
HAL Id: hal-01964550
https://hal.science/hal-01964550

Submitted on 22 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DoSE: Deobfuscation based on Semantic Equivalence
Ramtine Tofighi-Shirazi, Maria Christofi, Philippe Elbaz-Vincent, Thanh-Ha

Le

To cite this version:
Ramtine Tofighi-Shirazi, Maria Christofi, Philippe Elbaz-Vincent, Thanh-Ha Le. DoSE: Deobfuscation
based on Semantic Equivalence. SSPREW-8, Dec 2018, San Juan, United States. �hal-01964550�

https://hal.science/hal-01964550
https://hal.archives-ouvertes.fr

DoSE: Deobfuscation based on Semantic Equivalence
Ramtine Tofighi-Shirazi

Univ. Grenoble Alpes, CNRS, Institut Fourier, F-38000

Grenoble, France

Trusted Labs, Meudon, France

ramtine.tofighishirazi@trusted-labs.com

Maria Christofi

Oppida

Montigny-le-Bretonneux, France

maria.christofi@oppida.fr

Philippe Elbaz-Vincent

Univ. Grenoble Alpes, CNRS, Institut Fourier

F-38000 Grenoble, France

philippe.elbaz-vincent@univ-grenoble-alpes.fr

Thanh-ha Le

Trusted Labs

Meudon, France

thanhha.le@trusted-labs.com

ABSTRACT
Software deobfuscation is a key challenge in malware analysis to

understand the internal logic of the code and establish adequate

countermeasures. In order to defeat recent obfuscation techniques,

state-of-the-art generic deobfuscation methodologies are based on

dynamic symbolic execution (DSE). However, DSE suffers from

limitations such as code coverage and scalability. In the race to

counter and remove the most advanced obfuscation techniques,

there is a need to reduce the amount of code to cover. To that

extend, we propose a novel deobfuscation approach based on se-

mantic equivalence, called DoSE. With DoSE, we aim to improve

and complement DSE-based deobfuscation techniques by statically

eliminating obfuscation transformations (built on code-reuse). This

improves the code coverage. Our method’s novelty comes from the

transposition of existing binary diffing techniques, namely seman-

tic equivalence checking, to the purpose of the deobfuscation of

untreated techniques, such as two-way opaque constructs, that we

encounter in surreptitious software. In order to challenge DoSE, we

used both known malwares such as Cryptowall, WannaCry, Flame

and BitCoinMiner and obfuscated code samples. Our experimental

results show that DoSE is an efficient strategy of detecting obfusca-

tion transformations based on code-reuse with low rates of false

positive and/or false negative results in practice, and up to 63% of

code reduction on certain types of malwares.

KEYWORDS
Obfuscation, deobfuscation, reverse engineering, malware analysis,

symbolic execution, opaque predicate, control-flow graph, code

cloning

1 INTRODUCTION
Context. Software obfuscation [8] is an informationmanagement

strategy that aims at obscuring the meaning that can be drawn from

a software or a code, while preserving its functionality. Obfuscation

transformations can be used in specific contexts and for different

purposes, such as the improvement of software security, the protec-

tion against software alteration or the protection of the intellectual

property. However, since its main purpose is to protect software

against reverse-engineering, obfuscation is also widely used by

malwares to prevent their detection and analysis.

Thus, recent binary deobfuscation techniques [4, 12] based on

dynamic symbolic execution emerged in order to face obfuscation

techniques such as code virtualization [34, 35, 44] or control-flow

flattening [25, 45]. Generic deobfuscation methods have appeared

in order to deobfuscate protected binaries. Such techniques can

either extract protected code [19] or reduce the complexity of a

control-flow graph of an obfuscated binary [48], contributing in

this way to an improved analysis. The first step of most generic

deobfuscation methods consists in generating execution traces of a

protected binary. Using forward and backward taint analysis [43],

only the instructions manipulating the inputs are collected. Based

on these traces, an initial control-flow graph is built, which can

then be completed using dynamic symbolic execution (otherwise

called concolic execution) combined with a constraint solver.

Yadegari et al. [49], in their methodology, also use control de-

pendency analysis in order to handle obfuscation transformations

such as implicit flow, or call/return tampering. Code optimizations

and simplifications are then applied on the generated traces in

order to build a reduced control-flow graph. Salwan et al. [19],
[40] add transformations to the LLVM intermediate representation

[24], allowing them to build a deobfuscated binary directly from

the collected traces. This technique succeeds against most of the

Tigress challenges [7]. Other deobfuscation techniques and tools

[4, 28], specific to opaque predicates [10], are also based on dy-

namic symbolic execution. They consist in collecting traces of the

binaries and slices of instructions depending on a given predicate

to test its opaqueness. Using a constraint solver, they verify if the

branches of a predicate is feasible or infeasible in order to remove

any unreachable paths within the binary.

Motivation. Generic deobfuscation techniques based on DSE of-

ten needs execution trace, which requires inputs generation. This

may be time consuming and make code coverage and scalability

the main issues of those techniques. Moreover, in the context of

malware analysis, DSE is confronted to network event based com-

ponents and conditions (e.g. connection to a command and control

server) which makes the deobfuscation more difficult in terms of

scalability. Besides, novel obfuscation techniques exploit these lim-

itations to further hinder the analyses [3]. Their goal is to divide

the number of paths, forcing dynamic symbolic execution engines

to slow down when trying to cover all the code.

Contributions. We propose a novel deobfuscation method based

on semantic equivalence, called DoSE. The novelty of our contribu-

tion is built on the application of binary diffing techniques based

on semantic equivalence to deobfuscate binaries. Our transposition

of existing binary diffing techniques allows us to provide a concrete

methodology to statically detect and remove protections based on

code-reuse (c.f. Sections 2.1 to 2.3). Some of these protections are

not handled by current deobfuscation methodologies, while others

aim at preventing generic ones. Our approach, in contrary to the

current deobfuscation techniques, threats also novel obfuscation

transformations based on code-reuse and detects two-way opaque

predicates constructs for which no deobfuscation methodology ex-

ists. We implemented DoSE as an IDA plug-in and applied it to

different families of recent malwares in order to illustrate the sig-

nificant reduction of the amount of code to cover. We also discuss

how it can be used to combine and complement existing generic

deobfuscation techniques.

This paper is organized as follows:

• First we present background information about obfuscation tech-

niques based on code-reuse such as range dividers and two-way

opaque predicates, highlighting the need to analyze and deobfus-

cate them. We also discuss the utility of such methods in other

use cases such as white-box cryptography (Section 2).

• Second, we propose our methodology of Deobfuscation based on

Semantic Equivalence (i.e. DoSE). Formal definitions of our core

methodology are given (Section 3) along with some enhance-

ments improving the efficiency and precision of DoSE (Section

3.3).

• Third, we present concrete applications of DoSE, namely control-

flow graph reduction (Section 4.1), two-way opaque predicate

removal (Section 4.2) and cloned sub-functions detection (Sec-

tion 4.3). Each application contains a detailed explanation of our

approach and an evaluation on real-world malwares.

• Finally, we close this paper with a discussion on our perspectives

and conclusions regarding DoSE (Sections 5 and 6).

2 PROBLEM SETTING
Collberg et al. [9] define code obfuscation as follows:

Let P
T
−→ P ′ be a transformation T of a source program P into a

target program P ′. We call P
T
−→ P ′ an obfuscating transformation

if P and P ′ have the same observable behavior.

Consequently, the following conditions must be fulfilled for an

obfuscating transformation : if P fails to terminate, or terminates

with an error condition, then P ′ may or may not terminate; other-

wise, P ′ must terminate and produce the same output as P .
Several obfuscation transformations exist, each of them having

their own purposes : obfuscate the layout, the data or the control-

flow of a program. Other obfuscation techniques aim at countering

existing tools or known deobfuscation methods. A classification

of all the obfuscation techniques, as well as known deobfuscation

methods with their different purposes, has been provided by S.

Schrittwieser et al. [41].
In this section, we will study code cloning and its combination

with obfuscation techniques such as range dividers [3], before show-

ing why they cannot be detected by existing techniques and how

DoSE can contribute. We will then present the benefits of such

detection to the simplification of control-flow graphs, or even the

removal of bogus branch functions. In the next sections, we will

also focus on opaque predicates [10, 36] and more precisely on

two-way constructs since most recent opaque predicate detection

analyses and tools [4, 28] do not handle such type of constructions.

2.1 Code cloning
Code cloning or copying is a widely used obfuscation technique

[42] consisting in diversifying paths of the program in order to

increase the amount of code an attacker has to analyze. The cloned

parts of the code are often syntactically different but shall remain

semantically equivalent, meaning that, from a functional point of

view, the original portion of the code and its clone are the same.

To prevent them from being syntactically equivalent, code cloning

is often combined with other obfuscation transformations such as

instruction re-ordering or dead code insertion.

