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Abstract

In the first part of this paper we study approximations of trajectories of Piecewise Deter-
ministic Processes (PDP) when the flow is not explicit by the thinning method. We also
establish a strong error estimate for PDPs as well as a weak error expansion for Piecewise
Deterministic Markov Processes (PDMP). These estimates are the building blocks of the
Multilevel Monte Carlo (MLMC) method which we study in the second part. The coupling
required by MLMC is based on the thinning procedure. In the third part we apply these
results to a 2-dimensional Morris-Lecar model with stochastic ion channels. In the range of
our simulations the MLMC estimator outperforms the classical Monte Carlo one.
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1 Introduction

In this paper we are interested in the approximation of the trajectories of PDPs. We establish
strong error estimates for a PDP and a weak error expansion for a PDMP. Then we study the
application of the Multilevel Monte Carlo (MLMC) method in order to approximate expectations
of functional of PDMPs. Our motivation comes from Neuroscience where the whole class of
stochastic conductance-based neuron models can be interpreted as PDMPs. The response of a
neuron to a stimulus, called neural coding, is considered as a relevant information to understand
the functional properties of such excitable cells. Thus many quantities of interest such as mean
first spike latency, mean interspike intervals and mean firing rate can be modelled as expectations
of functionals of PDMPs.

PDPs have been introduced by Davis in [5] as a general class of stochastic processes charac-
terized by a deterministic evolution between two successive random times. In the case where
the deterministic evolution part follows a family of Ordinary Differential Equations (ODEs) the

∗Laboratoire de Probabilités, Statistique et Modélisation (LPSM), UMR CNRS 8001, Sorbonne Université-
Campus Pierre et Marie Curie, Case 158, 4 place Jussieu, F-75252 Paris Cedex 5, France

†vincent.lemaire@upmc.fr
‡michele.thieullen@upmc.fr
§nicolas.thomas@upmc.fr

1



corresponding PDP enjoys the Markov property and is called a PDMP. The distribution of a
PDMP is thus determined by three parameters called the characteristics of the PDMP: a family
of vector fields, a jump rate (intensity function) and a transition measure.
We consider first a general PDP (xt) which is not necessarily Markov on a finite time interval
[0, T ] for which the flow is not explicitly solvable. Approximating its flows by the classical Euler
scheme and using our previous work [22], we build a thinning algorithm which provides us with
an exact simulation of an approximation of (xt) that we denote (xt). The process (xt) is a PDP
constructed by thinning of a homogeneous Poisson process which enjoys explicitly solvable flows.
Actually this thinning construction provides a whole family of approximations indexed by the
time step h > 0 of the Euler scheme. We prove that for any real valued smooth function F the
following strong estimate holds

∃ V1 > 0, V2 > 0, E[|F (xT ) − F (xT )|2] ≤ V1h + V2h2. (1)

Moreover if (xt) is a PDMP the following weak error expansion holds

∃ c1 > 0, E[F (xT )] − E[F (xT )] = c1h + o(h2). (2)

The estimate (1) is mainly based on the construction of the couple (xt, xt) and on the fact that
the Euler scheme is of order 1 this is why it is valid for a general PDP and its Euler scheme.
On the contrary, the estimate (2) relies on properties which are specific to PDMPs such as the
Feynman-Kac formula.

The MLMC method relies simultaneously on estimates (1) and (2) that is why we study its
application to the PDMP framework instead of the more general PDP one. MLMC extends the
classical Monte Carlo (MC) method which is a very general approach to estimate expectations
using stochastic simulations. The complexity (i.e the number of operations necessary in the
simulation) associated to a MC estimation can be prohibitive especially when the complexity of an
individual random sample is very high. MLMC relies on repeated independent random samplings
taken on different levels of accuracy which differs from the classical MC method. MLMC can
then greatly reduces the complexity of the classical MC by performing most simulations with
low accuracy but with low complexity and only few simulations with high accuracy at high
complexity. MLMC have been introduced by S. Heinrich in [18] and developed by M. Giles in
[12]. The MLMC estimator has been efficiently used in various fields of numerical probability
such as SDEs [12], Markov chains [1], [2], [14], Lévy processes [10], jump diffusions [28], [7], [8]
or nested Monte Carlo [21], [13]. See [11] for more references. To the best of our knowledge,
application of MLMC to PDMPs has not been considered.

