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ABSTRACT

Recent random block-coordinate �xed point algorithms are
particularly well suited to large-scale optimization in sig-
nal and image processing. These algorithms feature random
sweeping rules to select arbitrarily the blocks of variables that
are activated over the course of the iterations and they allow
for stochastic errors in the evaluation of the operators. The
present paper provides new linear convergence results. These
convergence rates are compared to those of standard deter-
ministic algorithms both theoretically and experimentally in
an image recovery problem.

Index Terms� Block-coordinate algorithm, �xed-point
algorithm, linear convergence, stochastic algorithm

1. INTRODUCTION

Many algorithms used in applied mathematics and in signal
processing rely on �xed point methods. Such a method typi-
cally generates a sequence (xn)n2N in some underlying real
Hilbert space H via the iterative scheme

for n = 0; 1; : : :�
xn+1 = xn + �n

�
Tnxn � xn

�
; (1)

where (�n)n2N is a sequence of relaxation parameters in
[0;+1[ and (Tn)n2N is a sequence of operators from H to H.
Under suitable assumptions on the relaxation parameters and
the operators, the sequence (xn)n2N converges to a point in
the intersection F of the �xed point sets (Fix Tn)n2N [2,6�8].

In recent years, an increasing challenge in data analysis
has been to process massive data sets, especially in the �eld of
inverse problems. In high dimensional applications, the im-
plementation of (1) may raise serious computational issues.
In particular, it may be too demanding in terms of memory
requirements. An ef�cient strategy for overcoming this lim-
itation consists of splitting the variables in (1) into m blocks
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and to update only some of them at each iteration, while leav-
ing the others unchanged. More speci�cally, let us assume
that H is decomposed into the direct Hilbert sum

H = H1 � � � � � Hm (2)

where, for every i 2 f1; : : : ;mg, Hi is a real Hilbert space.
Then, for every n 2 N and every i 2 f1; : : : ;mg, the i-th
block of xn, denoted by xi;n 2 Hi can be updated or remain
unchanged. In this context, a block-coordinate approach aims
at devising ef�cient block update rules while guaranteeing
convergence. The extension of the convergence results ex-
isting for general �xed point algorithms to block-coordinate
forms is however quite delicate. In [9], a probabilistic frame-
work was developed for designing block-coordinate �xed
point algorithms that generate provably convergent sequences
and in which the blocks are activated in a random manner.
Other block-coordinate methods focused on specialized min-
imization problems, and featuring possibly weaker types of
convergence, include [1, 5, 12�14].

In this paper, a block-coordinate extension of (1) is inves-
tigated, in which the blocks are activated randomly. Condi-
tions ensuring the almost sure convergence of the iterates are
provided. We also show that, under a strict quasinonexpan-
siveness assumption, mean square convergence is obtained.
The same assumption allows us to derive linear convergence
results. One important practical question in this context is to
assess the impact of the block decomposition on the speed of
convergence. Our work provides theoretical elements to an-
swer this question.

In Section 2, we present our stochastic block-coordinate
�xed point algorithm. In Section 3, we provide general con-
vergence results for this algorithm. In Section 4, we further
investigate the mean square behavior of the algorithm over a
�nite number of iterations. This allows us to compare block-
coordinate approaches and non-coordinate ones in terms of
linear convergence rate. We also examine the impact of a
stochastic error in the computation of the involved operators.
In Section 5, we illustrate our theoretical results with experi-
ments in multicomponent image recovery [3].



2. BLOCK-COORDINATE FIXED POINT
ALGORITHM

To avoid technicalities, the underlying space H is assumed to
be �nite dimensional throughout this paper. Our results can
however be extended to the in�nite dimensional case [11].

For every n 2 N, the operator Tn : H ! H is block-
decomposed as

(8x 2 H) Tnx = (Ti;n x)16i6m (3)

where, for every i 2 f1; : : : ;mg, Ti;n : H ! Hi is measur-
able. The proposed block-coordinate algorithm is as follows.