Code cloning, as an obfuscation technique, can also be used

implicitly with other obfuscation transformations such as control-

flow flattening or opaque predicates [8]. Other uses of code cloning

consist in duplicating small functions or in creating semantically

equivalent input-dependent paths within a binary in order to pre-

vent state-of-the-art generic deobfuscation techniques [48].

A good example of code cloning as an obfuscation transforma-

tion can be found in the most resilient challenge of the CHES 2017

"Capture the flag" WhibOx Contest [11], which consists in building

and evaluating white-box AES-128 [13] implementations. This chal-

lenge
1
, in order to prevent reverse-engineering, implements over

1200 small functions, referred to as sub-functions (i.e. branch func-

tions), among which 1180 are semantically equivalent (i.e. clones).
It also implements virtualization, dummy operations and renaming

to further obfuscate the code.

1 void wGzZ(uint oEHmwk , uint KCZu , uint MtCA) {ooGoRv [(

kIKfgI+oEHmwk)&262143]= ooGoRv [(kIKfgI+KCZu)

&262143]^ ooGoRv [(kIKfgI+MtCA)&262143];}

2 ...
3 void pZwSZ(uint eCFI , uint picb , uint aqQiUv) {ooGoRv [(

kIKfgI+eCFI)&262143]= ooGoRv [(kIKfgI+picb)&262143]^

ooGoRv [(kIKfgI+aqQiUv)&262143];}

Listing 1: Example of two cloned sub-functions from the
challenge adoring_poitras of the WhibOx contest.

Listing 1 illustrates two of these cloned sub-functions. We will

show in Section 4.3 that extending our approach to detect semanti-

cally equivalent sub-functions, can allow us to statically simplify

and deobfuscate binary code, and in this example, proceed to the

key extraction of the challenge.

For readers convenience, the next paragraphs recall the obfus-

cation techniques based on semantically equivalent code that are

discussed in the paper, namely range dividers and two-way con-

struct opaque predicates.

2.2 Range dividers
Range dividers is a novel obfuscation transformation, introduced

by Banescu et al. [3], which exploits the limitations of generic

deobfuscation techniques, such as path explosion, code coverage

and complex constraints. Range dividers are input-based condition

1
Source code is available at https://run.whibox.cr.yp.to:5443/show/candidate/777.

2

https://run.whibox.cr.yp.to:5443/show/candidate/777

branches that cause symbolic execution engines to explore more

feasible paths, thus slowing it down.

However, in order to preserve the functionality property of an ob-

fuscator, equivalent instruction sequences are used in all branches

of range dividers, as illustrated in Listing 2. Such construction il-

lustrates that being able to detect and merge cloned blocks allows

the deobfuscation of these obfuscation transformations, along with

reducing the number of paths to explore and the number of inputs

to generate. These properties are crucial for the construction of a

generic deobfuscation technique in order to have a wide code cover-

age and prevent too much slowdown from the symbolic execution

engine.

1 unsigned char *str = argv [1];

2 unsigned int hash = 0;

3

4 for(int i=0; i<strlen(str); str++, i++) {

5 char chr = *str;
6 if (chr > 42) {

7 hash = (hash << 7) ^ chr;

8 // semantically equivalent to else case

9 }

10 else {

11 hash = (hash * 128) ^ chr ;

12 // semantically equivalent to if case

13 }

14 }

15 if (hash == 809267)

16 printf ("win \n");

Listing 2: S. Banescu et al. illustration of range dividers
[3]

Our approach aims at removing this novel obfuscation technique

by detecting and grouping clones.

2.3 Two-way opaque predicates
Opaque predicates [10, 28, 36] are a fundamental illustration of the

implication of code-reuse in software obfuscation. Such transfor-

mations are defined as expressions whose values are known by the

defender, but hard to deduce for an attacker. There are different

kinds of opaque predicates. Collberg et al. defined PF , PT and P?

as being opaque predicates that are always evaluated to false, true
or unknown (either true or false) respectively.

The latter construction of opaque predicates P? are called two-
way opaque predicates and are a current limitation to state-of-the-

art analysis and tools that only handle predicates of type PT and PF .
Moreover, since they use constraint solvers to check feasibility or

infeasibility of each path, they are currently limited to arithmetic-

based predicates, while other types of opaque predicates (e.g.MBA-

based [51]) cannot be analyzed.

Figure 1 illustrates an example of a two-way predicate where

the value of (∗p)%2 depends on the allocated memory area. The

predicate can be evaluated to either true or false. However, both

branches are semantically equivalent, meaning that no matter the

value of the predicate, a same entry will produce the same output

for both branches. We will present how semantic-based compari-

son can be extended to detect and remove such constructions of

opaque predicates which are currently not handled by state of the

art deobfuscation techniques [4, 28].

Figure 1: Example of a two-way opaque predicate.

2.4 Binary diffing techniques
Detecting clones between binaries has a wide variety of applica-

tions such as software development [37, 47], software plagiarism

detection [26, 46], vulnerabilities exploration [6, 32, 33] and mal-

ware variant detection [2, 15, 18]. Different comparison approaches

have been published, either syntax-based (i.e. text-based) for ex-
ample by measuring instruction sequences [31] or using byte n-

grams [30], [20], metrics-based [15, 39] or structure-based [22, 52].

While the previous comparison techniques can be defeated with

obfuscation or even with code optimizations, more recent methods

use semantic-based approaches since, by definition, an obfuscation

transformation should preserve the logic of the original program.

Semantic-based comparison. Semantic-based comparison meth-

ods disassemble the binaries to be compared before extracting the

logic of their instructions (i.e. the semantics) using an intermediate

representation of the assembly language. From this intermediate

representation, one first analyzes the basic blocks
2
to express their

inputs to outputs behavior using symbolic execution [21]. Once

the input to output expressions are generated, a constraint solver

is used to check the equivalence between the basic blocks. This

method has been first introduced by Gao et al. [16] as a static anal-
ysis in order to detect plagiarism between a set of binaries. It has

since been modified, optimized [23] and extended to dynamic anal-

ysis combined with taint techniques, either to accept more noise

[26], or to be more efficient [27, 29]. Our work is built on these

approaches for the purpose of deobfuscating binaries. The novelty

of DoSE comes from the transposition and a combination of binary

diffing techniques, used statically and optimized for the purpose of

deobfuscation, as presented in the following section.

3 DOSE: DEOBFUSCATION BASED ON
SEMANTIC EQUIVALENCE

In this section, we present a new method for deobfuscation using

semantic equivalence comparisons. We call our methodology DoSE,

for Deobfuscation based on Semantic Equivalence. DoSE consists

in several steps: syntactic equivalence, semantic equivalence and

conditional equivalence. We start by formalizing syntax-based basic

blocks comparisons to afterwards introduce the semantic-based

approach. Then, we present our improvements based on conditional

2
A basic block is a straight-line code sequence with only one entry point and one exit

point.

3

equivalence checking to prevent false positives, combined with

normalization and optimizations steps to eliminate false negatives,

and prevent too much slowdown. DoSE, in one hand simplifies

and deobfuscates the code and on the other hand, makes generic

DSE-based deobfuscation techniques more scalable and efficient.

3.1 Syntax-based basic blocks comparison
Syntax-based comparison relies on the assembly code of the basic

blocks. In order to define the syntactic equivalence between two

basic blocks, we start by defining the inclusion of a basic block

into another. Furthermore, we define an inclusion score in order

to quantify the number of included instructions. In the following

definitions we use the notations syn for syntax, sem for semantic

and cond for conditional.

Definition 1: Syntactic Inclusion. Let B and B′ be two basic blocks
and let In be the n-th instruction of B and Im them-th instruction

of B′, m, n ∈ N. We say that B is syntactically included in B′ if
for all In ∈ B, there exists a unique Im ∈ B′ such that Im =syn

In ,
withm = n, and we set B ⊂

syn
B′. In other words, Im =syn

In with

m = n means that we have exactly the same instruction at the same

position (i.e. same order).

Definition 2: Syntactic Inclusion Score. In order to measure the

inclusion of two basic blocks B and B′, we need to define a score.
Let σ

syn
(B,B′) be the syntactic inclusion score of B compared to B′,

N the number of equivalent instructions between B and B′, and |B |
and |B′ | the number of instructions of B and B′ respectively. Then

σ
syn
(B,B′) = N

|B | . As an example, σ
syn
(B,B′) = 1 means that all the

instructions of B are included in B′.

Definition 3: Syntactic Equivalence. Let B and B′ be two basic

blocks. If B ⊂
syn

B′ and B′ ⊂
syn

B then we write B =
syn

B′, meaning

that both basic blocks are equivalent (i.e. B is a clone of B′ and vice

versa). Syntactic equivalence between two basic blocks can also be

represented by σ
syn
(B,B′) = σ

syn
(B′,B) = 1.