For the sake of clarity, we describe here the general improvement of MLMC. We are interested in
the estimation of E[X ] where X is a real valued square integrable random variable on a probability

space (Ω, F ,P). When X can be simulated exactly the classical MC estimator (1/N)
∑N

k=1 Xk

with Xk, k ≥ 1 independent random variables identically distributed as X , provides an unbiased
estimator. The associated L2 - error satisfies ‖ Y −E[X ] ‖2

2= Var(Y ) = 1
N Var(X). If we quantify

the precision by the L2 - error, then a user-prescribed precision ǫ2 > 0 is achieved for N = O(ǫ−2)
so that in this case the global complexity is of order O(ǫ−2).
Assume now that X cannot be simulated exactly (or cannot be simulated at a reasonable cost)
and that we can build a family of real valued random variables (Xh, h > 0) on (Ω, F ,P) which
converges weakly and strongly to X as h → 0 in the following sense

∃ c1 > 0, α > 0, E[Xh] − E[X ] = c1hα + o(h2α), (3)
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and
∃ V1 > 0, β > 0, E[|Xh − X |2] ≤ V1hβ . (4)

Assume moreover that for h > 0 the random variable Xh can be simulated at a reasonable
complexity (the complexity increases as h → 0). The classical MC estimator now consists in a
sequence of random variables

Y =
1

N

N∑

k=1

Xk
h , (5)

where Xk
h , k ≥ 1 are independent random variables identically distributed as Xh. The bias and

the variance of the estimator (5) are respectively given by E[Y ] − E[X ] = E[Xh] − E[X ] ≃ c1hα

and Var(Y ) = 1
N Var(Xh). From the strong estimate (4) we have that Var(Xh) → Var(X) as

h → 0 so that Var(Xh) is asymptotically a constant independent of h. If as above we quantify the
precision by the L2 - error and use that ‖ Y −E[X ] ‖2

2= (E[Y ]−E[X ])2 +Var(Y ), we obtain that
the estimator (5) achieves a user-prescribed precision ǫ2 > 0 for h = O(ǫ1/α) and N = O(ǫ−2)
so that the global complexity of the estimator is now O(ǫ−2− 1

α ).
The MLMC method takes advantage of the estimate (4) in order to reduce the global complexity.
Let us fix L ≥ 2 and consider for l ∈ {1, . . . , L} a geometrically decreasing sequence (hl, 1 ≤
l ≤ L) where hl = h∗M−(l−1) for fixed h∗ > 0 and M > 1. The indexes l are called the levels
of the MLMC and the complexity of Xhl

increases as the level increases. Thanks to the weak
expansion (3), the quantity E[XhL

] approximates E[X ]. Using the linearity of the expectation
the quantity E[XhL

] can be decomposed over the levels l ∈ {1, . . . , L} as follows

E[XhL
] = E[Xh∗ ] +

L∑

l=2

E[Xhl
− Xhl−1

]. (6)

For each level l ∈ {1, . . . , L}, a classical MC estimator is used to approximate E[Xhl
− Xhl−1

]
and E[Xh∗ ]. At each level, a number Nl ≥ 1 of samples are required and the key point is that
the random variables Xhl

and Xhl−1
are assumed to be correlated in order to make the variance

of Xhl
− Xhl−1

small. Considering at each level l = 2, . . . , L independent couples (Xhl
, Xhl−1

) of
correlated random variables, the MLMC estimator then reads

Y =
1

N1

N1∑

k=1

Xk
h∗ +

L∑

l=2

1

Nl

Nl∑

k=1

(Xk
hl

− Xk
hl−1

), (7)

where (Xk
h∗ , k ≥ 1) is a sequence of independent and identically distributed random variables

distributed as Xh∗ and
(

(Xk
hl

, Xk
hl−1

), k ≥ 1
)

for l = 2, . . . , L are independent sequences of

independent copies of (Xhl
, Xhl−1

) and independent of (Xk
h∗). It is known, see [12] or [21], that

given a precision ǫ > 0 and provided that the family (Xh, h > 0) satisfies the strong and weak
error estimates (4) and (3), the multilevel estimator (7) achieves a precision ‖ Y − E[X ] ‖2

2= ǫ2

with a global complexity of order O(ǫ−2) if β > 1, O(ǫ−2(log(ǫ))2) if β = 1 and O(ǫ−2−(1−β)/α) if
β < 1. This complexity result shows the importance of the parameter β. Finally, let us mention
that in the case β > 1 it possible to build an unbiased multilevel estimator, see [15].

