Quasi-optimal nonconforming approximation of elliptic PDES with contrasted coefficients and minimal regularity

Abstract : In this paper we investigate the approximation of a diffusion model problem with contrasted diffusivity and the error analysis of various nonconforming approximation methods. The essential difficulty is that the Sobolev smoothness index of the exact solution may be just barely larger than one. The lack of smoothness is handled by giving a weak meaning to the normal derivative of the exact solution at the mesh faces. The error estimates are robust with respect to the diffusivity contrast. We briefly show how the analysis can be extended to the Maxwell's equations.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01964299
Contributeur : Alexandre Ern <>
Soumis le : vendredi 21 décembre 2018 - 20:15:17
Dernière modification le : samedi 5 janvier 2019 - 01:13:00

Fichier

contrasted_diffusivity.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01964299, version 1

Collections

Citation

Alexandre Ern, Jean-Luc Guermond. Quasi-optimal nonconforming approximation of elliptic PDES with contrasted coefficients and minimal regularity. 2018. 〈hal-01964299〉

Partager

Métriques

Consultations de la notice

28

Téléchargements de fichiers

45