Obviously, such method is not resilient to obfuscation techniques

and the probability that we will find equivalent basic blocks based

on their syntax may be low. However, in the context of an evalua-

tion, starting by simple methods is coherent since it can sometimes

discard semantic-based analysis, which requires more resources

and more time.

3.2 Semantic-based basic blocks comparison
As opposed to syntactic equivalence, comparisons based on seman-

tic equivalence rely on an intermediate representation of a basic

block, since it uses symbolic execution combined with a constraint

solver in order to verify the equivalence between the computed

expressions. Thus, the inputs of basic blocks are treated as sym-

bols while the output of the symbolic execution returns a set of

expressions that represents the input-output relations of these basic

blocks.

Definition 4: Semantic Inclusion. Let B and B′ be two basic blocks
and let IRB and IRB′ be the intermediate representation of B and

B′ respectively after their symbolic execution. Let XB and YB′ be
two sets of all outputs expressions of IRB and IRB′ respectively. Let

xi ∈ XB be the i-th output expression of IRB and yj ∈ YB′ be the
j-th output expression of IRB′ , i , j ∈ N (note that i = j or i , j).
We can say that B is semantically included in B′ if ∀xi ∈ XB , there

exists a unique yj ∈ YB′ such that yj =sem
xi and we set B ⊂

sem
B′.

The semantic inclusion between two expressions is verified using a

SMT solver.

Definition 5: Semantic Inclusion Score. Based on the same prin-

ciple as for the syntax-based comparison, we define a score for

semantic-based basic block inclusion. Let σ
sem
(B,B′) be the seman-

tic inclusion score function of B compared to B′, N the number of

equivalent output expressions and |XB | and |YB′ | the number of out-

put expressions of B and B′ respectively. Then σ
sem
(B,B′) = N

|XB |
.

Definition 6: Semantic Equivalence. As in the definition of syntac-

tic equivalence, two semantically equivalent basic blocks, or cloned

basic blocks, can be represented by σ
sem
(B,B′) = σ

sem
(B′,B) = 1,

meaning that B ⊂
sem

B′ and B′ ⊂
sem

B. Our approach tries all pos-

sible pairs to find if there exists a bijective mapping between the

output expressions of B and B′.

In order to achieve a complete analysis of two basic blocks, we

start by comparing their syntax. If the syntax-based comparison

fails, we use the semantic equivalence along with our conditional

equivalence step. The latter is an improvement which is introduced

in Section 3.3.

3.3 Minimizing false positive/negative rates
As it is the case for any analysis, false positive or false negative

results may occur. Our objective is to reduce them as much as

possible.

3.3.1 False positive prevention: Conditional-equivalence. A false

positive means that two basic blocks labeled as clones may ac-

tually have different purposes. Since our context requires strict

equivalence in order to remove cloned blocks within a function,

it is important to have a good correctness. Our semantic equiva-

lence step is efficient in finding functionally equivalent portion of

code but regardless of the memory area used, or of the function

called within the blocks. Thus, in some cases, functionally equiva-

lent codes may use different values which may generate different

outputs. Such example is given in Figure 2, where the two blocks

compute the same operations using different memory areas.

Figure 2: Example of two functionally equivalent basic block
using different memory areas, from Vipasana ransomware.

We choose to treat such type of code as false positives, since it

is statically undecidable whether two different memory areas used

4

contain the same values, or two calls to different functions return

the same values. Thus, our conditional equivalence step consists

in replacing all inputs (e.g. memory areas, registers, return value

of a function) by randomly generated concrete values in order to

verify whether two blocks compute the same outputs. If it is the

case, then we can conclude that the two blocks are equivalent under

a given condition (i.e. the concrete value). A similar technique is

already used in the context of binary diffing [29]. Definitions of

the conditional inclusion score and equivalence are similar to the

semantic definitions and are given below.

Definition 7: Conditional Inclusion. Let B and B′ be two basic

blocks and let IRB and IRB′ be the intermediate representation of B
and B′ respectively after their symbolic execution. Let XB and YB′

be two sets of all outputs expressions of IRB and IRB′ respectively.
Let xi ∈ XB be the i-th output expression of IRB and yj ∈ YB′ be
the j-th output expression of IRB′ , i , j ∈ N (note that i = j or i , j).
Let C be a concretization function which replaces all symbols of a

given output expression x by random concrete values. We say that

B is conditionally included in B′ if for all xi ∈ XB , there exists a

unique yj ∈ YB′ such that C(yj) =cond
C(xi) and set B ⊂

cond
B′.

Definition 8: Conditional Inclusion Score. Let σ
cond
(B,B′) be the

conditional inclusion score function of B compared to B′, N the

number of equivalent output expressions injected with concrete

values and |XB | and |YB′ | the number of output expressions of B

and B′ respectively such that σ
cond
(B,B′) = N

|XB |
. As an example,

if σ
cond
(B,B′) = 1 then we say that B ⊂

cond
B′, meaning that B is

conditionally included in B′.

Definition 9: Conditional Equivalence. Two conditionally equiva-

lent basic blocks can be represented by σ
cond
(B,B′) = σ

cond
(B′,B) =

1, meaning that B ⊂
cond

B′ and B′ ⊂
cond

B under the condition of

the injected concrete values.

Conditional equivalence step can be added after the comparisons

based on semantic equivalence in order to confirm that two given

basic blocks do represent clones. This step allows DoSE to find

codes that are equivalent with respect to the values used and also

to prevent false positives. Since DoSE aims at contributing and

completing generic deobfuscation techniques based on dynamic

analysis, we can note that the blocks that are semantically but not

conditionally equivalent need further analysis during the dynamic

analysis in order to verify their equivalence.

3.3.2 False negative prevention: Normalization and optimizations.
False negatives are another downside of comparisons based on

semantic equivalence. They represent basic blocks that are not

considered as clones (i.e. semantically equivalent) when in fact they

are. This limitation does not impact on the quality of our approach

as all results will indeed be real clones, but its efficiency may be

questioned as some clones may not be detected. In order to prevent

this issue, we add some normalization steps for both syntax and

semantic equivalence comparisons.

The normalization step for syntax-based comparisons aims at

removing any unnecessary instructions (such as nop instructions)

or destination addresses for jmp instructions (since two cloned basic
blocks may jump to different blocks located at different addresses).

Moreover, we symbolize the registers used by the instructions in

order to handle register substitution without using the semantic

equivalence step. This allows us to have better performances since

we do not query the SMT solver. An illustration of the syntactic

normalization is given in Figure 3.

Figure 3: Normalization of the syntax of two blocks which
are cloned.

The normalization phase for semantic equivalence comparisons

consists in the following steps:

• symbolize all variables, registers, memory access used by

the basic blocks;

• keep the concrete values of immediate values;

• use constant propagation on the intermediate language;

• use arithmetic simplifications on the intermediate language.

These optimization and simplification techniques allow us to

improve the precision of DoSE in the purpose of preventing false

negative results, as well as optimizing the performances. Table 1

illustrates the differences in execution time and false negatives and

positives results of our method, before and after our improvements.

Our improvements are an important step toward the detection

and removal of obfuscation transformations based on code-reuse.

The next section presents some applications of our methodology

along with their evaluation.

4 APPLICATIONS
In this section we present some concrete applications of DoSE. We

show how it can be used to reduce control-flow graphs, detect and

remove two-way opaque predicates as well as cloned sub-functions.

For each application, we illustrate our process based on DoSE,

along with their respective evaluations. DoSE is implemented as

an IDA Pro [17] plug-in, based on the reverse-engineering frame-

work Miasm [14] in order to be easily integrated in other reverse-

engineering and deobfuscation frameworks. All our evaluations are

done on a Windows 7 virtual machine, using 8gb of RAM, and a

Intel vPro i7 CPU.

4.1 Reducing control-flow graphs
Reducing control-flow graphs by grouping similar nodes can ease

the understanding of the code and eliminate some paths for fur-

ther dynamic analysis, thus contributing to generic deobfuscation

techniques. Since some obfuscation transformations generate equiv-

alent basic blocks, we extended our methodology to the static reduc-

tion of control-flow graphs by detecting and grouping such blocks.

Moreover, in another context, e.g. the evaluation of cryptographic

white-box implementations, there is a need for clone removal.

4.1.1 Methodology. Our methodology for reducing control-flow

graphs is based on static clone detection and is divided in two parts.

