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Abstract. We present an abstract discretization framework and demonstrate that various cell-centered and
hybrid finite-volume schemes fit into it. The different schemes considered in this work are then analyzed numer-
ically for an elliptic model problem with respect to the properties consistency, coercivity, extremum principles,
and sparsity. The test cases presented comprise of two- and three-dimensional setups, mildly and highly aniso-
tropic tensors and grids of different complexities. The results show that all schemes show a similar convergence
behavior, except for the two-point flux approximation scheme, and seem to be coercive. Furthermore, they
confirm that linear schemes, in contrast to nonlinear schemes, are in general neither positivity-preserving
nor satisfy discrete minimum or maximum principles.

1 Introduction

Numerical simulations play a crucial role in a wide range of
geotechnical engineering applications, thus, it is of great
importance that the schemes used to produce these results
are reliable and robust. Additionally, efficient schemes are
desirable due to the often very large spatial scales involved
and the uncertain nature of the subsurface, which might
require statistical analyses with a large number of model
runs to be performed. Appropriate schemes have to be
chosen application-dependent subject to the particular
requirements. Besides consistency, efficiency, reliability,
and robustness, local mass conservation is essential when
performing subsurface flow simulations. This is why the
most commonly used schemes for subsurface flow simula-
tions are cell-centered finite-volume methods, such as cell-
centered Galerkin methods [1] or Multi-Point Flux
Approximation (MPFA) methods [2–7]; or hybrid, mixed,
and mimetic (HMM) schemes, such as the Hybrid Finite-
Volume (HFV) schemes [8, 9], the Mixed Finite-Element
(MFE) [10, 11] or the Mimetic Finite-Difference (MFD)
methods [12, 13]. All these schemes are closely related and
they can be either presented within a finite-volume
framework (which is done in this article) or within a
finite-element framework. Such aspects have been presented
in [8, 14–16]. The advantage of HMM methods is the fact
that they can be applied to highly complex grids, e.g.
corner-point grids. However, this comes with the cost of
additional unknowns. Recently, monotone or discrete extre-
mum-principles-preserving schemes have been developed in

[17–22], and applied to highly complex porous media appli-
cations in [23–25].

In this work, we compare different finite-volume
schemes for an elliptic model problem regarding conver-
gence, consistency, and efficiency. The latter is measured
via the sparsity of the resulting linear systems of equations
and the number of nonlinear solver iterations in the case of
nonlinear schemes, while consistency is estimated based on
discrete extremum principles and the linearity preservation
property. Definitions of these properties as well as the
numerical schemes considered in this work, covering a num-
ber of cell-centered and hybrid schemes, are presented in
Section 2. The convergence of the schemes is investigated
in Section 3.1, while in Section 3.2 the linearity preservation
property is studied. The satisfaction of discrete extremum
principles is considered in Section 3.3, before in Section 3.4
all schemes are applied to a three-dimensional benchmark
case. Finally, in Section 4 we summarize the results
obtained in this article.

2 Discretization schemes

Let X � Rd ; d 2 N�, be an open bounded connected polyg-
onal domain with boundary oX, and d-dimensional measure
|X|. In the following, we consider the elliptic problem

r � �Kruð Þ ¼ f in X;

u ¼ 0 on @X:

�
ð1Þ

Here, we assume that f 2 L2(X) and K is a symmetric
tensor-valued function such that (s.t.) the spectrum of
K(x) is contained in [a0, b0], with 0 < a0 < b0 < +1, for
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almost every (a.e.) x 2 X. These assumptions guarantee the
existence of a weak solution �u (i.e. a solution of the varia-
tional formulation of problem (1)).

Remark 1. Within this section, homogeneous Dirichlet
boundary conditions are assumed for ease of presentation.
Other types of boundary conditions have for example been
discussed within the gradient discretization framework [26].

In the following an admissible discretization is defined
together with the notations that are used within this article.

Definition 1 (Admissible discretization). An admissible
discretization D is a triplet D ¼ ðT ; E;PÞ, where

(i) T are the cells s.t. � ¼ [K2TK. For each cell K 2 T ,
|K | > 0 denotes the cell volume and @K ¼def KnK its
boundary. hD ¼

def supK2T diam ðKÞ defines the dis-
cretization length.

(ii) E are the faces such that each face r is included in a
hyperplane of Rd with (d � 1)-dimensional measure
|r| > 0. For each cell K 2 T ; EK is the subset of E
such that @K ¼ [r2EK r. T r ¼

def fK 2 T j r 2 EKg con-
tains the cells that share the face r; the sets of inner
and boundary faces are denoted by Eint and Eext,
respectively.

(iii) P ¼ fxKgK2T are the cell centers (not required to be
the barycenters) s.t. xK 2 K and K is star-shaped
with respect to xK. For all K 2 T , r 2 EK ; dK ;r is
given as the Euclidean distance between xK and r.

For a more detailed definition of an admissible dis-
cretization see [3, 4, 21]. Let M be any set, then the
cardinality of this set is indicated with nM. With this defi-
nition, the number of cells, i.e. the cardinality of the set T ,
is given by nT . The face evaluation points are denoted as xr,
r 2 E (not required to be the barycenters). With
KK ¼

defhKiK ¼
def 1
jKj
R

K KðxÞdx we define the averaged tensor

on cell K, where the integral is meant component-wise.
In addition, it is assumed that KjK 2 ½C2ðKÞ�d�d for all
K 2 T . Furthermore, nK,r denotes the unit vector that is
normal to r and outward to K.

2.1 Abstract discretization framework

Integration of equation (1) over the control volume K 2 T
yields

�
Z

oK
Kruð Þ � nK dx ¼

Z
K

f dx: ð2Þ

Using Definition 1, the integral on the left of equation (2)
can be spitted into integrals over the faces r, which results in

�
X
r2EK

Z
r

Kruð Þ � nK;r dx ¼
Z

K
f dx: ð3Þ

To discretize equation (3) we need to define flux approx-
imations FK,r, for each cell K and face r 2 EK , such that

F K;r �
Z

r
Kruð Þ � nK;r dx; ð4Þ

i.e. FK,r is an approximation of the exact flux.