Estimates (1) and (2) suggest to investigate the use of the MLMC method in the PDMP frame-
work with β = 1 and α = 1. Letting X = F (xT ) and Xh = F (xT ) for h > 0 and F a smooth
function, we define a MLMC estimator of E[F (xT )] just as in (7) (noted Y MLMC in the paper)
where the processes involved at the level l are correlated by thinning. Since these processes are
constructed using two different time steps, the probability of accepting a proposed jump time
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differs from one process to the other. Moreover the discrete components of the post-jump loca-
tions may also be different. This results in the presence of the term V1h in the estimate (1). In
order to improve the convergence rate (to increase the parameter β) in (1), we show that for a
given PDMP (xt) we have the following auxiliary representation

E[F (xT )] = E[F (x̃T )R̃T ]. (8)

The PDMP (x̃t) and its Euler scheme are such that their discrete components jump at the
same times and in the same state. (R̃t) is a process which depends on (x̃t, t ∈ [0, T ]). The
representation (8) is inspired by the change of probability introduced in [28] and is actually valid
for a general PDP (Proposition 2.2) so that E[F (xT )] = E[F (x̃T )R̃T ] where (x̃t) is the Euler
scheme corresponding to (x̃t) and (R̃t) is a process which depends on (x̃t, t ∈ [0, T ]). Letting
X = F (x̃T )R̃T and Xh = F (x̃T )R̃T we define a second MLMC estimator (noted Ỹ MLMC) where
now the discrete components of the Euler schemes (x̃t) involved at the level l always jump in the
same states and at the same times. To sum up, the first MLMC estimator we consider (Y MLMC)

derives from (6) where the corrective term at level l is E[F (xhl

T )−F (x
hl−1

T )] whereas the corrective

term of the second estimator (Ỹ MLMC) is E[F (x̃hl

T )R̃
hl

T − F (x̃
hl−1

T )R̃
hl−1

T ]. For readability, we no
longer write the dependence of the approximations on the time step. For the processes (F (x̃t)R̃t)
and (F (x̃t)R̃t) we show the following strong estimate

∃ Ṽ1 > 0, E[|F (x̃T )R̃T − F (x̃T )R̃T |2] ≤ Ṽ1h2,

so that we end up with β = 2 and the complexity goes from a O(ǫ−2(log(ǫ))2) to a O(ǫ−2).

As an application we consider the PDMP version of the 2-dimensional Morris-Lecar model, see
[25], which takes into account the precise description of the ionic channels and in which the
flows are not explicit. Let us mention [3] for the application of quantitative bounds for the
long time behavior of PDMPs to a stochastic 3-dimensional Morris-Lecar model. The original
deterministic Morris-Lecar model has been introduced in [23] to account for various oscillating
states in the barnacle giant muscle fiber. Because of its low dimension, this model is among the
favourite conductance-based models in computational Neuroscience. Furthermore, this model is
particularly interesting because it reproduces some of the main features of excitable cells response
such as the shape, amplitude and threshold of the action potential, the refractory period. We
compare the classical MC and the MLMC estimators on the 2-dimensional stochastic Morris-
Lecar model to estimate the mean value of the membrane potential at fixed time. It turns out
that in the range of our simulations the MLMC estimator outperforms the MC one. It suggests
that MLMC estimators can be used successfully in the framework of PDMPs.
As mentioned above, the quantities of interest such as mean first spike latency, mean interspike
intervals and mean firing rate can be modelled as expectations of path-dependent functional of
PDMPs. This setting can then be considered as a natural extension of this work.