The first part collects needed information about the obfuscated

5

Sample Function (#FP, #FN) before time (s) before (#FP, #FN) after time (s) after
Asprox 0x10009b82 (5,0) 48.03s (0,0) 18.14s

Asprox 0x1000be35 (32,2) 1851.09s (0,0) 243.32s

Flame 0x1003177b (6,1) 230.84s (0,0) 26.14s

WannaCry 0x4043b6 (2,0) 124.06s (0,0) 23.48s

CryptoWall 0x401100 (3,11) 227.57s (0,3) 67.21s

Vipasana 0x429954 (6,7) 106.95s (0,5) 24.40s

Table 1: Differences of false positives, false negatives results and execution time before and after our improvements (i.e.
conditional-equivalence, normalization and optimizations), based on control-flow graph reduction of several malware func-
tions.

function to analyze. This information is then transmitted to the

second step which performs the comparisons in order to detect

clones. In the remaining of this section, we will describe these

steps.

Basic blocks collection. Given a function F that we want to an-

alyze, we start by collecting all basic blocks of the function. For

each basic block B of F , we gather both its instructions IB and its

associated intermediate representation IRB . The collected instruc-

tions will be normalized in order be compared syntactically. Their

intermediate language will be first simplified, to prevent any false

positive results, before being used as input for the symbolic exe-

cution engine. The latter will return the expressions that illustrate

the inputs and outputs behavior (i.e. functionality) of a basic block.
These expressions, that we note XB , will then be processed by our

normalization phase before being compared to find semantic equiv-

alences. All of the basic blocks are represented by a structure that

will contain all gathered information (i.e. IB , IRB andXB). Based on

this structure, we initialize a list L containing the collected informa-

tion for each B, so that it can be used as input for the comparison

method.

Algorithm 1 illustrates the pseudo-code for our static clone de-

tection technique, given an obfuscated function F . More precisely,

it shows how information is gathered and analyzed in order to

perform syntactic along with semantic equivalence comparisons.

Moreover, it includes both simplification and normalization steps

in order to prevent any misleading results (i.e. false positives and
false negatives).

Basic blocks comparisons. Once the first step is done, we proceed

to the comparisons, using the list L of all basic block structures.

Once the two basic blocks named B and B′ are selected, we check
whether they are located at the same addresses within the binary

or if they already have been analyzed in order to avoid unnecessary

computations. Since we require a bijective mapping between B and

B′, we can also verify whether these two blocks have the same

number of instructions (i.e. |B | = |B′ |) or the same number of

output expressions (i.e. |XB | = |YB′ |). If two blocks pass those tests,

we proceed to the syntactic comparison. If the syntactic inclusion

score is 1 for B compared to B′, and vice-versa, then we assume

that these blocks are clones and we add them to our dictionary C
which groups all detected cloned blocks. However, if the syntax-

based comparison fails at determining that B and B′ are equivalent,
we proceed to the semantic equivalence comparison in order to

verify the inclusion between the selected blocks. If those blocks are

Algorithm 1 Control-flow graph reduction

1: procedure Clone detection(F : a function)
2: Initialize a dictionary C to store clones

3: Initialize a list L of basic block structures

4: for each basic block B in F do
5: IB ← GetInstructions(B)
6: NormalizeInstructions(IB)
7: I RB ← GetIntermediateLanguage(IB)
8: Simplify(I RB)
9: XB ←SymbolicExecution(I RB)
10: NormalizeSemantics(XB)

11: L[B] ←< IB, I RB, XB >

12: end for
13: C ←Syntactic and semantic equivalence comparisons(L)
14: // see Algorithm 2.

15: return C
16: end procedure

semantically equivalent, we use the concretization function in order

to prevent false positives. This function replaces the symbols of each

expression by concrete values in order to check for a conditional

equivalence. Only if B and B′ are equivalent both semantically

and conditionally, we assume that the basic blocks are clones and

update the dictionary C . If one of those verification steps fails, we

consider that the selected basic blocks are not clones and move on

to the next couple of basic blocks. The different verification steps

are described in Section 3.

Algorithm 2 illustrates the second part of our methodology. It

returns the dictionaryC of detected clones in order to remove them.

The next sectionwill present the evaluation of semantic equivalence

comparison for the purpose of reducing control-flow graphs.

4.1.2 Evaluations. To illustrate the efficiency of our analysis,

we used several malware samples
3
among Flame [5] and Cryp-

towall [50] as shown in Table 2. These malwares were selected

according to their availability. We analyzed some functions of these

samples, with their entry-points listed in column "Function EP" for

reproducibility. These functions have been selected for their large

sizes in order to measure the scalability of DoSE. Column "# Nodes"

indicates the number of basic-blocks of each function before the

application of DoSE whereas "% Reduction" illustrates the efficiency

of our approach for detecting and grouping semantically equivalent

basic blocks within the control-flow graph of each function. Finally,

the last columns show a pair representing the false positive and

3
Samples are available at https://github.com/lamaram/DoSE

6

https://github.com/lamaram/DoSE

Sample Type Function EP # Nodes % Reduction (#FP, #FN) time (s)
BitCoinMiner Trojan 0x40a900 97 52.58% (0,0) 25.42s

0x407240 697 47.06% (0,0) 933.49s

Hupigon Backdoor 0x49935c 321 58.57% (0,0) 141.00s

Asprox Trojan 0x1000be35 436 41.97% (0,0) 243.32s

0x10009b82 57 45.61% (0,0) 18.14s

0x100096a5 67 20.90% (0,0) 14.01s

0x100091ac 33 39.39% (0,0) 1.38s

Dircrypt Trojan 0x409c70 113 33.63% (0,0) 13.14s

0x4060c0 44 18.18% (0,0) 3.39s

0x406da0 30 23.33% (0,0) 2.57s

Vipasana Ransomware 0x429954 95 25.26% (0,5) 24.40s

0x425b50 80 40.00% (0,0) 6.46s

0x424fc8 64 25.00% (0,0) 7.51s

0x4278a8 63 23.81% (0,0) 20.14s

0x42d578 60 33.30% (0,0) 6.09s

0x4399f8 123 63.41% (0,0) 43.52s

0x42be04 59 50.85% (0,0) 6.20s

Cryptowall Ransomware 0x401100 179 44.13% (0,3) 67.21s

Flame Worm 0x100586ea 365 21.64% (0,0) 58.44s

0x1003177b 157 29.30% (0,0) 26.14s

0x10023fd6 29 31.03% (0,0) 4.14s

0x1006e7b9 100 36.00% (0,0) 15.60s

0x1004949f 54 37.04% (0,0) 3.26s

WannaCry Ransomware 0x4043b6 123 16.26% (0,0) 23.48s

0x403cfc 98 35.71% (0,0) 12.30s

Dexter Trojan 0x404ad0 86 27.91 % (0,0) 25.55s

0x402050 33 18.18% (0,0) 5.00s

OnionDuke Trojan 0x10005b60 76 38.16% (0,0) 11.56s

Table 2: Evaluation of static control-flow graph reduction using DoSE

Algorithm 2 Basic blocks comparisons

1: procedure Syntax and semantic eqivalence comparisons(L: List
of basic blocks)

2: Initialize a dictionary C of clones

3: for each basic block B in L do
4: for each basic block B′ in L do
5: if AlreadyComputed(B′, B) = False then
6: if σsyn(B, B′) = σsyn(B′, B) = 1 then
7: C[B] ← B′ // add B′ as a clone of B
8: C[B′] ← B // add B as a clone of B′

9: else if σsem(B, B′) = σsem(B′, B) = 1 then
10: if σcond(B, B′) = σcond(B′, B) = 1 then
11: C[B] ← B′

12: C[B′] ← B
13: else
14: pass // B′ is not a clone of B .
15: end if
16: else
17: pass // B′ is not a clone of B .
18: end if
19: end if
20: end for
21: end for
22: return C
23: end procedure

false negative results and also the execution time of the analysis.

For each application of DoSE, positive and negative results were

verified by using heuristics based on the transitivity property of

an equivalence. The inclusion scores are also used to facilitate the

detection of false negatives. We also proceeded with mainly manual

reverse engineering to verify our results.

As shown in Table 2, DoSE can reduce in most of the cases one-

third of the malware functions control-flow graphs with no false

positives in practice and only a few false negative results. In some

cases, such as Vipasana sample, we reduced 63.41% of a function’s

control-flow graph. Figure 4 illustrates the application of DoSE on

Cryptowall main function. The tagged CFG illustrates the detected

cloned blocks (with one color for each group). We can see that

DoSE is quite efficient in reducing the amount of paths to cover

(46 similar paths are removed), and grouping cloned blocks (78 of

the 179 basic blocks are clones) in an acceptable amount of time

(approximately 1 minute). DoSE can also scale to more complex

functions, as illustrated with the BitCoinMiner sample, on which

we are able to reduce 47.06% of the 697 basic-blocks with no false

positive/negative results, in approximately 15 minutes.