For this purpose, we define the following discrete solu-
tion spaces

X T ¼
def fv ¼ ðvKÞK2T ; vK 2 Rg; ð5Þ

X E ¼
def fv ¼ ðvrÞr2E ; vr 2 Rg; ð6Þ

XD ¼
def

X T � X E : ð7Þ

For any element v 2 XD, the cell unknowns are
denoted by vT 2 X T and the face unknowns are denoted
by vE 2 X E . The space that takes into account the homoge-
neous zero Dirichlet boundary conditions is accordingly
given as

XD;0 ¼
def fv 2 XD j vr ¼ 0; 8 r 2 Eextg: ð8Þ

Additionally, the space of piecewise constant functions
on T is defined as

H T ¼
def fv 2 L2ðXÞ j 8K 2 T ; 8x 2 K; vjKðxÞ ¼ vK ; vK 2 Rg:

Therefore, for all v 2 HT and for all K 2 T ; vK will
denote the constant value of v on K. Furthermore, the
extraction operator is defined for all v 2 XD as

PT : XD 7!HT ; s:t:; 8K 2 T ; PT vð ÞjK ¼ vK : ð9Þ

The presented finite-volume schemes differ in the choice
of the fluxes F K;r and the choice of the solution space
X h 	 XD;0. Therefore, for all K 2 T , and for all r 2 EK ,
let F K;r : X h 7!R be a numerical flux function that approx-
imates the flux flowing out of K through r such that the
finite-volume scheme reads: Find u 2 Xh s.t.

�
X
r2EK

F K;r uð Þ ¼
Z

K
f dx; 8K 2 T ; ð10Þ

F K;r uð Þ þ F L;r uð Þ ¼ 0; 8 r 2 E int; T r ¼ K; Lf g: ð11Þ

Cell-centered schemes:
For cell-centered schemes the solution space is given as

X h ¼ fv ¼ ðvT ; vEÞ 2 XD;0 j vr ¼ IrvT ; 8 r 2 E intg; ð12Þ

whereby, for each face r, I r 2 LðXT ; RÞ is a trace recon-
struction operator. Here, LðXT ; RÞ is the space of linear
operators that map some element u 2 XT to a constant
value associated with the corresponding face. This means
that for cell-centered schemes, the face unknowns are
eliminated using some trace reconstruction operators
I ¼ fI rgr2E .

Here, only locally mass-conservative cell-centered
schemes are considered such that for all u 2 X h, r 2 E int

with T r ¼ K; Lf g

F K;r uð Þ þ F L;r uð Þ ¼ 0: ð13Þ

This means that equation (11) is fulfilled by construc-
tion and holds not only for the discrete solution.
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Hybrid Mixed Mimetic (HMM) schemes:
For HMM schemes (see [14] for a detailed description of

such schemes) the solution space is given as
X h ¼ XD;0: ð14Þ

This means that HMM schemes introduce additional face
unknowns, in contrast to cell-centered schemes where these
unknowns are eliminated.

For the locally mass-conservative cell-centered schemes
with solution space (12) and for the HMM schemes
with solution space (14), it can be shown that problem
(10)–(11) is equivalent to the problem: Find u 2 X h s.t.

aD u; vð Þ ¼
Z

X
f PT v dx; 8 v 2 X h; ð15Þ

with the form, for all (u,v) 2 [Xh]
2,

aD u; vð Þ ¼def X
K2T

X
r2EK

F K;r uð Þ vr � vKð Þ: ð16Þ

Therefore, each solution of problem (10) and (11) also
solves problem (15). Starting from the discrete problem
(15), with aD defined by (16), equation (11) is fulfilled for
the cell-centered schemes by construction, whereas for the
HMM schemes it is obtained by taking vr ¼ 1; vr0 ¼ 0 for
all r0 5 r, and vK = 0 for all K:

Equation (10) is obtained by taking, for each
K 2 T ; vK ¼ 1 and vK 0 ¼ 0 for all K 0 6¼ K and by using
the flux continuity (11). This shows that the formulation
(10) and (11) is equivalent to (15).

Remark 2. If the flux functions are linear, then the form
(16) is linear in both arguments. However, in Section 2.3 we
will also consider nonlinear flux functions such that the lin-
earity is only given for the second argument.

The advantage of the formulation (15) is that properties
like coercivity can easily be defined for the form aD. Such
properties are briefly defined in the next section.

2.2 Properties of discretization schemes

Besides simplicity, parallelizability, computational effi-
ciency, flexibility, and code integrability, mathematical
and physical properties of discretization schemes, e.g. con-
sistency, coercivity or monotonicity, can be defined. Unfor-
tunately, to the author’s knowledge, there is currently no
scheme that satisfies all these properties. Therefore, appro-
priate schemes have to be chosen application dependent.
In general, the convergence of schemes can be proven if
the scheme is consistent and coercive, as it has been done
in [4, 8, 12, 21]. In the following, we briefly describe such
fundamental properties for cell-centered schemes (with
discrete solution space (12)) and for HMM schemes (with
discrete solution space (14)).

Consistency

There is no unique discretization-independent definition of
consistency. For example, finite-volume schemes are in
general not consistent in the finite-difference context [27].

In general, a scheme is consistent if the truncation error
between discrete and continuous operators goes to zero
for hD ! 0. In the context of finite-volume schemes we
say that a scheme is consistent if the numerical flux
approximates the exact flux for regular functions, meaning
that

F K;r uDð Þ ¼ F K;r uð Þ þ O jrjdiam Kð Þð Þ; 8u 2 D; ð17Þ

where D � C 0ðXÞ is a test function space which is
assumed to be dense in H 1

0ðXÞ, and FK ;r;FK ;r are the
discrete and exact flux functions, respectively. Further-
more, uD ¼ ðuT ;uEÞ 2 XD is defined as ðuT ÞK ¼ uðxKÞ
for all K 2 T , and ðuEÞr ¼ uðxrÞ for all r 2 E. More
details can for example be found in [21].

Coercivity

A scheme is called uniformly coercive if the form aD, defined
in (16), satisfies the following estimate:

aD u; uð Þ 
 cjjujj2X h
; 8 u 2 X h; ð18Þ

with some appropriate discrete norm jj � jjXh
, and c > 0

that is independent of u and hD. When talking about
coercivity in the following, we always refer to the uniform
coercivity property.

Minimum and maximum principles

It is desirable that the discrete solution satisfies properties
of the exact solution. An important property from a physi-
cal point of view is the minimum and maximum principle.
Schemes that satisfy these principles prevent oscillations
of the discrete solutions, such that the discrete solution
remains within physical bounds. Such extremum principles
can be found in [28]. For the definition of discrete minimum
and maximum principles, we refer to the overview provided
by [29]. Furthermore, a scheme is said to be monotone if the
discretization matrix A is monotone, which means that
all entries of its inverse are non-negative i.e. A�1 
 0.
The monotonicity property is for example satisfied by
M-matrices. M-matrices are monotone matrices with non-
positive off-diagonal entries (see, e.g. [30]).

Sparsity

For solving large-scale systems, it is indispensable that the
discretization matrices are sparse, which means that the
number of entries (noe) in the matrix is significantly smaller
than n2

T . The stencil denotes the noe of each row. Therefore,
schemes resulting in small stencils are important for large-
scale problems.