The paper is organised as follows. In section 2, we construct a general PDP by thinning and we
give a representation of its distribution in term of the thinning data (Proposition 1). In section
3, we establish strong error estimates (Theorems 1-2). In section 4, we establish a weak error
expansion (Theorem 3). In section 5, we compare the efficiency of the classical and the multilevel
Monte Carlo estimators on the 2-dimensional stochastic Morris-Lecar model.
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2 Piecewise Deterministic Process by thinning

2.1 Construction

In this section we introduce the setting and recall some results on the thinning method from our
previous paper [22]. Let E := Θ×R

d where Θ is a finite or countable set and d ≥ 1. A piecewise
deterministic process (PDP) is defined from the following characteristics

• a family of functions (Φθ)θ∈Θ such that Φθ : R+ × R
d → R

d for all θ ∈ Θ,

• a measurable function λ : E →]0, +∞[,

• a transition measure Q : E × B(E) → [0, 1].

We denote by x = (θ, ν) a generic element of E. We only consider PDPs with continuous
ν-component so that for A ∈ B(Θ) and B ∈ B(Rd), we write

Q(x, A × B) = Q(x, A)δν (B). (9)

If we write x = (θx, νx), then it holds that

Q((θx, Φθx
(t, νx)), dθdν) = Q((θx, Φθx

(t, νx)), dθ)δΦθx (t,νx)(dν).

Our results do not depend on the dimension of the variable in R
d so we restrict ourself to R

(d = 1) for the readability. We work under the following assumption

Assumption 2.1. There exists λ∗ < +∞ such that, for all x ∈ E, λ(x) ≤ λ∗.

In [22] we considered a general upper bound λ∗. In the present paper λ∗ is constant (see
Assumption 2.1). Let (Ω, F ,P) be a probability space on which we define

1. an homogeneous Poisson process (N∗
t , t ≥ 0) with intensity λ∗ (given in Assumption 2.1)

whose successive jump times are denoted (T ∗
k , k ≥ 1). We set T ∗

0 = 0.

2. two sequences of iid random variables with uniform distribution on [0, 1], (Uk, k ≥ 1) and
(Vk, k ≥ 1) independent of each other and independent of (T ∗

k , k ≥ 1).

Given T > 0 we construct iteratively the sequence of jump times and post-jump locations
(Tn, (θn, νn), n ≥ 0) of the E-valued PDP (xt, t ∈ [0, T ]) that we want to obtain in the end
using its characteristics (Φ, λ, Q). Let (θ0, ν0) ∈ E be fixed and let T0 = 0. We construct T1 by
thinning of (T ∗

k ), that is
T1 := T ∗

τ1
, (10)

where
τ1 := inf {k > 0 : Ukλ∗ ≤ λ(θ0, Φθ0(T ∗

k , ν0))} . (11)

We denote by |Θ| the cardinal of Θ (which may be infinite) and we set Θ = {k1, . . . , k|Θ|}. For
j ∈ {1, . . . , |Θ|} we introduce the functions aj defined on E by

aj(x) :=

j∑

i=1

Q(x, {ki}), ∀x ∈ E. (12)

By convention, we set a0 := 0. We also introduce the function H defined by

H(x, u) :=

|Θ|∑

i=1

ki1ai−1(x)<u≤ai(x), ∀x ∈ E, ∀u ∈ [0, 1].
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For all x ∈ E, H(x, .) is the inverse of the cumulative distribution function of Q(x, .) (see for
example [9]). Then, we construct (θ1, ν1) from the uniform random variable V1 and the function
H as follows

(θ1, ν1) =
(
H
(
(θ0, Φθ0(T ∗

τ1
, ν0)), V1

)
, φθ0(T ∗

τ1
, ν0)

)
,

= (H ((θ0, Φθ0(T1, ν0)), V1) , φθ0(T1, ν0)) .

Thus, the distribution of (θ1, ν1) given (τ1, (T ∗
k )k≤τ1 ) is Q((θ0, Φθ0(T ∗

τ1
, ν0)), .) or in view of (9),

∑

k∈Θ

Q
(
(θ0, Φθ0(T ∗

τ1
, ν0)), {k}

)
δ(k,φθ0

(T ∗
τ1

,ν0)).

For n > 1, assume that
(
τn−1, (T ∗

k )k≤τn−1 , (θn−1, νn−1)
)

is constructed. Then, we construct Tn

by thinning of (T ∗
k ) conditionally to

(
τn−1, (T ∗

k )k≤τn−1 , (θn−1, νn−1)
)

, that is

Tn := T ∗
τn

,

where
τn := inf

{
k > τn−1 : Ukλ∗ ≤ λ(θn−1, Φθn−1(T ∗

k − T ∗
τn−1

, νn−1))
}

.