4.1.3 Limitations. One limitation of DoSE is its block-centric

approach. Indeed, some malware such as the Vipasana ransomware

combine opaque predicates with code cloning, thus some clones are

divided into several basic blocks with no direct successors. Since

DoSE compares each basic block, such type of clones is not detected

which explains the false negatives results in our evaluations. We

believe that by extending our analysis on paths, it will be possible

7

Figure 4: Example of CryptoWall main function control-
flow graph (CFG) reduction.

to handle such limitation. However, the cost of such analysis will

be greater and could lead to path explosion issues.

4.2 Detecting two-way opaque predicates
As discussed in Section 2.2, P? are excluded from known analysis.

In this section, we propose a methodology, based on DoSE in order

to handle two-way opaque predicates. The aim of this methodology

is to detect and remove all P? without even making any assumption

on their type. Since we do not try to solve the predicate but rather

check for semantic equivalence between the paths generated from

it, this means that the opaque predicate can be of any construct

(e.g. MBA-based, arithmetic-based, alias-based, etc.).

4.2.1 Methodology. Ourmethodology to detect two-way opaque

predicates is composed of three steps. Before presenting these steps,

we present some notations. We denote by ϕn the n-th predicate of a

binary B, such that ϕn ∈ B, n ∈ N. Let ϕ
F
n be the false branch of a

given ϕn and let ϕTn be its true branch. We denote by ωF
n and ωTn all

paths generated from respectively ϕFn and ϕTn to a common basic-

block within their function. Based on these notions, we proceed as

follows:

Path-constraints collection. The first step consists in identifying

all ϕn , n ∈ N, within B. If an identified ϕn is a two-way predicate,

then all paths ωTn , generated from the true branch ϕTn , are semanti-

cally equivalent to all paths ωF
n , generated from the false branch

ϕFn . We will use this property afterwards.

Generating paths. After collecting all paths constraints (i.e. pred-
icates), we want to generate all paths ωTn and ωF

n from respectively

ϕTn and ϕFn to their first common basic-block, using a depth-first

search algorithm as illustrated in Algorithm 3. Indeed, if ϕn is a

two-way opaque predicate, then ωTn and ωF
n must end either on a

common block or on a returning block
4
. Moreover, since we aim at

4
A returning block refers to a basic block that exits a function.

comparing basic blocks, we iterate only once over an encountered

loop.

Algorithm 3 Two-way predicate detection

1: procedure Two-way predicate detection(D : disassembly of the

targeted binary)

2: Initialize a dictionary R to store the results

3: for each ϕn in D do
4: ωT ← GetTruePaths(ϕn)
5: ωF ← GetFalsePaths(ϕn)
6: R[ϕn] ← PathEquivalenceChecking(ωT , ωF)

7: end for
8: return R
9: end procedure

Checking path equivalence. Our final step consists in comparing

all basic blocks of the same depth from ωTn and ωF
n . However, we

do not only check for semantic and conditional equivalence, but

also for inclusions (cf. Section 3). For these purposes, let us note

S
eq
the equivalence score between two given ωTn and ωF

n , and let us

note S
inc

their inclusion score. S
eq
and S

inc
represent the amount of

coupled basic blocks that are equivalent and included respectively.

We define bymax andmin functions that return respectively the

maximum and minimum value between two numbers. Moreover,

we define a total score S
tot
such that:

S
tot
= S

eq
+ S

inc

We note that if an equivalence is detected between two paths, we

increment S
eq
without studying their inclusion. Thus, S

tot
equals

at most the number of ωTn or ωF
n .

S
tot

6min(#ωTn , #ω
F
n).

In order to check the paths equivalence and inclusion, we com-

pare all Bm with B′m such that Bm ∈ ωTn , B
′
m ∈ ωF

n and m ∈

[1,min(#ωTn , #ω
F
n)].

Then, three cases could occur:

• Bm and B′m are syntactically equivalent; then we increment

the score S
eq
.

• Bm and B′m are semantically and conditionally equivalent;

then we increment the score S
eq
.

• Bm is semantically and conditionally included (but not equiv-

alent) to B′m ; then we increment the score S
inc

(likewise if

B′m is included in Bm).

Algorithm 4 describes this process. Based on the calculated score,

we can verify if a given predicate is a two-way opaque construct:

• if S
eq

> S
inc

and S
tot
= max(#ωTn , #ω

F
n) then we mark the

predicate as a two-way opaque construct.

• if S
eq
< S

inc
and S

tot
= max(#ωTn , #ω

F
n) then we mark the

predicate as a probable two-way opaque construct. This

label means that, since there is more inclusions than equiv-

alences, a false positive is likely. Thus, we suggest in case

of a probable two-way opaque predicate to verify the result

manually.

• if S
tot
< max(#ωTn , #ω

F
n) and Stot

> 0 then we mark the

predicate as normal and we propose to group equivalent

basic blocks to reduce the control-flow graph.

8

Case study P ? P T
, P F EncD EncA EncL Flat Virt (#OP, #FP, #FN) time avg.(s)

Case 1 (A, B, C, D) ×10 (10,0,0) 4.54s

Case 2 (A, B, C, D) ×4 ×4 (4,0,0) 2.32s

Case 3 (A, B, C, D) ×4 X (4,0,0) 2.38s

Case 4 (A, B, C, D) ×4 X (4,0,0) 4.04s

Case 5 (A, B, C, D) ×4 X (4,0,0) 3.32s

Case 6 (A, B, C, D) ×6 X X (6,0,0) 4.46s

Case 7 (A, B, C, D) ×6 X X X (6,0,0) 5.16s

Case 8 (B, C, D) ×8 ×4 X X X (7,1,1) 12.45s

Case 8 (A) ×8 ×4 X X X (8,0,0) 13.28s

Case 9 (A, B, C, D) ×6 X (6,0,0) 7.84s

Case 10 (A, B, C, D) ×10 ×4 X X X X (8,1,2) 29.09s

Case 11 (B, C) ×4 X (4,0,0) 4.54s

Case 11 (A, D) ×4 X (3,0,1) 3.31s

Case 12 (A, B, C, D) ×8 X X (6,0,2) 9.13s

Case 13 (B, C) ×10 ×4 X X X X X (8,0,2) 31.21s

Case 13 (A) ×10 ×4 X X X X X (9,2,1) 32.28s

Case 13 (D) ×10 ×4 X X X X X (7,1,3) 31.48s

Table 3: Evaluation on the generated use cases with Tigress.

Algorithm 4 Paths equivalence checking

1: procedure Paths eqivalence checking(ωT
n : true path, ωF

n : false

path)

2: Seq, Sinc, Stot = 0, 0, 0

3: for each basic blocks B , B′ in ωT
n , ω

F
n do

4: if σsyn(B, B′) = σsyn(B′, B) = 1 then
5: Seq + +

6: else if σsem(B, B′) = σsem(B′, B) = 1 then
7: if σcond(B, B′) = σcond(B′, B) = 1 then
8: Seq + +

9: end if
10: else if B ⊂sem B′ or B′ ⊂sem B then
11: if σcond(B, B′) = 1 or σcond(B′, B) = 1 then
12: Sinc + +

13: end if
14: end if
15: end for
16: Stot = Seq + Sinc

17: if Seq > Sinc and =max (#ωT
n , #ω

F
n) then

18: return two-way
19: else if Seq < Sinc and =max (#ωT

n , #ω
F
n) then

20: return probable
21: else if < max (#ωT

n , #ω
F
n) and > 0 then

22: propose Control-flow graph reduction() // see Algorithm 1

23: end if
24: return normal
25: end procedure

4.2.2 Evaluations. For the evaluation, we used the Tigress ob-

fuscator [7] which implements these opaque predicates
5
. We have

selected four C code samples (Huffman as sample A, bubble sort

as sample B, binary sort as sample C and matrix multiplication as

sample D) which are obfuscated using two-way opaque predicates

constructs. We combined them with other obfuscation techniques

implemented in Tigress, such as control-flow flattening (Flat), en-

codings of respectively data (EncD), arithmetics (EncA) and literals

5
Tigress refers to two-way opaque predicates as question opaque predicates (i.e. P ?

).

(EncL) and finally code virtualization (Virt). These combinations

allow us to measure the efficiency as well as the limitations of

DoSE for two-way opaque predicates detection. Table 3 groups

our evaluations of the four code samples listed above, in a way to

present results according to the obfuscation techniques that they

use. For example, "Case 1" represents the application of ten opaque

predicates P? to our samples A, B, C, and D with the corresponding

evaluation; "Case 2" represents the application of four P? combined

with four PT or PF in all samples, etc. The column "(#OP, #FP,

#FN)" represents a tuple in which "#OP" is the number of detected

two-way predicates, "#FP" is the number of false positive results

and "#FN" the number of false negatives. As we can see, we are

able to detect all two-way opaque predicates with no false positives

and no false negatives in the majority of the cases. The reasons

for the few false positive and negative results are the block-centric

approach of DoSE and the insertion of infeasible paths. We present

these limitations in the following paragraph.