2.3 Cell-centered schemes

Within this section, we present different cell-centered finite-
volume schemes. Here, the discrete solution space is given as
(12), and the face values are eliminated using some trace
reconstruction operators fIrgr2E . As already mentioned,
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only locally mass-conservative schemes are considered here
such that equation (11) holds by construction.

Family of weighted schemes

An established idea to obtain monotone or extremum-
principles-preserving schemes, as those developed in
[17–20, 22, 23, 31, 32], is to combine, for each interior edge
r2 Eint, with T r ¼ fK; Lg, two consistent linear flux
approximations ~F K;rðuÞ and ~F L;rðuÞ as a convex combina-
tion, using solution-dependent weights. Thus, the final flux
FK,r(u) is given as

F K;r uð Þ ¼ lK;r uð Þ~F K;r uð Þ � lL;r uð Þ~F L;r uð Þ;

with lK;r uð Þ 
 0; lL;r uð Þ 
 0; ð19Þ

and lK;r uð Þ þ lL;r uð Þ ¼ 1:

For any K 2 T and r 2 EK \ E int, the linear flux ~F K;rðuÞ
is built in order to ensure a strong consistency property,
such that the total flux F K;r satisfies a weak form of consis-
tency, see [21] for detailed information. A general definition
of these sub-fluxes is

~F K;r uð Þ ¼def jrj
X

r02SK;r

aK;rr0 Ir0u� uKð Þ; ð20Þ

with face stencil SK ;r and trace reconstruction operator I r0 .
The coefficients lK,r and lL,r are chosen to improve

some of the previously mentioned properties, e.g. mono-
tonicity. These coefficients may nonlinearly depend on the
unknown u. Therefore, the form aD is also nonlinear in its
first argument. This can be prevented by introducing an
additional argument for the fluxes and correspondingly
for the form aD. The details are not presented here, for a
detailed description see [21].

The final flux function (19) is locally mass-conservative,
whereas the sub-fluxes ~F are in general not mass-conserva-
tive. In the following, different schemes that fit into this
family are shortly introduced.

AvgMPFA scheme

The easiest choice of coefficients is lK,r = lL,r = 0.5, which
results in a linear finite-volume scheme that is in the follow-
ing denoted as AvgMPFA scheme.

NLTPFA scheme

To derive a Nonlinear Two-Point Flux Approximation
(NLTPFA), the different terms are reordered such that
the flux is written as

F K;r uð Þ ¼ tL;r uð ÞuL � tK;r uð ÞuK

� lL;r uð ÞkL;r uð Þ � lK;r uð ÞkK;r uð Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼def
RK;r uð Þ

: ð21Þ

The idea of the NLTPFA scheme is to choose the
weights such that RK,r(u) = 0. From a numerical point of
view, it is sufficient that |RK,r(u)| � �. This is given, under
the assumption that kK,rkL,r 
 0, for the choice

lK;r uð Þ ¼ kL;r uð Þj j þ �

kK;r uð Þj j þ kL;r uð Þj j þ 2�
;

lL;r uð Þ ¼ kK;r uð Þj j þ �

kK;r uð Þj j þ kL;r uð Þj j þ 2�
:

ð22Þ

Further details and the discussion of the case
kK,rkL,r < 0 can be found in [21], where the monotonicity
of the NLTPFA scheme is also discussed. Here, � is set to
10�8 but any other small number could also be chosen.

NLMPFA scheme

A Nonlinear Multi-Point Flux Approximation (NLMPFA)
is derived by splitting the sub-fluxes into a two-point part
and a residual flux part

~F K;r uð Þ ¼ jrjbr uL � uKð Þ þ ~F res
K;r uð Þ;

~F L;r uð Þ ¼ jrjbr uK � uLð Þ þ ~F res
L;r uð Þ;

ð23Þ

with some appropriate br and ~F res
K ;r;

~F res
L;r. Here, the

weights are chosen as

lK;r uð Þ ¼
~F res

L;r uð Þ
��� ��� þ �

~F res
K;r uð Þ

�� �� þ ~F res
L;r uð Þ

�� �� þ 2�
;

lL;r uð Þ ¼
~F res

K;r uð Þ
��� ��� þ �

~F res
K;r uð Þ

�� �� þ ~F res
L;r uð Þ

�� �� þ 2�
:

ð24Þ

Again, � is added due to numerical reasons. The final
flux is then given by (19) with weights (24). It can be shown
that this scheme satisfies discrete extremum principles.

Remark 3. Without going into detail, we shortly sum-
marize the main differences between the NLTPFA and the
NLMPFA scheme. For a detailed description we refer to
[21]. Both schemes mainly differ in the choice of the weights
lK,r and lL,r (the coefficients aK;rr0 in the sub-fluxes (20)
may also vary). The weights of the NLTPFA scheme are
defined by kK;r and kL;r which can be written as a sum of
solution values, i.e. kK,r =

P
xMuM. Whereas, those of

the NLMPFA scheme are defined by the residual fluxes
~F res

K;r and ~F res
L;r which can be written as a sum of solution

value differences, i.e. ~F res
K;r ¼

P
xMðuM � uKÞ.

Linear TPFA/MPFA schemes

Here, we shortly demonstrate that well-established schemes
such as the Two-Point Flux Approximation (TPFA) or the
Multi-Point Flux Approximation (MPFA) also fit into this
family of schemes. The difference here is that the sub-fluxes
are constructed to satisfy flux continuity, i.e. ~F K;rþ
~F L;r ¼ 0. Therefore, the final flux is given as F K;r ¼
~F K;r (20), independent of the weights lK,r, lL,r.

For the TPFA scheme it holds that SK;r ¼ frg and the
coefficients are

aK;rr ¼
nT

K;rKK xr � xKð Þ
xr � xKj jj j22

; aL;rr ¼
nT

L;rKL xr � xLð Þ
xr � xLj jj j22

: ð25Þ
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The trace reconstruction operator is

Iru ¼ aK;rruK þ aL;rruL

aK;rr þ aL;rr
; ð26Þ

such that the final flux reads

F K;r uð Þ ¼ jrj aK;rraL;rr

aK;rr þ aL;rr
uL � uKð Þ: ð27Þ

This can be similarly shown for MPFA schemes but the
details are not presented here.

2.4 Hybrid/mimetic schemes

Within this section, we present hybrid and mimetic
schemes. Here, the discrete solution space is given as (14),
such that additional face unknowns are introduced. Here,
the fluxes are given, for all u 2 X h;K 2 T ; r 2 EK , as

F K;r uð Þ ¼def jrj
X
r02EK

aK;rr0 ur0 � uKð Þ; ð28Þ

with the face unknowns ur0 , the cell unknowns uK, and
coefficients aK ;rr0 . These coefficients are chosen such that
the resulting scheme is coercive and consistent.