Then, we construct (θn, νn) using the uniform random variable Vn and the function H as follows

(θn, νn) :=
(

H
(

(θn−1, Φθn−1(T ∗
τn

− T ∗
τn−1

, νn−1)), Vn

)
, Φθn−1(T ∗

τn
− T ∗

τn−1
, νn−1)

)

=
(
H
(
(θn−1, Φθn−1(Tn − Tn−1, νn−1)), Vn

)
, Φθn−1(Tn − Tn−1, νn−1)

)
.

We define the PDP xt for all t ∈ [0, T ] from the process (Tn, (θn, νn)) by

xt := (θn, Φθn
(t − Tn, νn)) , t ∈ [Tn, Tn+1[. (13)

Thus, xTn
= (θn, νn) and x−

Tn
= (θn−1, νn). We also define the counting process associated to

the jump times Nt :=
∑

n≥1 1Tn≤t.

2.2 Approximation of a PDP

In applications we may not know explicitly the functions Φθ. In this case, we use a numerical
scheme Φθ approximating Φθ. In this paper, we consider schemes such that there exits positive
constants C1 and C2 independent of h and θ such that

sup
t∈[0,T ]

|Φθ(t, ν1) − Φθ(t, ν2)| ≤ eC1T |ν1 − ν2| + C2h, ∀θ ∈ Θ, ∀(ν1, ν2) ∈ R
2. (14)

To the family (Φθ) we can associate a PDP constructed as above that we denote (xt). We
emphasize that there is a positive probability that (xt) and (xt) jump at different times and/or
in different states even if they are both constructed from the same data (N∗

t ), (Uk) and (Vk).
However if the characteristics (Φ, λ̃, Q̃) of a PDP (x̃t) are such that λ̃ and Q̃ depend only on θ,
that is λ̃(x) = λ̃(θ) and Q̃(x, .) = Q̃(θ, .) for all x = (θ, ν) ∈ E, then its embedded Markov chain
(T̃n, (θ̃n, ν̃n), n ≥ 0) is such that (θ̃n, n ≥ 0) is an autonomous Markov chain with kernel Q̃ and
(T̃n, n ≥ 0) is a counting process with intensity λ̃t =

∑
n≥0 λ̃(θ̃n)1T̃n≤t<T̃n+1

. In particular, both

(θ̃n) and (τ̃n) do not depend on Φ. The particular form of the characteristics λ̃ and Q̃ implies that
the PDP (x̃t) and its approximation (x̃t) are correlated via the same process (τ̃n, θ̃n). In other
words, these processes always jump exactly at the same times and their θ-component always
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jump in the same states. Such processes (x̃t) are easier theoretically as well as numerically than
the general case. They will be useful for us in the sequel.

The following lemma (which is important for several proofs below) gives a direct consequence of
the estimate (14).

Lemma 2.1. Let (Φθ) and (Φθ) satisfying (14). Let (tn, n ≥ 0) be an increasing sequence of
non-negative real numbers with t0 = 0 and let (αn, n ≥ 0) be a sequence of Θ-valued components.
For a given ν ∈ R let us define iteratively the sequences (βn, n ≥ 0) and (βn, n ≥ 0) as follows

{
βn = Φαn−1(tn − tn−1, βn−1),
β0 = ν,

and

{
βn = Φαn−1(tn − tn−1, βn−1),

β0 = ν.

Then, for all n ≥ 1 we have
|βn − βn| ≤ eC1tnnC2h,

where C1 and C2 are positive constants independent of h.

Proof of Lemma 2.1. Let n ≥ 1. From the estimate (14), we have for all k ≤ n

∣∣βk − βk

∣∣ ≤ eC1(tk−tk−1)|βk−1 − βk−1| + C2h,

and therefore

e−C1tk
∣∣βk − βk

∣∣ ≤ e−C1tk−1 |βk−1 − βk−1| + C2h.

By summing up these inequalities for 1 ≤ k ≤ n and since β0 = β0 we obtain

∣∣βn − βn

∣∣ ≤ eC1tnnC2h.

