anzueto, Nestor Morales Navarro, Rubén Grajales-Coutiño. FPGA-based smart camera for accurate chlorophyll estimations. International Journal of Circuit Theory and Applications, Wiley, 2018, 〈10.1002/cta.2489〉. 〈hal-01964826〉



Consultations de la notice


Téléchargements de fichiers