Defining the matrices,

uEK ¼
def ðurÞr2EK

¼

ur1

..

.

urnEK

0
BB@

1
CCA; CK ¼ diagðjr1j; � � � ; jrnEK

jÞ;

ð29Þ
we obtain the cell flux vector as

FK;EK ¼
def

F K;r1

..

.

F K;rnEK

0
BB@

1
CCA ¼ CKWKCK uEK � uKeð Þ; ð30Þ

with WK ¼ AKC�1
K , AK ;rr0 ¼ aK ;rr0 , and e is the vector

with entries equal to one. Additionally, let NK be the
conormal matrix, and let RK be the matrix that contains
the scaled distance vectors:

NK ¼

nT
K;r1

KK

..

.

nT
K;rnEK

KK

0
BBB@

1
CCCA; RK ¼

r1j jðxr1 � xKÞT

..

.

jrnEK
jðxrnEK

� xKÞT

0
BBB@

1
CCCA:

ð31Þ
Then, the consistency condition is given by

NK ¼WKRK : ð32Þ

From this consistency condition, we can derive a general
form of the coefficient matrix WK :

WK ¼ NKðNT
KRKÞ�1

NT
K þ SK ; ð33Þ

with a stabilization matrix SK such that SKRK ¼ O.
Choosing xr as the barycenter of face r and using the
geometrical identity

X
r2EK

rj jnK;rðxr � xKÞT ¼ jKjI; 8K 2 T ; ð34Þ

it can be seen that

NT
KRK ¼ jKjKK : ð35Þ

Therefore, the matrix WK is symmetric if the stabiliza-
tion matrix SK is chosen symmetric.

MFD scheme

A simple choice of SK is

SK ¼ mK I� RKðRT
KRKÞ�1

RT
K

� �
; ð36Þ

with mK ¼ 1
2 traceðNK ðNT

KRK Þ�1
NT

KÞ. This results in the
final matrix

WK ¼ NKðNT
KRKÞ�1

NT
K þ mK I� RKðRT

KRKÞ�1
RT

K

� �
: ð37Þ

For this matrix, the consistency condition (32) is ful-
filled by construction, whereas the coercivity can be proven
by using some kind of stability condition, see [33].

HFV scheme

Another interesting scheme that fits into this framework,
and also fits into the recently developed gradient discretiza-
tion framework [15], is the Hybrid Finite-Volume (HFV)
scheme [8]. The main idea of this scheme is the construction
of a consistent discrete gradient, which at the same time
defines the form aD, such that the consistency is naturally
fulfilled. In the following we shortly introduce the scheme
and present the main ideas.

Let us recall the weak formulation of problem (1): Find
u 2 H 1

0ðXÞ such thatZ
X

Kru � rv dx ¼
Z

X
fv dx; 8 v 2 H 1

0ðXÞ:

The idea of symmetric gradient discretization schemes
is to replace the operator r with a consistent approxima-
tion r̂D such that the form of the discrete problem (15) is
given by

aD u; vð Þ ¼def
Z

X
Kr̂Du � r̂Dv dx: ð38Þ

Therefore, the scheme is defined by the discrete gradient
reconstruction operator r̂D. First, let us define a discrete
gradient on each cell K 2 T as

r̂Ku ¼ 1
Kj j
X
r2EK

jrjður � uKÞnK;r; ð39Þ

the consistency of this formula follows thanks to (34).
However, to end up in a coercive form, we need an addi-
tional stabilization term, which is defined as

SK;ru ¼ SK;rnK;r;

with SK;r ¼
def ffiffi

d
p

dK;r
ur � uK�r̂Ku � xr � xKð ÞÞ:
� ð40Þ

This results in the final discrete gradient: For all
K 2 T ; r 2 EK
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r̂Du xð Þ ¼def r̂Kuþ SK;rnK;r; for a:e: x 2 �K;r; ð41Þ

where �K ;r is the convex hull that includes the face r and
the cell center xK. Inserting these discrete gradients into
the form (38) and reordering of terms lead to the form
that is defined in (16). Thus, the fluxes and the coefficient
matrix WK (30) can also be identified. Therefore, the
hybrid finite-volume scheme also belongs to the family
of hybrid mimetic schemes. The coefficient matrix, a
detailed description, and the proof of consistency and
coercivity can be found in [8].

Remark 4. For a more detailed summary of finite-
volume schemes we refer to [34, 35].

3 Numerical experiments

In this chapter, the behavior of the different finite-volume
schemes, that have been presented in the last section, is
investigated. The AvgMPFA, NLTPFA, and NLMPFA
schemes need the coefficients aK;rr0 , that occur in the sub-
fluxes (20). These coefficients are calculated using optimiza-
tion strategies together with a Primal-Dual Simplex Method
provided by the open-source library GNU Linear Program-
ming Kit1 (GLPK). Detailed explanations can be found in
[21, 24]. Furthermore, the harmonic averaging interpolator
[35] is used as reconstruction operator Ir, which is needed to
define the sub-fluxes (20).

The mimetic finite-difference scheme with fluxes (30)
and local cell matrix (37) is denoted as MFD scheme. The
hybrid finite-volume scheme defined by the discrete gradi-
ents (41) is denoted as HFV scheme. Finally, with TPFA
we denote the scheme with fluxes (27) and with MPFA-O
the scheme that is described in [37]. The Box method
[38, 39] is a vertex-centered finite-volume scheme that uses
finite-element basis functions on each cell to calculate fluxes
over sub-control volume faces.

All simulations are performed using the open-source
simulator DuMux [40], which comes in the form of an addi-
tional DUNE module [41]. Newton’s method is used to solve
the nonlinear systems of equations occurring for the nonlin-
ear finite-volume schemes, where the iteration loop is
stopped if the absolute residual is below 10�5 with respect
to the Euclidean norm.

In this section, more general boundary conditions are
considered, where the Dirichlet conditions are taken into
account using the function g 2 H

1
2ð@XÞ such that the weak

solution u 2 H 1ðXÞ has to satisfy T u ¼ g (where
T : H 1ðXÞ7!L2ð@XÞ denotes the trace operator).