2.3 Application to the construction of a PDMP and its associated
Euler scheme

In this section we define a PDMP and its associated Euler scheme from the construction of the
section 2.1. For all θ ∈ Θ, we consider a family of vector fields (fθ, θ ∈ Θ) satisfying

Assumption 2.2. For all θ ∈ Θ, the function fθ : R → R is bounded and Lipschitz with constant
L independent of θ.

If we choose Φθ = φθ in the above construction where for all x = (θ, ν) ∈ E, we denote by
(φθ(t, ν), t ≥ 0) the unique solution of the ordinary differential equation (ODE)

{
dy(t)

dt = fθ (y(t)) ,
y(0) = ν,

(15)

then the corresponding PDP is Markov since φ satisfies the semi-group property which reads
φθ(t + s, ν) = φθ(t, φθ(s, ν)) for all t, s ≥ 0 and for all (θ, ν) ∈ E. In this case, the process (xt)
is a piecewise deterministic Markov process (see [6] or [20]).

Let h > 0. We approximate the solution of (15) by the Euler scheme with time step h. First, we
define the Euler subdivision of [0, +∞[ with time step h, noted (ti, i ≥ 0), by ti := ih.
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Then, for all x = (θ, ν) ∈ E, we define the sequence (yi(x), i ≥ 0), the classical Euler scheme,
iteratively by {

yi+1(x) = yi(x) + hfθ(yi(x)),
y0(x) = ν,

to emphasize its dependence on the initial condition. Finally, for all x = (θ, ν) ∈ E, we set

φθ(t, ν) := yi(x) + (t − ti)fθ(yi(x)), ∀t ∈ [ti, ti+1]. (16)

We construct the approximating process (xt) as follows. Its continuous component starts from
ν0 at time 0 and follows the flow φθ0

(t, ν0) until the first jump time T 1 that we construct

by (10) and (11) of section 2.1 where we replace Φθ0(T ∗
k , ν0) by φθ0

(T ∗
k , ν0). At time T 1 the

continuous component of xT 1
is equal to φθ0

(T 1, ν0) := ν1 since there is no jump in the continuous

component. The discrete component jumps to θ1. We iterate this procedure with the new flow
φθ1

(t − T 1, ν1) until the next jump time T 2 given by (10) and (11) with φθ1
(T ∗

k − T 1, ν1) and so
on. We proceed by iteration to construct (xt) on [0, T ].
Consequently, the discretisation grid for (xt) on the interval [0, T ] is random and is formed by
the points T n + kh for n = 0, . . . , NT and k = 0, . . . , ⌊(T n+1 ∧ T − T n)/h⌋. This differs from the
SDE case where the classical grid is fixed.

By classical results of numerical analysis (see [17] for example), the continuous Euler scheme (16)
(also called Euler polygon) satisfies estimate (14). If we choose Φθ = φθ in the above construction
then the corresponding PDP (xt) is not Markov since the functions φθ(., ν) do not satisfy the
semi-group property (see [20]).

2.4 Thinning representation for the marginal distribution of a PDP

The sequence (Tn, (θn, νn), n ≥ 0) is an R+ × E-valued Markov chain with respect to its natural
filtration Fn and with kernel K defined by

K
(

(t, θ, ν), dudjdz
)

:= 1u≥t λ(θ, Φθ(u − t, ν))e
−
∫

u−t

0
λ(θ,Φθ(s,ν))ds

Q((θ, Φθ(u − t, ν)), djdz)du .

(17)
For n ≥ 0, the law of the random variable Tn − Tn−1 given Fn−1 admits the density given for
t ≥ 0 by

λ(θn−1, Φθn−1(t, νn−1))e
−
∫

t

0
λ(θn−1,Φ(s,νn−1))ds

. (18)

Classically the marginal distribution of xt is expressed using (13), the intensity λ via (18) and
the kernel K (see (17)). Indeed for fixed x0 = x ∈ E and for any bounded measurable function
g we can write,

E [g(xt)] =
∑

n≥0

E [g(θn, Φθn
(t − Tn, νn))1Nt=n]

=
∑

n≥0

E
[
g(θn, Φθn

(t − Tn, νn))1Tn≤tE[1Tn+1>t|Fn]
]

=
∑

n≥0

E

[
g(θn, Φθn

(t − Tn, νn))1Tn≤te
−
∫

t−Tn

0
λ(θn,Φθn (u,νn))du

]

=
∑

n≥0

∫ t

0

∫

E

g(θ, Φθ(t − s, ν))e
−
∫

t−s

0
λ(θ,Φθ(u,ν))du

Kn((0, x), dsdθdν)
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where K0 := δ and Kn = K ◦ . . . ◦ K n times, that is

∫ t

0

∫

E

Kn ((0, x), dsdy) =

∫ t

0

∫

E

∫

(R+×E)n−1

K((0, x), dt1dy1) . . . K((tn−1, yn−1), dsdy).