We also evaluated our implementation against real world mal-

wares. Table 4 illustrates our results. We analyzed some functions

of these samples with their entry-points listed in column "Function

EP" in order to ease the detection of any false positive or negative

results. Column 4 shows the number of detected two-way predi-

cates, false positive and false negative results as a tuple whereas

column 5 shows the execution time. As we can see, two-way opaque

predicates are efficiently detected, within an acceptable amount of

time. Further, in some cases, such as the Vipasana malware, specific

patterns are used (based on an additional subtraction with 0 within

their cloned blocks) to construct their two-way opaque predicates.

Such information can be used to create more detection rules for

these malwares.

4.2.3 Limitations. The performed evaluations underline the

problematic of inserting infeasible paths with opaque predicates of

types PT or PF within a path generated from a two-way opaque

predicate. Such combination inserts bogus blocks that will never be

reached within equivalent path derived from a P? opaque predicate.

9

Sample Function EP (#OP, #FP, #FN) time (s)
Vipasana 0x437fa4 (1,0,0) 1.63s

Vipasana 0x434df0 (10,0,0) 21.76s

ZeuS 0x437814 (2,0,0) 196.04s

GuaGua 0x41b510 (1,0,0) 2.04s

Kryptik 0x40fe00 (4,0,0) 22.10s

Rombertik 0x4c2c3d (1,0,0) 1.46s

Ixesh 0x40106d (1,0,0) 3.58s

Table 4: Evaluation on malwares for two-way opaque predi-
cates detection and removal.

This limitation shows that our approach must be considered as

an additional analysis to state-of-the-art opaque predicate tools in

order to first check infeasible paths by detecting PT and PF , and
afterwards complete the analysis by detecting P? predicates.

Another limitation is due to the insertion of branch functions.

These functions are cloned but their entry point addresses are dif-

ferent. This causes our conditional equivalence step to generate

dissimilar values for each function. Since both functions have dif-

ferent addresses, they will also have distinct symbols, thus causing

some false negative results. However, being able to detect these

cloned branch functions (i.e. sub-functions) beforehand prevents

such limitations. The next paragraph will introduce the extension

of DoSE for the purpose of detecting these cloned sub-functions.

4.3 Detecting cloned sub-functions
In the case of opaque predicates or control-flow flattening, another

kind of obfuscation transformation may be applied: replacing a

basic block by a function to be called. We refer to these functions

as sub-functions since they represent only one basic block. In such

case, we need to extend our methodology to the detection of these

cloned sub-functions.

4.3.1 Methodology. Such analysis is based on the following

process: we take as inputs two different sub-functions F1 and F2
and we compare all basic blocks of F1 with all basic blocks of F2, as
it is presented in the following definition:

Definition 10: Sub-functions Semantic Inclusion. Let F1 and F2 be
two sub-functions. We say that F1 is semantically equivalent to

F2 (i.e. cloned) if for every basic block of F1 there exists a unique
semantically and conditionally equivalent basic block in F2.

Thus, for each B in F1 and B′ in F2, we can apply a similar

approach as the one illustrated in Algorithm 2 in order to check

for their syntactic, semantic and conditional equivalence. The only

difference is that the algorithm takes two lists of basic-blocks, one

for each function. All detected clones are added in a dictionary C .
Afterwards, C is given to a function which verifies whether our

definition for the sub-functions semantic inclusion is satisfied and it

returns a boolean value accordingly. Thus, it allows us to confirm if

F1 and F2 are cloned or semantically different. However, the above

comparison needs to be adapted in order to properly compare two

functions containing more complex structures.

4.3.2 Evaluations. Weevaluated the detection of statically equiv-

alent sub-functions against known malwares as illustrated in Table

5. Column 3 represents the number of functions before our anal-

ysis whereas column 4 illustrates the number of detected cloned

sub-functions. Column "(#FP, #FN)" shows the number of false pos-

itive and false negative results. Our evaluation shows that some

malwares use what we defined as sub-functions, notably the worm

Flame for which we were able to detect 1954 clones with neither

false positives nor false negative results. Such a detection is impor-

tant, specially toward the reduction of control-flow graphs or the

detection of two-way opaque predicates which contain jumps or

calls to these cloned functions.

4.3.3 Limitations. For now, our approach is limited to small

sub-functions with no complex structure (e.g. loops). We are looking

to extend this application of DoSE to more complex functions while

preserving efficiency and an acceptable time of execution.

5 PERSPECTIVES
Opaque predicate deobfuscation framework. Using our approach

to detect two-way opaque predicates constructs combined with

existing opaque predicate detection tools can contribute not only

to counter the limitations of these tools, but also prevent DoSE

limitation due to infeasible branches. Indeed, if prior to detect two-

way opaque predicates, we detect and remove PT and PF constructs,

then we will no longer have our current limitation.

Hybrid analysis. Even if our current approach is evaluated stati-

cally, it is straightforward to use it dynamically through DSE. More-

over, using our approach dynamically would prevent limitations

due to emulation of memory access since their concrete values

are available at run-time. However, limitations of dynamic anal-

ysis would still be relevant and it will prevent us of contributing

to generic de-obfuscation techniques by statically reducing the

amount of code to cover. Thus, we are looking forward to a clever

combination of static and dynamic analysis in order to keep our

goal of contributing to generic deobfuscation techniques statically

while improving our accuracy dynamically, thus preserving DoSE

scalability to real-world use-cases.

6 CONCLUSION
Obfuscated softwares raise many issues during their reverse engi-

neering or evaluation. Most of the deobfuscation techniques come

with limitations since they are based on dynamic symbolic exe-

cution. We have proposed a novel deobfuscation method based

on semantic equivalence, called DoSE. We applied binary diffing

methods based on semantic equivalence to deobfuscate binaries

in order to provide a methodology to statically detect and remove

protections based on code-reuse. We presented this approach by

formalizing and improving it for a better correctness and efficiency.

Several applications of DoSE were also presented: detect and re-

move two-way opaque predicates, reduce control-flow graphs by

detecting range dividers and code-reuse and detect cloned sub-

functions. The benefits of DoSE are also demonstrated with several

realistic classes of opaque predicates using Tigress, along with ex-

isting malwares. Our evaluations show that DoSE can efficiently

reduce control-flow graphs of malwares such as Flame up to 63%, or

even detect 1954 sub-functions, with an acceptable amount of time.

Moreover, we demonstrated that DoSE can be efficiently extended

10

Sample Type # Functions # Clones (#FP, #FN) time (s)
Flame Worm 8464 1954 (0,0) 1866.16s

LoadMoney Trojan 78 3 (0,0) 2.01s

Skylock Trojan 1212 10 (0,2) 321.93s

Vipasana Ransomware 1715 45 (0,0) 358.85s

WannaCry Ransomware 142 2 (0,0) 19.92s

OnionDuke Trojan 755 67 (0,0) 113.93s

Polip Trojan 2458 246 (1,0) 648.93s

Dircrypt Trojan 232 13 (0,0) 39.63s

Table 5: Evaluation of sub-functions detection

to the detection of two-way opaque predicates, which until then

were not detected by any known technique. Therefore, this work

paves the way for combining semantic equivalence methodologies

with existing generic deobfuscation techniques, in order to improve

their efficiency and scalability.

ACKNOWLEDGMENTS
This work is supported by the French National Research Agency in

the framework of the Investissements d’Avenir program (ANR-15-

IDEX-02).

REFERENCES
[1] Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis (Eds.). 2009. Proceedings

of the 2009 ACM Conference on Computer and Communications Security, CCS 2009,
Chicago, Illinois, USA, November 9-13, 2009. ACM.

[2] Shahid Alam, Ryan Riley, Ibrahim Sogukpinar, and Necmeddin Carkaci. 2016.

DroidClone: Detecting androidmalware variants by exposing code clones. In Sixth
International Conference on Digital Information and Communication Technology
and its Applications, DICTAP 2016, Konya, Turkey, July 21-23, 2016. IEEE, 79–84.
https://doi.org/10.1109/DICTAP.2016.7544005

[3] Sebastian Banescu, Christian S. Collberg, Vijay Ganesh, Zack Newsham, and

Alexander Pretschner. 2016. Code obfuscation against symbolic execution at-

tacks. In Proceedings of the 32nd Annual Conference on Computer Security Ap-
plications, ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016, Stephen
Schwab, William K. Robertson, and Davide Balzarotti (Eds.). ACM, 189–200.

https://doi.org/10.1145/2991079

[4] Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-Bounded

DSE: Targeting Infeasibility Questions on Obfuscated Codes. In 2017 IEEE Sym-
posium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE
Computer Society, 633–651. https://doi.org/10.1109/SP.2017.36

[5] Boldizsar Bencsath. 2012. Duqu, Flame, Gauss: Followers of Stuxnet. https://

www.rsaconference.com/writable/presentations/fileupload/br-208bencsath.pdf.