A discrete seminorm on the space XD is given by

jjujjD ¼
def

X
K2T

X
r2EK

jrj
dK;r
ðvr � vKÞ2

 ! !1=2

; ð42Þ

which is a norm on the space XD;0. For the cell-centered
schemes, we define the following discrete norm (that takes
into account the Dirichlet data)

jjujjT ¼
def
�X

K2T

� X
r2EK\Eint

jrjdK;r

vL � vK

dK;r þ dL;r

� 	2

þ
X

r2EK\Eext

jrj
dK;r
ðhgir � vKÞ2

		1=2

; ð43Þ

whereas hgir denotes the average of g on the face r. Using
the Cauchy-Schwarz inequality, one can show that (see [8]
for more details)

jjujjT � jjujjD; 8 u 2 XD;g; ð44Þ

with

XD;g ¼
deffv 2 XDjvr ¼ gh ir; 8r 2 Eextg: ð45Þ

Owing to inequality (44), the discrete norm (43) will
also be used for the hybrid and mimetic schemes, although
it is not a discrete norm for these schemes since it does not
depend on the face unknowns. For measuring the coercivity
of the schemes, the following estimate is defined

eD uð Þ ¼def aD u; uð Þ
j uj jj2T

: ð46Þ

In the next section the coercivity estimate is evaluated
for the numerical solution. Please note that this is not suf-
ficient to show the coercivity of the schemes, but it serves as
a good indicator.

In the following test cases, the properties that have been
mentioned in Section 2.2 are investigated numerically.
Hereby, the numerical and exact solutions are denoted as
un (where n indicates the grid refinement level) and u,
respectively.

Remark 5. In this section, hexahedral grids are consid-
ered (or quadrilateral grids for the case of a two-dimensional
domain). Such grids are, in general, not admissible in the
sense of Definition 1, because the faces are usually non-
planar. Therefore, the averaged normal vectors are calcu-
lated which are still denoted by nK,r. For more details, we
refer to [24, 37, 42]. In [42], the authors suggest to introduce,
for strongly curved faces, additional degrees of freedom
accounting for tangential velocities. These additional veloci-
ties are related to the planar facewhich is defined through the
averaged normal vector. Such additional degrees of freedom
are not introduced here, because we did not observe any
convergence rate reduction for the considered examples.

3.1 Convergence behavior

Within this section, the convergence rates of the different
schemes are compared for three-dimensional test problems
with smooth solutions. The convergence of the family of
schemes (19) has been proven, under the assumption of
coercivity, in [21]. Here, we demonstrate that the conver-
gence rates are similar to well-established schemes. These
examples are based on our previous work [24], but here
we are using different norms and a more challenging tensor
for the highly anisotropic test case. In addition, the conver-
gence behavior of the MPFA-O, MFD, and HFV are inves-
tigated and compared.1 http://www.gnu.org/software/glpk/glpk.html
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The convergence behavior is investigated for the meshes
shown in Figure 1. The checkerboard and the random
hexahedral meshes are taken from the FVCA6 benchmark
[43], whereas the non-convex grid and the curved grid are
generated with the Matlab Reservoir Simulation Toolbox
(MRST) [44]. For all grids, we use the dune-alugrid module
[45]. Except for the checkerboard mesh, all grids exhibit
non-planar faces. Therefore, we calculate the integrated
normal vectors, see [24]. For the MPFA-O scheme this is
applied to the sub-faces of the control volumes, see [37].

Mildly anisotropic test case

The first test case is similar to test 1 from the FVCA6
benchmarks [43]. Here, the exact solution

u x; y; zð Þ ¼ sin pxð Þ sin p y þ 1
2

� 	� 	
sin p zþ 1

3

� 	� 	
þ 1;

ð47Þ

is prescribed on the unit cube X = [0, 1]3. Dirichlet condi-
tions are set on the boundary as g ¼ u on @X. The perme-
ability tensor is

K ¼
1 0:5 0

0:5 1 0:5

0 0:5 1

0
B@

1
CA: ð48Þ

The discrete L2-errors and H1-errors are shown in
Figure 2. Please note that the results of the AvgMPFA
scheme are not shown since they only differ slightly from
the NLTPFA results. Furthermore, the MPFA-O scheme
cannot be applied to hanging nodes on three-dimensional
grids, which is why there are no results of the MPFA-O
scheme for the checkerboard mesh.

It can be seen that for increasing mesh refinement, the
schemes converge with second order accuracy in the
L2-norm and at least first order accuracy in the H1-norm.
The convergence rates of all schemes are quite similar.
We also observe that the MFD scheme produces the small-
est errors. The errors of the NLMPFA scheme are the
largest ones for most grids and refinement levels. Addition-
ally, the behavior of the MPFA-O and HFV is similar,
especially for the random and non-convex grids. In this
example, the NLTPFA scheme produces smaller errors
than the NLMPFA scheme. Considering Table 1, we
observe that the coercivity estimates eD are bounded from
below which indicates that all schemes are coercive for this
test case on all grids. The NLTPFA scheme converges
within two Newton iterations, whereas the Newton conver-
gence of the NLMPFA is in general worse.

Highly anisotropic test case

The next test problem investigates a highly anisotropic
permeability tensor

K ¼ 1
x2 þ y2

bx2 þ y2 b� 1ð Þxy 0

b� 1ð Þxy x2 þ by2 0

0 0 z2 þ bð Þ x2 þ y2ð Þ

0
B@

1
CA;

ð49Þ

with b = 10�2 and the exact solution

u x; y; zð Þ ¼ sin 2pxð Þ sin 2pyð Þ sin 2pzð Þ þ 1: ð50Þ

Again, Dirichlet conditions are set on the whole bound-
ary corresponding to the exact solution.

Figure 3 shows the errors for test case two, with solution
(50). Again, the results of the AvgMPFA scheme are not
shown since they only differ slightly from the NLTPFA
results. As in the previous example, no results could be
obtained for the MPFA-O scheme on the checkerboard
mesh due to the non-conformity of the grid.

In Figure 3, we can see that the NLTPFA scheme
produces now similar errors than the HFV and MPFA-O
scheme, and results in the smallest H1-errors on the random
grid. Considering Table 2, we observe that the coercivity
estimates eD are bounded from below which indicates that
all schemes are coercive also for this test case. Again, the
NLTPFA scheme converges within two Newton iterations
for all grids. However, the NLMPFA needs much more
Newton iterations for the checkerboard mesh. The worse
convergence behavior is probably caused by the fact that
the weights lK,r, lL,r are constructed differently for the
NLMPFA and NLTPFA schemes, as explained in Remark
3. Sign changes for the functions kK,r are rare, whereas sign
changes occur more often for the residual fluxes ~F res

K;r, which
are used to define the weights of the NLMPFA scheme.
This explains why the Newton method frequently passes
points of non-differentiability of the NLMPFA weights.
In addition, for the checkerboard mesh there are some cells
and faces where some of the coefficients aK;rr0 in the sub-flux
definition (20) are negative. These two arguments might be
the reason why the NLMPFA scheme needs 623 Newton
iterations on the finest refinement level.