However since we have constructed (xt) by thinning, we would prefer to express the distribution
of xt using the upper bound λ∗, the Poisson process (N∗

t , t ≥ 0) and the sequences (Uk, k ∈ N),
(Vk, k ∈ N).

Proposition 2.1. Let (xt, t ∈ [0, T ]) be a PDP with characteristics (Φ, λ, Q) constructed in
section 2.1 and let n ∈ N. Then

E[g(xt)1{Nt=n}] =
∑

1≤p1<p2....<pn≤m

∑

θ∈Θ

E[Q(x−
T ∗

pn−1

, θ) g(θ, Φθ(t − T ∗
pn

, νn))1{τi=pi,1≤i≤n,N∗
t

=m}

m∏

q=pn+1

(1 − λ(θ, Φθ(T ∗
q − T ∗

pn
, νn))

λ∗
)].

The following proposition and its corollaries will be useful in section 3. In their statements
(xt, t ∈ [0, T ]) and (x̃t, t ∈ [0, T ]) are PDPs constructed in section 2.1 using the same data (N∗

t ),
(Uk), (Vk) and the same initial point x ∈ E but with different sets of characteristics.
The following results are inspired by the change of probability introduced in [28] where the au-
thors are interested in the application of the MLMC to jump-diffusion SDEs with state-dependent
intensity. In our case, we need a change of probability which guarantees not only that the pro-
cesses jump at the same times but also in the same states.

Proposition 2.2. Let us denote by (Φ, λ, Q) ( resp. (Φ, λ̃, Q̃)) the characteristics of (xt) (resp.
(x̃t)). Let us assume that λ̃ and Q̃ depend only on θ, that Q̃ is always positive and 0 < λ̃(θ) < λ∗

for all θ ∈ Θ. For all integer n, let us define on the event {Ñt = n},

Z̃n =
Q(x̃−

T ∗
τ̃n

, θ̃n)

Q̃(θ̃n−1, θ̃n)

((
1 − λ̃(θ̃n)

λ∗

)N∗
t −τ̃n

)−1 N∗
t∏

q=τ̃n+1

(
1 −

λ(θ̃n, Φθ̃n
(T ∗

q − T ∗
τ̃n

, ν̃n))

λ∗

)
,

the product being equal to 1 if τ̃n = N∗
t and for all 1 ≤ ℓ ≤ n − 1,

Z̃ℓ =
Q(x̃−

T ∗
τ̃ℓ

, θ̃ℓ)

Q̃(θ̃ℓ−1, θ̃ℓ)

(
λ̃(θ̃ℓ)

λ∗

(
1 − λ̃(θ̃ℓ)

λ∗

)τ̃ℓ+1−τ̃ℓ−1
)−1

λ(θ̃ℓ, Φθ̃ℓ
(T ∗

τ̃ℓ+1
− T ∗

τ̃ℓ
, ν̃ℓ))

λ∗

τ̃ℓ+1−1∏

q=τ̃ℓ+1

(
1 −

λ(θ̃ℓ, Φθ̃ℓ
(T ∗

q − T ∗
τ̃ℓ

, ν̃ℓ))

λ∗

)
,

Z̃0 =

(
λ̃(θ̃0)

λ∗

(
1 − λ̃(θ̃0)

λ∗

)τ̃1−1
)−1

λ(θ̃0, Φθ̃0
(T ∗

τ̃1
, ν̃0))

λ∗

τ̃1−1∏

q=1

(
1 −

λ(θ̃0, Φθ̃0
(T ∗

q , ν̃0))

λ∗

)
,

R̃n =Z̃n

n−1∏

ℓ=0

Z̃ℓ.