[Online; accessed 30-08-2018].

[6] David Brumley, Pongsin Poosankam, Dawn Xiaodong Song, and Jiang Zheng.

2008. Automatic Patch-Based Exploit Generation is Possible: Techniques and

Implications. In 2008 IEEE Symposium on Security and Privacy (S&P 2008), 18-21
May 2008, Oakland, California, USA. IEEE Computer Society, 143–157. https:

//doi.org/10.1109/SP.2008.17

[7] Christian Collberg, Sam Martin, Jonathan Myers, Bill Zimmerman, Petr Krajca,

Gabriel Kerneis, Saumya Debray, and Babak Yadegari. [n. d.]. The Tigress C Di-

versifier/Obfuscator. http://tigress.cs.arizona.edu/index.html. [Online; accessed

30-01-2018].

[8] Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection (1st ed.). Addison-

Wesley Professional.

[9] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A Taxonomy of

Obfuscating Transformations.

[10] Christian S. Collberg, Clark D. Thomborson, and Douglas Low. 1998. Man-

ufacturing Cheap, Resilient, and Stealthy Opaque Constructs. In POPL ’98,
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, CA, USA, January 19-21, 1998. 184–196.
https://doi.org/10.1145/268946.268962

[11] An ECRYPT White-Box Cryptography Competition. 2017. CHES 2017 Capture

the Flag Challenge - The WhibOx Contest. https://whibox.cr.yp.to/. [Online;

accessed on october 2017].

[12] Kevin Coogan, Gen Lu, and Saumya K. Debray. 2011. Deobfuscation of

virtualization-obfuscated software: a semantics-based approach. In Proceedings
of the 18th ACM Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, Yan Chen, George Danezis, and Vitaly

Shmatikov (Eds.). ACM, 275–284. https://doi.org/10.1145/2046707.2046739

[13] Joan Daemen and Vincent Rijmen. 2000. Rijndael for AES. In AES Candidate
Conference. 343–348.

[14] Fabrice Desclaux. 2012. Miasm : Framework de reverse engineering. https:

//github.com/cea-sec/miasm. [Online; accessed 09-08-2017].

[15] Mohammad Reza Farhadi, Benjamin C. M. Fung, Philippe Charland, and Mourad

Debbabi. 2014. BinClone: Detecting Code Clones in Malware. In Eighth Interna-
tional Conference on Software Security and Reliability, SERE 2014, San Francisco,
California, USA, June 30 - July 2, 2014. IEEE, 78–87. https://doi.org/10.1109/SE

RE.2014.21

[16] Debin Gao, Michael K. Reiter, and Dawn Xiaodong Song. 2008. BinHunt: Auto-

matically Finding Semantic Differences in Binary Programs. In Information and
Communications Security, 10th International Conference, ICICS 2008, Birmingham,
UK, October 20-22, 2008, Proceedings (Lecture Notes in Computer Science), Liqun
Chen, Mark Dermot Ryan, and Guilin Wang (Eds.), Vol. 5308. Springer, 238–255.

https://doi.org/10.1007/978-3-540-88625-916

[17] Hex-Rays. [n. d.]. IDA Pro : Interactive DisAssembler. https://www.hex-rays.c

om/products/ida/index.shtml. [Online; accessed 30-01-2018].

[18] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. 2009. Large-scale malware indexing

using function-call graphs, See [1], 611–620. https://doi.org/10.1145/1653662.16

53736

[19] Jonathan Salwan, Sebastien Bardin and Marie-Laure Potet. 2017. Desobfuscation

binaire : Reconstruction de fonctions virtualisees. Symposium sur la securite des

technologies de l’information et des communications, SSTIC, 2017.

[20] Md. Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida. 2005.

Malware phylogeny generation using permutations of code. Journal in Computer
Virology 1, 1-2 (2005), 13–23. https://doi.org/10.1007/s11416-005-0002-9

[21] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394. https://doi.org/10.1145/360248.360252

[22] Christopher Krügel, Engin Kirda, Darren Mutz, William K. Robertson, and Gio-

vanni Vigna. 2005. Polymorphic Worm Detection Using Structural Information

of Executables. In Recent Advances in Intrusion Detection, 8th International Sym-
posium, RAID 2005, Seattle, WA, USA, September 7-9, 2005, Revised Papers (Lecture
Notes in Computer Science), Alfonso Valdes and Diego Zamboni (Eds.), Vol. 3858.

Springer, 207–226. https://doi.org/10.1007/1166381211

[23] Arun Lakhotia, Mila Dalla Preda, and Roberto Giacobazzi. 2013. Fast location of

similar code fragments using semantic ’juice’. In Proceedings of the 2nd ACM SIG-
PLAN Program Protection and Reverse Engineering Workshop 2013, PPREW@POPL
2013, January 26, 2013, Rome, Italy, Jeffrey Todd McDonald and Mila Dalla Preda

(Eds.). ACM, 5:1–5:6. https://doi.org/10.1145/2430553.2430558

[24] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004,
San Jose, CA, USA. IEEE Computer Society, 75–88. https://doi.org/10.1109/CGO.

2004.1281665

[25] Timea Lazlo and Akos Kiss. 2009. Obfuscating C++ Programs via Control Flow

Flattening. https://www.inf.u-szeged.hu/~akiss/pub/pdf/laszloobfuscating.pdf.

[26] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.

Semantics-based obfuscation-resilient binary code similarity comparison with

applications to software plagiarism detection. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014, Shing-Chi Cheung, Alessandro
Orso, and Margaret-Anne D. Storey (Eds.). ACM, 389–400. https://doi.org/10.1

145/2635868.2635900

[27] Jiang Ming, Meng Pan, and Debin Gao. 2012. iBinHunt: Binary Hunting with

Inter-procedural Control Flow. In Information Security and Cryptology - ICISC
2012 - 15th International Conference, Seoul, Korea, November 28-30, 2012, Revised

11

https://doi.org/10.1109/DICTAP.2016.7544005
https://doi.org/10.1145/2991079
https://doi.org/10.1109/SP.2017.36
https://www.rsaconference.com/writable/presentations/file_upload/br-208_bencsath.pdf
https://www.rsaconference.com/writable/presentations/file_upload/br-208_bencsath.pdf
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1109/SP.2008.17
http://tigress.cs.arizona.edu/index.html
https://doi.org/10.1145/268946.268962
https://whibox.cr.yp.to/
https://doi.org/10.1145/2046707.2046739
https://github.com/cea-sec/miasm
https://github.com/cea-sec/miasm
https://doi.org/10.1109/SERE.2014.21
https://doi.org/10.1109/SERE.2014.21
https://doi.org/10.1007/978-3-540-88625-9_16
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://doi.org/10.1145/1653662.1653736
https://doi.org/10.1145/1653662.1653736
https://doi.org/10.1007/s11416-005-0002-9
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/11663812_11
https://doi.org/10.1145/2430553.2430558
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://www.inf.u-szeged.hu/~akiss/pub/pdf/laszlo_obfuscating.pdf
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.1145/2635868.2635900

Selected Papers (Lecture Notes in Computer Science), Taekyoung Kwon, Mun-Kyu

Lee, and Daesung Kwon (Eds.), Vol. 7839. Springer, 92–109. https://doi.org/10.1

007/978-3-642-37682-58

[28] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. 2015. LOOP: Logic-

Oriented Opaque Predicate Detection in Obfuscated Binary Code, See [38], 757–

768. https://doi.org/10.1145/2810103.2813617

[29] Jiang Ming, Dongpeng Xu, and Dinghao Wu. 2015. Memoized Semantics-Based

Binary Diffing with Application to Malware Lineage Inference. In ICT Systems
Security and Privacy Protection - 30th IFIP TC 11 International Conference, SEC 2015,
Hamburg, Germany, May 26-28, 2015, Proceedings (IFIP Advances in Information
and Communication Technology), Hannes Federrath and Dieter Gollmann (Eds.),

Vol. 455. Springer, 416–430. https://doi.org/10.1007/978-3-319-18467-828

[30] Ginger Myles and Christian S. Collberg. 2005. K-gram based software birthmarks.

In Proceedings of the 2005 ACM Symposium on Applied Computing (SAC), Santa Fe,
New Mexico, USA, March 13-17, 2005, Hisham Haddad, Lorie M. Liebrock, Andrea

Omicini, and Roger L. Wainwright (Eds.). ACM, 314–318. https://doi.org/10.114

5/1066677.1066753

[31] Alexios Mylonas and Dimitris Gritzalis. 2012. Practical Malware Analysis: The

Hands-On Guide to Dissecting Malicious Software. Computers & Security 31, 6

(2012), 802–803. https://doi.org/10.1016/j.cose.2012.05.004

[32] Beng Heng Ng, Xin Hu, and Atul Prakash. 2010. A Study on Latent Vulnerabilities.