Fig. 1. Hexahedral meshes used for the convergence test cases
(modified after [24]).
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Fig. 2. Logarithm of L2-error (left) and discrete H1-error (right) for convergence test case one. From top to bottom: checkerboard,
random, non-convex, curved mesh.
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In the last two test cases, it has been observed that the
NLTPFA, NLMPFA, and AvgMPFA that use the conor-
mal decomposition behave similar to well-established linear
schemes such as the MPFA-O, MFD, or HFV schemes.
Especially for highly heterogeneous tensors, the conver-
gence behavior of the NLTPFA scheme is similar to the
behavior of the MPFA-O or HFV scheme. In addition,
the Newton converges much better for the NLTPFA
scheme than for the NLMPFA scheme.

Remark 6. For the above test cases, the classical linear
TPFA method does not converge. This is well-known for
non-K-orthogonal grids, see for example [6]. Therefore,
the TPFA scheme has not been considered so far.

3.2 Linearity preservation

Within this section, the linearity preservation property of
the schemes is investigated, which is a good indicator for
consistency of schemes. This example is based on our recent
work [21]. The considered domain and the grid are shown in
Figure 4 (right). The domain consists of two sub-domains
X1 and X2. The transition from X1 to X2 is located at
x ¼ 0:6, and the tensors are chosen as

K1 ¼
3 1 0

1 3 0

0 0 1

0
B@

1
CA; K2 ¼

10 3 0

3 10 0

0 0 1

0
B@

1
CA: ð51Þ

The exact solutions in the sub-domains are

u1 ¼ 14xþ y þ z; u2 ¼ 4xþ y þ zþ 6: ð52Þ

Figure 4 (left) depicts the exact solution. Please note
that the exact solution and the corresponding flux function
are globally continuous within the domain. It can also be
seen that the grid is non-matching at the transition of the
sub-domains. Such non-matching grids often occur in
faulted geological environments. The grid in Figure 4 is
defined by means of the standard corner-point grid format
and has been generated with the Matlab Reservoir
Simulation Toolbox (MRST) [44]. To read in the grid, the
opm-grid module from the Open Porous Media (OPM)
initiative2 is used, which supports the standard corner-point
grid format, see [24, 46] for more information about corner-
point grids.

Table 3 lists the discrete error norms, the number of
entries in the Jacobian matrix (noe), and the number of
Newton iterations needed for the simulation run. It can be
seen that all schemes except the TPFA scheme reproduce
the exact solution, because the errors are within the range
of the nonlinear and linear solver tolerance, whereas the
errors of the linear TPFA scheme are approximately five
orders of magnitude higher. It is well-known that the errors
of the linear TPFA scheme are inOð1Þ for non-K-orthogonal
grids. However, the improved accuracy of the other schemes

Table 1. Coercivity estimates eDðunÞ and number of Newton iterations (NIt) for convergence test case one using the
grids shown in Figure 1.

NLTPFA NLMPFA AvgMPFA MPFA-O MFD HFV

n eD unð Þ NIt eD unð Þ NIt eD unð Þ NIt eD unð Þ NIt eD unð Þ NIt eD unð Þ NIt NIt

Checkerboard 1 0.16 2 0.17 4 0.16 1 – – 0.16 1 0.21 1
2 0.34 2 0.34 7 0.33 1 – – 0.33 1 0.35 1
3 0.35 2 0.35 7 0.35 1 – – 0.35 1 0.35 1
4 0.35 2 0.35 7 0.35 1 – – 0.35 1 0.35 1
5 0.35 2 0.35 9 0.35 1 – – 0.35 1 0.35 1

Random 1 0.35 2 0.37 4 0.35 1 0.33 1 0.36 1 0.38 1
2 0.36 2 0.37 3 0.36 1 0.34 1 0.36 1 0.37 1
3 0.39 2 0.40 3 0.39 1 0.38 1 0.39 1 0.39 1
4 0.39 2 0.39 3 0.39 1 0.38 1 0.39 1 0.39 1
5 0.39 2 0.39 2 0.39 1 0.39 1 0.39 1 0.39 1

Non-convex 1 0.36 2 0.38 3 0.36 1 0.31 1 0.37 1 0.39 1
2 0.40 2 0.41 3 0.40 1 0.34 1 0.40 1 0.40 1
3 0.41 2 0.41 3 0.41 1 0.36 1 0.40 1 0.41 1
4 0.41 2 0.41 3 0.41 1 0.37 1 0.41 1 0.41 1
5 0.40 2 0.40 2 0.40 1 0.37 1 0.40 1 0.40 1

Curved 1 0.32 2 0.33 3 0.32 1 0.29 1 0.33 1 0.35 1
2 0.36 2 0.36 3 0.36 1 0.32 1 0.36 1 0.36 1
3 0.37 2 0.37 3 0.37 1 0.35 1 0.37 1 0.37 1
4 0.39 2 0.39 3 0.39 1 0.38 1 0.39 1 0.39 1
5 0.40 2 0.40 2 0.40 1 0.40 1 0.40 1 0.40 1

2 http://opm-project.org/
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Fig. 3. Logarithm of L2-error (left) and discrete H1-error (right) for convergence test case one. From top to bottom: checkerboard,
random, non-convex, curved mesh.
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comes with the cost of a larger face flux stencil, which is
the reason why the corresponding Jacobian matrices are
denser than the one of the TPFA scheme. When using
Picard’s method instead of Newton’s method, the number
of entries is the same for the NLTPFA and TPFA schemes.
It can also be seen that the MFD and HFV schemes result in
a four times denser matrix than the NLTPFA, NLMPFA, or
AvgMPFA schemes. This is due to the fact that the
calculation of the coefficient matrix (37) for the MFD
and HFV schemes, in general, include all face information,
i.e. SK;r ¼ EK . Additionally, flux conservation is weakly
enforced using the additional equation (11) that is assem-
bled into the global discretization matrix. The MPFA-O
or Box scheme cannot be easily applied to this test
case because of the non-matching interface between the
sub-domains.

3.3 Discrete extremum principles

The following two examples investigate whether the
schemes satisfy discrete extremum principles. As already
mentioned before, in general, consistent linear schemes do
not satisfy extremum principles, which motivates the con-
struction of nonlinear schemes as introduced above. The
setups for these test cases are taken from [21].

First test case

The first example investigates a test case without a source
term. The domain and the grid are shown in Figure 5, with
an inner and an outer boundary. The Dirichlet values

Table 2. Coercivity estimates eDðunÞ and number of Newton Iterations (NIt) for convergence test case two using the
grids shown in Figure 1.