Algorithm 2.1 Let (�n)n2N be a sequence in ]0; 1] and set
D = f0; 1gm r f0g. Let x0 and (an)n2N = (ai;n)16i6n
be H-valued random variables, and let ("n)n2N be identically
distributed D-valued random variables. Iterate

for n = 0; 1; : : :6664
for i = 1; : : : ;m�
xi;n+1 = xi;n + "i;n�n

�
Ti;n(x1;n; : : : ; xm;n)

+ai;n � xi;n
�
:

(4)

For every n 2 N and i 2 f1; : : : ;mg, "i;n is a bi-
nary random variable that signals the activation of the i-th
block Ti;n of the operator Tn and ai;n is an Hi-valued ran-
dom variable modeling some possible stochastic error. Such
error may arise because of �nite precision computations or
approximations to the operator Ti;n [10]. For every n 2 N,
let "n = ("i;n)16i6n. Note that, as a special case of Algo-
rithm 2.1, (1) is recovered if an � 0 and "n � (1; : : : ; 1),
almost surely.

3. ASYMPTOTIC ANALYSIS

3.1. Notation and assumptions

Given a sequence (xn)n2N of H-valued random variables in a
probability space (
;F ;P), the smallest �-algebra generated
by (x0; : : : ;xn) is denoted by �(x0; : : : ;xn), and we denote
by (Fn)n2N a sequence of sigma-algebras such that

(8n 2 N) Fn � F and �(x0; : : : ;xn) � Fn � Fn+1:
(5)

Let k � k denote the norm of H (the same notation will be
used also for other Hilbert spaces). L2(
;F ;P; H) denotes
the space of H-valued random variable x such that Ekxk2 <
+1.

In order to study the convergence of Algorithm 2.1, we
make the following assumptions.

Assumption 3.1
(i) F 6= ?.

(ii) infn2N �n > 0.

(iii) There exists a sequence (�n)n2N in [0;+1[ such thatP
n2N
p
�n < +1 and

(8n 2 N) E(kank2 jFn) 6 �n: (6)

(iv) For every n 2 N, En = �("n) and Fn are independent.

(v) For every i 2 f1; : : : ;mg, pi = P["i;0 = 1] > 0.

3.2. Convergence results

We �rst show that, under quasinonexpansiveness properties
for the operators (Tn)n2N, almost sure convergence results
are obtained. Recall that an operator T : H ! H with �xed
point set Fix T is quasinonexpansive if

(8z 2 Fix T)(8x 2 H) kTx� zk 6 kx� zk: (7)

Theorem 3.2 [9] Let (xn)n2N be a sequence generated by
Algorithm 2.1. Suppose that supn2N �n < 1 and that, for
every n 2 N, Tn is quasinonexpansive. Then, under Assump-
tion 3.1, the following hold:
(i) (Tnxn � xn)n2N converges to 0 almost surely.

(ii) Suppose that, almost surely, every sequential cluster point
of (xn)n2N belongs to F. Then (xn)n2N converges almost
surely to an F-valued random variable.

Remark 3.3
(i) The condition required in (ii) is actually met for many

�xed point algorithms for solving monotone inclusion
problems, e.g., the forward-backward algorithm or the
Douglas-Rachford algorithm [9, Section 5].

(ii) This convergence result can be extended to the more gen-
eral case when the operators (Tn)n2N are averaged oper-
ators [9, Corollary 3.8].

In order to obtain more accurate convergence results, we
make the strict contraction assumption

8
>>><

>>>:

F = fxg = f(xi)16i6mg
(8n 2 N)(8x = (xi)16i6m 2 H)

kTnx� xk2 6
mX

i=1

�i;nkxi � xik2;
(8)

where, for every n 2 N, (�i;n)16i6m are strictly positive pa-
rameters such that (8i 2 f1; : : : ;mg) supn2N �i;n < 1.