In 29th IEEE Symposium on Reliable Distributed Systems (SRDS 2010), New Delhi,
Punjab, India, October 31 - November 3, 2010. IEEE Computer Society, 333–337.

https://doi.org/10.1109/SRDS.2010.47

[33] Jeongwook Oh. 2009. Fight against 1-day exploits: Diffing Binaries vs Anti-diffing

Binaries. Black Hat USA 2009.

[34] Oreans Technologies. [n. d.]. Code virtualizer: Total obfuscation against reverse

engineering. http://www.oreans.com/codevirtualizer.php. [Online; acceassed

30-01-2018].

[35] Oreans Technologies. [n. d.]. Themida, Advanced Windows Software Protection

System. http://www.oreans.com/themida.php. [Online; acceassed 30-01-2018].

[36] Jens Palsberg, S. Krishnaswamy, Minseok Kwon, Di Ma, Qiuyun Shao, and Y.

Zhang. 2000. Experience with Software Watermarking. In 16th Annual Computer
Security Applications Conference (ACSAC 2000), 11-15 December 2000, New Orleans,
Louisiana, USA. IEEE Computer Society, 308–316. https://doi.org/10.1109/ACSA

C.2000.898885

[37] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten

Holz. 2017. Cross-architecture bug search in binary executables. it - Information
Technology 59, 2 (2017), 83. https://doi.org/10.1515/itit-2016-0040

[38] Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.). 2015. Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-6, 2015. ACM. http://dl.acm.org/citation.cfm?id=2810103

[39] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel J. Quinlan, and

Zhendong Su. 2009. Detecting code clones in binary executables. In Proceedings
of the Eighteenth International Symposium on Software Testing and Analysis, ISSTA
2009, Chicago, IL, USA, July 19-23, 2009, Gregg Rothermel and Laura K. Dillon

(Eds.). ACM, 117–128. https://doi.org/10.1145/1572272.1572287

[40] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. 2018. Symbolic Deob-

fuscation: From Virtualized Code Back to the Original. In Detection of Intrusions
and Malware, and Vulnerability Assessment - 15th International Conference, DIMVA
2018, Saclay, France, June 28-29, 2018, Proceedings (Lecture Notes in Computer Sci-
ence), Cristiano Giuffrida, Sébastien Bardin, and Gregory Blanc (Eds.), Vol. 10885.

Springer, 372–392. https://doi.org/10.1007/978-3-319-93411-217

[41] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-

dovnik, and Edgar R. Weippl. 2016. Protecting Software through Obfuscation:

Can It Keep Pace with Progress in Code Analysis? ACM Comput. Surv. 49, 1
(2016), 4:1–4:37. https://doi.org/10.1145/2886012

[42] Sandro Schulze and Daniel Meyer. 2013. On the robustness of clone detection

to code obfuscation. In Proceeding of the 7th International Workshop on Software
Clones, IWSC 2013, San Francisco, CA, USA, May 19, 2013, Rainer Koschke, Elmar

Jürgens, and Juergen Rilling (Eds.). IEEE Computer Society, 62–68. https://doi.

org/10.1109/IWSC.2013.6613045

[43] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You

Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic

Execution (but Might Have Been Afraid to Ask). In 31st IEEE Symposium on
Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA.
IEEE Computer Society, 317–331. https://doi.org/10.1109/SP.2010.26

[44] VMProtect Software. [n. d.]. VMProtect, New-generation software protection.

http://vmpsoft.com/products/vmprotect/. [Online; accessed 30-01-2018].

[45] Chenxi Wang, Jonathan Hill, John C. Knight, and Jack W. Davidson. 2001. Pro-

tection of Software-Based Survivability Mechanisms. In 2001 International Con-
ference on Dependable Systems and Networks (DSN 2001) (formerly: FTCS), 1-
4 July 2001, Göteborg, Sweden, Proceedings. IEEE Computer Society, 193–202.

https://doi.org/10.1109/DSN.2001.941405

[46] Xinran Wang, Yoon-chan Jhi, Sencun Zhu, and Peng Liu. 2009. Behavior based

software theft detection, See [1], 280–290. https://doi.org/10.1145/1653662.1653

696

[47] Zheng Wang, Ken Pierce, and Scott McFarling. 2000. BMAT - A Binary Matching

Tool for Stale Profile Propagation. J. Instruction-Level Parallelism 2 (2000). http:

//www.jilp.org/vol2/v2paper2.pdf

[48] Babak Yadegari. 2016. Automatic Deobfuscation and Reverse Engineering of
Obfuscated Code. Ph.D. Dissertation. University of Arizona, Tucson, USA.

http://hdl.handle.net/10150/613135

[49] Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated

Code, See [38], 732–744. https://doi.org/10.1145/2810103.2813663

[50] Yonathan Klijnsma. 2015. The Story of CryptoWall: a historical analysis of a

large scale cryptographic ransomware threat. https://www.botconf.eu/wp-co

ntent/uploads/2015/12/OK-P14-Yonathan-Klijnsma-The-Story-of-CryptoWall

-a-historical-analysis-of-a-large-scale-cryptographic-ransomware-threat.pdf.

[Online; accessed 30-08-2018].

[51] Yongxin Zhou, Alec Main, Yuan Xiang Gu, and Harold Johnson. 2007. Information

Hiding in Software with Mixed Boolean-Arithmetic Transforms. In Information
Security Applications, 8th International Workshop, WISA 2007, Jeju Island, Korea,
August 27-29, 2007, Revised Selected Papers (Lecture Notes in Computer Science),
Sehun Kim, Moti Yung, and Hyung-Woo Lee (Eds.), Vol. 4867. Springer, 61–75.

https://doi.org/10.1007/978-3-540-77535-55

[52] Zynamics. 2013. BinDiff. https://www.zynamics.com/bindiff.html. [Online;

accessed 10-07-2017].

12

https://doi.org/10.1007/978-3-642-37682-5_8
https://doi.org/10.1007/978-3-642-37682-5_8
https://doi.org/10.1145/2810103.2813617
https://doi.org/10.1007/978-3-319-18467-8_28
https://doi.org/10.1145/1066677.1066753
https://doi.org/10.1145/1066677.1066753
https://doi.org/10.1016/j.cose.2012.05.004
https://doi.org/10.1109/SRDS.2010.47
http://www.oreans.com/codevirtualizer.php
http://www.oreans.com/themida.php
https://doi.org/10.1109/ACSAC.2000.898885
https://doi.org/10.1109/ACSAC.2000.898885
https://doi.org/10.1515/itit-2016-0040
http://dl.acm.org/citation.cfm?id=2810103
https://doi.org/10.1145/1572272.1572287
https://doi.org/10.1007/978-3-319-93411-2_17
https://doi.org/10.1145/2886012
https://doi.org/10.1109/IWSC.2013.6613045
https://doi.org/10.1109/IWSC.2013.6613045
https://doi.org/10.1109/SP.2010.26
http://vmpsoft.com/products/vmprotect/
https://doi.org/10.1109/DSN.2001.941405
https://doi.org/10.1145/1653662.1653696
https://doi.org/10.1145/1653662.1653696
http://www.jilp.org/vol2/v2paper2.pdf
http://www.jilp.org/vol2/v2paper2.pdf
http://hdl.handle.net/10150/613135
https://doi.org/10.1145/2810103.2813663
https://www.botconf.eu/wp-content/uploads/2015/12/OK-P14-Yonathan-Klijnsma-The-Story-of-CryptoWall-a-historical-analysis-of-a-large-scale-cryptographic-ransomware-threat.pdf
https://www.botconf.eu/wp-content/uploads/2015/12/OK-P14-Yonathan-Klijnsma-The-Story-of-CryptoWall-a-historical-analysis-of-a-large-scale-cryptographic-ransomware-threat.pdf
https://www.botconf.eu/wp-content/uploads/2015/12/OK-P14-Yonathan-Klijnsma-The-Story-of-CryptoWall-a-historical-analysis-of-a-large-scale-cryptographic-ransomware-threat.pdf
https://doi.org/10.1007/978-3-540-77535-5_5
https://www.zynamics.com/bindiff.html

	Abstract
	1 Introduction
	2 Problem setting
	2.1 Code cloning
	2.2 Range dividers
	2.3 Two-way opaque predicates
	2.4 Binary diffing techniques

	3 DoSE: Deobfuscation based on Semantic Equivalence
	3.1 Syntax-based basic blocks comparison
	3.2 Semantic-based basic blocks comparison
	3.3 Minimizing false positive/negative rates

	4 Applications
	4.1 Reducing control-flow graphs
	4.2 Detecting two-way opaque predicates
	4.3 Detecting cloned sub-functions

	5 Perspectives
	6 Conclusion
	Acknowledgments
	References