NLTPFA NLMPFA AvgMPFA MPFA-O MFD HFV

n eD unð Þ NIt eD unð Þ NIt eD unð Þ NIt eD unð Þ NIt eD unð Þ NIt eD unð Þ NIt NIt

Checkerboard 1 1.60 2 1.50 5 1.61 1 – – 1.42 1 1.24 1
2 1.35 2 1.29 12 1.41 1 – – 1.42 1 1.34 1
3 1.40 2 1.36 20 1.41 1 – – 1.44 1 1.41 1
4 1.43 2 1.41 60 1.43 1 – – 1.44 1 1.43 1
5 1.43 2 1.43 623 1.44 1 – – 1.44 1 1.44 1

Random 1 1.72 2 1.69 5 1.73 1 1.38 1 1.53 1 1.45 1
2 1.68 2 1.67 5 1.70 1 1.53 1 1.58 1 1.53 1
3 1.65 2 1.64 5 1.65 1 1.59 1 1.61 1 1.60 1
4 1.63 2 1.63 3 1.63 1 1.61 1 1.62 1 1.62 1
5 1.63 2 1.63 2 1.63 1 1.61 1 1.63 1 1.62 1

Non-convex 1 1.70 2 1.69 6 1.71 1 1.26 1 1.55 1 1.46 1
2 1.72 2 1.73 7 1.72 1 1.46 1 1.65 1 1.61 1
3 1.69 2 1.70 20 1.69 1 1.52 1 1.67 1 1.66 1
4 1.68 2 1.68 11 1.68 1 1.54 1 1.67 1 1.67 1
5 1.68 2 1.68 8 1.68 1 1.55 1 1.68 1 1.68 1

Curved 1 1.81 2 1.73 5 1.82 1 1.15 1 1.52 1 1.38 1
2 1.67 2 1.65 5 1.67 1 1.34 1 1.52 1 1.47 1
3 1.56 2 1.58 5 1.56 1 1.49 1 1.52 1 1.50 1
4 1.63 2 1.63 9 1.63 1 1.61 1 1.62 1 1.61 1
5 1.66 2 1.66 7 1.66 1 1.66 1 1.66 1 1.66 1

Fig. 4. Exact solution for linearity preservation test case as
defined in (52) (left); Grid used for the spatial discretization
(right). Dirichlet conditions are set at the domain boundary,
equal to the exact solution u (modified after [21]).

Table 3. Discrete error norms, number of entries in the
Jacobian matrix (noe), and the number of Newton
iterations (NIt) needed for the linearity preservation test
case.

Scheme jjun � ujjL2 jjun � ujjT noe NIt

NLTPFA 1.97e-8 8.11e-7 184111 4
NLMPFA 1.99e-8 8.31e-7 184202 7
AvgMPFA 1.99e-8 8.31e-7 184111 1
TPFA 9.11e-3 3.92e-1 107600 1
MFD 1.99e-8 7.91e-7 747800 1
HFV 2.00e-8 8.17e-7 747800 1
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u = 105 and u = 0 are set at the inner and outer bound-
aries, respectively. Therefore, the solution is expected to
be within these bounds. The tensor K is chosen homoge-
neous but anisotropic as

K ¼ R
p
6


 � 1000 0

0 1

� 	
R�1 p

6


 �
;

with R að Þ ¼ cos a � sin a
sin a cos a

� 	
: ð53Þ

Figure 6 shows the numerical solutions of the different
schemes on a three times refined grid. The TPFA scheme
produces no under- or overshoots, and therefore satisfies
extremum principles. This is well-known since the result-
ing discretization matrix is an M-matrix. However, the
linear TPFA scheme is not consistent for this test case
which explains why the anisotropy is not reflected by the
TPFA solution. The maximum principle is violated by
the MPFA-O, MFD, and HFV schemes, with overshoots
of 8% for the MPFA-O scheme and up to 4% for the
MFD and HFV schemes. The minimum principle is
violated by all consistent linear schemes. The undershoots
of the AvgMPFA scheme are above 4%, those of the
Box scheme above 2%. The undershoots of the other
schemes are below 1%. For this test case, both nonlinear
schemes satisfy the discrete extremum principles. The small
negative undershoots of the NLMPFA scheme are caused
by Newton’s method. These undershoots can be prevented
by using other nonlinear solvers such as Picard’s method or
enhanced solvers [47]. Furthermore, we also point out that
the NLTPFA scheme in general does not satisfy the mini-
mum principle. A similar test case has been considered in
[47, 48] with outer Dirichlet boundary conditions above
zero. In that case undershoots can also be observed by
the NLTPFA scheme.

Second test case

The previous example has demonstrated that the NLTPFA
and NLMPFA schemes are positivity-preserving. In the
following example, it is demonstrated that the NLMPFA
scheme satisfies the maximum principle, in contrast to
the NLTPFA scheme. This test case has been introduced

in [49]. The boundary conditions are Neumann no-flow on
the whole boundary, i.e. (K$u) Æ n = 0 on @X, and
X = [0, 1]2 is discretized with a regular Cartesian grid, with
77 · 77 cells. The tensor K is chosen as (53) with a = 67.5�.
We add the constraints u = 0 and u = 1 at the cells with
centers ð 7

22 ;
1
2Þ and ð1522 ; 1

2Þ, respectively. Therefore, the solu-
tion is bounded, such that 0 � u � 1.

Figure 7 depicts the numerical solutions of the different
schemes as surface plots. The TPFA obviously again satis-
fies the minimum and maximum principle due to the
M-matrix property but again the anisotropy is not correctly
reproduced. The only consistent scheme that fulfills the
maximum principle is the NLMPFA scheme, all the other
schemes produce overshoots. The Box and AvgMPFA
schemes produce the highest over- and undershoots. Those
of the Box scheme are above 26%. The overshoots of the
NLTPFA scheme are higher than those of the MPFA-O,
MFD, and HFV schemes. But the NLTPFA scheme
produces no undershoots since it is positivity-preserving.
Furthermore, the undershoots of the MPFA-O, MFD,
and HFV are below 3%.

The above test cases exhibit how nonlinear schemes are
capable to reproduce physical solutions, whereas linear
schemes can produce negative values. When solving highly
complex partial differential equations, where secondary
variables non-linearly depend on primary variables, such
negative values can strongly influence the efficiency of the
scheme, in terms of linear and nonlinear solver convergence.
It should be mentioned again that the NLTPFA is only
positivity-preserving, whereas the NLMPFA satisfies dis-
crete extremum principles.

3.4 Benchmark: Northeast German Basin

The following example is a synthetic model inspired by the
3D Northeast German Basin model presented in [50]. This
test case has recently been published in [21], where the
results of the AvgMPFA, NLTPFA, NLMPFA, TPFA,
and Box schemes have been presented. Here, we addition-
ally present the results of the MPFA-O, MFD, and HFV
schemes. However, the model setup is analogous to [21].
The data and the approximate geometry of the basin are
provided by IFPEN. The different facies of the Northeast
German Basin are depicted in Figure 8, where the domain
is reflected such that �z is oriented in depth direction.

