Exploring Textual and Speech information in Dialogue Act Classification with Speaker Domain Adaptation

Abstract : In spite of the recent success of Dialogue Act (DA) classification, the majority of prior works focus on text-based classification with oracle transcriptions, i.e. human transcriptions, instead of Automatic Speech Recognition (ASR)'s transcriptions. In spoken dialog systems, however, the agent would only have access to noisy ASR transcriptions, which may further suffer performance degradation due to domain shift. In this paper, we explore the effectiveness of using both acoustic and textual signals, either oracle or ASR transcriptions, and investigate speaker domain adaptation for DA classification. Our multimodal model proves to be superior to the unimodal models, particularly when the oracle transcriptions are not available. We also propose an effective method for speaker domain adaptation , which achieves competitive results.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01962571
Contributeur : Laurent Besacier <>
Soumis le : jeudi 20 décembre 2018 - 16:40:08
Dernière modification le : lundi 11 février 2019 - 16:36:02

Fichier

monash.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01962571, version 1

Collections

Citation

Xuanli He, Hung Quan, William Havard, Laurent Besacier, Ingrid Zukerman, et al.. Exploring Textual and Speech information in Dialogue Act Classification with Speaker Domain Adaptation. 2018. 〈hal-01962571〉

Partager

Métriques

Consultations de la notice

12

Téléchargements de fichiers

3