Theorem 3.4 [11] Let (xn)n2N be a sequence generated
by Algorithm 2.1. Suppose that x0 2 L2(
;F ;P; H) and
(Tn)n2N satisfy (8). Then, under Assumption 3.1, (xn)n2N
converges to x both in the mean square and almost sure
senses.



4. MEAN SQUARE BEHAVIOR

4.1. Mean square error bound

Let us assume in this section that Assumption 3.1 holds and
that the sequence (Tn)n2N satis�es (8). In order to provide
non asymptotic bounds on the mean square estimation error,
introduce a few parameters, namely

(8n 2 N)
8
>>>>>>>>><

>>>>>>>>>:

�n =
�n

min
16i6m

pi

�n = 1� min
16i6m

pi
�
1� �i;n

�

�n = 1� �n(1� �n) +
p
�n�n(1� �n + �n

p�n)

�n =
nX

k=0

"
nY

‘=k+1

�‘

#

�k
�
(1� �k + �k

p
�k)
p
�k + �k�k

�
:

We are now ready to state our main result:

Theorem 4.1 Under the same assumptions as in Theo-
rem 3.4,

(8n 2 N) Ekxn+1 � xk2

6
max

16i6m
pi

min
16i6m

pi

 
nY

k=0

�k

!

Ekx0 � xk2 + �n: (9)

The proof of this result is given in [11].

4.2. Behavior in the absence of stochastic errors

Let us consider the case when there are no errors, i.e., when
�n � 0. Set

(8n 2 N) � = 1� inf
n2N

�
�n min

16i6m
pi(1� �i;n)

�
2 [0; 1[:

(10)
Then we derive from Theorem 4.1 that

(8n 2 N) Ekxn � xk2 6 C �n; (11)

where

C =
max

16i6m
pi

min
16i6m

pi
Ekx0 � xk2: (12)

This shows that a linear convergence rate is obtained.
Let us now assess the impact of the activation proba-

bilities of the blocks. For simplicity, let us further assume
that the blocks are processed uniformly in the sense that
(8i 2 f1; : : : ;mg) pi = p. Set

� = 1� inf
n2N

�
�n
�

1� max
16i6m

�i;n
��
2 [0; 1[: (13)

Then
� = 1� (1� �)p: (14)

When p = 1, the upper bound in (14) on the convergence rate
is minimal and equal to �. This is consistent with the intu-
ition that frequently activating the coordinates should favor
the convergence speed as a function of the iteration number.
On the other hand, activating the blocks less frequently in-
duces a reduction of the computational load per iteration. In
Algorithm 2.1, the cost of computing Ti;n(x1;n; : : : ; xm;n),
here assumed to be independent of i and the iteration number
n, is on the average p times lower than in the standard non
block-coordinate approach. Let us introduce the quantity

%(p) = �
ln
�
1� (1� �)p

�

p
(15)

to evaluate the convergence rate normalized by the probability
p accounting for computational cost. Then (14) yields

�n = exp
�
� %(p)pn

�
: (16)

As n iterations of the block-coordinate algorithm have the
same computational cost as pn iterations of a non block-
coordinate approach, %(p) appears to be a relevant quantity
to evaluate the convergence rate normalized by the computa-
tional cost. The ratio �(p)=%(1) can thus be used to provide a
fair comparison of a block-coordinate approach versus a non
block-coordinate one.
Fig. 1 shows that, for values of � not too small, the decrease in
the normalized convergence rate remains limited with respect
to a deterministic approach in which all the blocks are acti-
vated. For example, if � > 0:2, then %(p)=%(1) 2 [0:49; 1].
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Fig. 1. Variations of %(p)=%(1) as a function of p for various values
of �.