Salt diapirs within this model create highly conductive
regions, as shown in Figure 9, leading to thermal anomalies.
A robust discretization with respect to the grid is required
for this type of structure, in order to evaluate the tempera-
ture field and to perform thermohaline simulations.

Here, the stationary heat equation is solved, where K
corresponds to the thermal conductivity [W/(m�K)] and
u to the temperature T [K]. The thermal conductivity is
computed with the following law [51]

K ¼ K/
wK1�/

s I; ð54Þ

where I is the identity matrix, Kw and Ks denote the water
and rock conductivities, and / the porosity. The conduc-
tivity of water is set to Kw = 0.6. The thermal properties

Fig. 5. Unstructured grid used for the first discrete extremum
principle test case.
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of the different facies are listed in Table 4. The porosity
distribution and the thermal conductivities are shown in
Figure 9. At the top and bottom boundaries, Dirichlet
conditions are set to 281.15 K and 423.15 K, respectively,

whereas Neumann no-flow conditions are set elsewhere.
The grid consists of 864,435 cells.

Figure 10 shows the numerical solutions of the MPFA-O
and TPFA schemes. Additionally, the absolute difference

Fig. 6. Solution of Box, AvgMPFA, NLTPFA, and NLMPFA schemes (first row); solution of MPFA-O, TPFA, MFD, and HFV
schemes (second row) for the first discrete extremum principle test case calculated on the grid that arises after three times refinement
of the grid shown in Figure 5. The tensor is specified in (53). The range of the different solutions is depicted below the different
drawings.

Fig. 7. Solution of Box, AvgMPFA, NLTPFA, and NLMPFA schemes (first row); solution of MPFA-O, TPFA, MFD, and HFV
schemes (second row) for the second discrete extremum principle test case. The solutions are depicted as a surface plot. The tensor K
used for this test case is specified in (53) with a = 67.5�. On the whole boundary Neumann no-flow conditions are set, whereby two
wells are located within the domain where the values of u are fixed. The range of the different solutions is depicted below the different
drawings.
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between the MPFA-O and the NLTPFA, TPFA, HFV, and
Box schemes is depicted in this figure. It is observed that the
TPFA scheme differs the most from the other schemes. The
largest differences occur at the salt domes, where it seems
that the TPFA scheme overestimates the temperature
values. The NLTPFA and HFV schemes are in good

agreement with the MPFA-O results. The largest difference
between the NLTPFA and MPFA-O scheme is below
7.88 K, and for the HFV scheme below 2.29 K. This can also
be seen in Table 5, which lists the relative discrete errors
jju1�u2jj

L
2

T ref

ffiffiffiffi
jXj
p between the schemes, with the total domain volume

|X| � 1.75e+14 m3 and the reference temperature Tref =
352.15 K. It can be observed that the AvgMPFA,
NLMPFA, and NLTPFA schemes produce similar solutions.
The same applies to the HFV and MFD schemes. Further-
more, the TPFA and the Box schemes differ the most from
the other schemes, which is in agreement with the results
shown in Figure 10. Again, the number of entries of the
NLTPFA, NLMPFA, and AvgMPFA is approximately
twice the number of the TPFA scheme. Moreover, the most
dense matrices are those of the HFV and MFD schemes.

Fig. 9. Thermal conductivity, calculated with the law (54)
(choosing Kw = 0.6) and porosity distribution of the Northeast
German Basin, whereby the domain is scaled by a factor of five
in z-direction. The salt domes correspond to the highly conduc-
tive regions (modified after [21]).

Fig. 10. Solution of MPFA-O and TPFA schemes (first row).
Absolute difference between the MPFA-O and the NLTPFA,
TPFA, HFV, and Box schemes (second and third row). The
results are shown for a part of the domain.

Fig. 8. Different facies of the Northeast German Basin, where
the domain is scaled by a factor of five in z-direction and the
different layers are shifted horizontally for better visibility of the
features. The domain lengths in coordinate directions are
approximately 169 km (in the x-direction), 165 km (in the
y-direction), and 10.87 km (in the z-direction). The domain has
been reflected at the z-plane such that �z corresponds to the
depth axis. At the top and bottom boundaries, Dirichlet
conditions are set to 281.15 K and 423.15 K, respectively,
whereas Neumann no-flow conditions are set elsewhere (modified
after [21]).

Table 4. Thermal properties of facies of the Northeast
German Basin.

Facies Ks [W/(m�K)]

Marl 2.76
Silt 2.5
Chalk 3.57
Sandstone 6.32
Sandstone and shale (mixture 50%-50%) 3.67
Limestone 3.57
Salt 6.1
Conglomerate 3.27
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4 Conclusion

Within this article, we have presented an abstract
discretization framework for elliptic equations. Furthermore,
it has been demonstrated that various finite-volume schemes
fit into this framework, with the difference that hybrid
schemes introduce additional face unknowns, whereas cell-
centered schemes eliminate these face unknowns by using
trace reconstruction operators. Properties like consistency,
coercivity, extremum principles, and sparsity have been
defined in Section 2.2 for schemes that belong to this
discretization framework. Consistency and coercivity are
particularly essential to prove the convergence of such
schemes. Hybrid schemes are coercive by construction,
whereas cell-centered schemes are generally not coercive.
In Section 2.3, besides the linear AvgMPFA scheme, a
monotone Nonlinear Two-Point Flux Approximation
(NLTPFA) and an extremum-principles-preserving Multi-
Point Flux Approximation (NLMPFA) have been pre-
sented. In Section 2.4, we have briefly introduced the
well-known mimetic [13, 52] and hybrid finite-volume [8]
schemes. Note that all schemes have been implemented into
the open-source simulator DuMux [40], allowing for a com-
parison of the different methods within the same software
framework. The schemes have been analyzed numerically
in Section 3. For the two test cases considered, involving a
mildly and highly anisotropic tensor, it has been demon-
strated that all schemes, except for the TPFA, show a similar
convergence behavior and that all schemes seem to be coer-
cive. The consistency of the NLTPFA, NLMPFA,
AvgMPFA, MFD, and HFV schemes, for piecewise linear
solutions, has been investigated in Section 3.2 for a non-
matching grid. In addition, we have shown in Section 3.3
that linear schemes are in general neither positivity-preser-
ving nor satisfy discrete minimum or maximum principles,
in contrast to nonlinear schemes. In the last example the
Northeast German Basin has been considered, showing that
the NLTPFA and NLMPFA schemes result in similar solu-
tions than other well-established consistent schemes such as
the MPFA-O, MFD, or HFV schemes.
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(2018) The gradient discretisation method, HAL, https://
hal.archives-ouvertes.fr/hal-01382358.
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C., Kempf D., Klöfkorn R., Malkmus T., Müthing S., Nolte
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