4.3. In�uence of stochastic errors

Since �n ! 0, there exists n0 2 N such that e� =
supn>n0

�n < 1. Without loss of generality, we assume that



n0 = 0. Using standard majorizations, we obtain

(8n 2 N) �n 6
�

1 + sup
k2N

p
�k
� nX

k=0

p
�k e�n�k: (17)

Let us now assume that �n = O(n��) with � 2 ]2;+1[,
which is a choice compatible with Assumption 3.1(iii) and
consistent with standard stochastic approximation techniques.
It then follows from (17) that �n = O(n��=2) and, conse-
quently, Theorem 4.1, yields Ekxn � xk2 = O(n��=2). We
thus lose the linear convergence property. This illustrates the
fact that care should be taken in order to control the stochastic
error term in Algorithm 2.1.

5. SIMULATION EXAMPLE

We consider the problem of denoising a sequence of m = 4
color images of size 512� 512 acquired in burst mode. Each
color component of these images has been corrupted with a
zero-mean white Gaussian noise with standard deviation 60,
leading to an initial signal-to-noise ratio equal to 8.00 dB (see
top row of Fig. 2). We denote by ex = (exi)16i6m the original
image and by y = (yi)16i6m the noisy one. In this applica-
tion, for every i 2 f1; : : : ;mg, Hi = RK with K = 5122.
Given y, we want to generate an estimate x of ex by solving
the variational problem

minimize
x2H

mX

i=1

fi(xi) +
m�1X

i=1

g(xi+1 � xi) (18)

where, for every i 2 f1; : : : ;mg, fi is the proper lower-
semicontinuous convex function de�ned by

(8xi 2 Hi) fi(xi) =
1
2
kxi � yik2 + �h(Wxi): (19)

� 2 ]0;+1[ is an intra-image regularization parameter,
W 2 RN�N is an orthogonal wavelet decomposition per-
formed over 4 resolution levels using Symlet-4 Daubechies
wavelets, and h is an ‘1-norm applied on the wavelet detail
coef�cients. On the other hand, g is an 1=�-Lipschitz differ-
entiable convex function serving to perform an inter-image
regularization, which is de�ned as

(8u = (�k)16k6K 2 RK) g(u) = �
KX

k=1

p
j�kj2 + �2 (20)

where (�; �) 2 ]0;+1[2. Problem (18) is solved by a block-
coordinate forward-backward algorithm [9, Section 5.2],
which is a special case of Algorithm (4) with, for every
i 2 f1; : : : ;mg, n 2 N, and x 2 H,

Ti;n(x1; : : : ; xm) = proxfi

 

xi � 
mX

j=1
jj�ij=1

rg(xi � xj)

!

;

(21)

where  2 ]0;+1[. Since (fi)16i6m are 1-strongly convex,
(8) is satis�ed with (8i 2 f1; : : : ;mg) �i;n � 1=(1 + )2.
In our experiments, we set � = 84, � = 5, � = 0:5,  =
5:83 � 10�2, and �n � 1. The denoised images x obtained
after running the algorithm for a large number of iterations
with all the blocks activated (i.e. (8i 2 f1; : : : ;mg) pi =
1) is displayed on the bottom row of Fig. 2, resulting in an
improved signal-to-noise ratio equal to 17:54 dB.

We also show in Fig. 3 the variations of Ekxn � xk2 as a
function of the iteration number n, in three cases. The �rst
corresponds to the non block-coordinate case, whereas the
second (resp. third) corresponds to the stochastic case when
(8i 2 f1; : : : ;mg) pi = 0:8 (resp. 0:46). In the latter two
cases, the estimation of the mean square estimation error is
performed over 10 realizations. In all the cases, the algorithm
is initialized with the noisy images. The experimental plots
are consistent with the upper bound expressions derived in
(9). In particular, we observe that these ones provide good
estimates of the asymptotic convergence rate. As expected,
this rate value is lower when the probability of activation de-
cays. In Fig. 4, we compare the same simulation scenarios,
by plotting now the mean square estimation error as a func-
tion of the computation time. We observe then that the algo-
rithm has a similar convergence behavior in all cases. This is
in agreement with our discussion in Section 4.2 since, in our
experimental setting, the parameter � is close to 1.
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