Then, for all n ≥ 0 we have

E[g(x̃t) R̃n 1{Ñt=n}] = E[g(xt)1{Nt=n}].
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Corollary 2.1. Under the assumptions of Proposition 2.2, setting R̃t = R̃Ñt
, we have

E[g(x̃t)R̃t] = E[g(xt)].

Remark 2.1. Proposition 2.2 looks like a Girsanov theorem (see [26]) however we do not use
the martingale theory here.

Remark 2.2. We have chosen to state Proposition 2.2 with a PDP (x̃t) whose intensity and
transition measure only depend on θ for readability purposes. Actually the arguments of the
proof are valid for non homogeneous intensity and transition measure of the form λ̃(x, t) and
Q̃((x, t), dy) for x = (θ, ν) ∈ E. A possible choice of such characteristics is λ̃(x, t) = λ(θ, Φ̃θ(t, ν))
and Q̃((x, t), dy) = Q((θ, Φ̃θ(t, ν)), dy) for Φ̃ a given function. This remark will be implemented
in section 5.4.

Corollary 2.2. Let (Φ, λ, Q) (resp. (Φ̃, λ, Q)) be the set of characteristics of (xt) (resp. (x̃t)).
We assume that Q is always positive and that 0 < λ(x) < λ∗ for all x ∈ E. Let (µn) be the
sequence defined by µ0 = ν and µn = Φ̃θn−1(Tn − Tn−1, µn−1) for n ≥ 1. For all integer n, let
us define on the event {Nt = n},

Z̃n =
Q
(
(θn−1, µn), θn

)

Q
(
(θn−1, νn), θn

)




N∗
t∏

q=τn+1

1 − λ
(
θn, Φθn

(T ∗
q − T ∗

τn
, νn)

)

λ∗




−1

N∗
t∏

q=τn+1

(
1 − λ

(
θn, Φ̃θn

(T ∗
q − T ∗

τn
, µn)

)

λ∗

)
,

the products being equal to 1 if τn = N∗
t and for all 1 ≤ ℓ ≤ n − 1,

Z̃ℓ =
Q
(
(θℓ−1, µℓ), θℓ

)

Q
(
(θℓ−1, νℓ), θℓ

)
(

λ
(
θℓ, Φθℓ

(T ∗
τℓ+1

− T ∗
τℓ

, νℓ)
)

λ∗

τℓ+1−1∏

q=τℓ+1

(
1 −

λ
(
θℓ, Φθℓ

(T ∗
q − T ∗

τℓ
, νℓ)

)

λ∗

))−1

λ
(
θℓ, Φ̃θℓ

(T ∗
τℓ+1

− T ∗
τℓ

, µℓ)
)

λ∗

τℓ+1−1∏

q=τℓ+1

(
1 − λ

(
θℓ, Φ̃θℓ

(T ∗
q − T ∗

τℓ
, µℓ)

)

λ∗

)
,

Z̃0 =

(
λ
(
θ0, Φθ0(T ∗

τ1
, ν0)

)

λ∗

τ1−1∏

q=1

(
1 − λ

(
θ0, Φθ0(T ∗

q , ν0)
)

λ∗

))−1

λ
(
θ0, Φ̃θ0(T ∗

τ1
, µ0)

)

λ∗

τ1−1∏

q=1

(
1 − λ

(
θ0, Φ̃θ0(T ∗

q , µ0)
)

λ∗

)
,

R̃n =Z̃n

n−1∏

ℓ=0

Z̃ℓ.

Then, for all n ≥ 0 we have

E[g
(
θn, Φ̃θn

(t − Tn, µn)
)

R̃n 1{Nt=n}] = E[g(x̃t)1{Ñt=n}].

Proof of Proposition 2.1. It holds that {Nt = n, τi = pi, 1 ≤ i ≤ n} ⊂ {N∗
t ≥ pn}. Then

E[g(xt)1{Nt=n}] =
∑

1≤p1<p2<...<pn≤m

E[g(xt)1{Nt=n,τi=pi, 1≤i≤n,N∗
t

=m}].
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The set {Nt = n, τi = pi, 1 ≤ i ≤ n, N∗
t = m} is equivalent to the following

- N∗
t = m,

- among the times T ∗
ℓ , 1 ≤ ℓ ≤ m exactly n are accepted by the thinning method they are the

T ∗
pi

, 1 ≤ i ≤ n, all the others are rejected.
We proceed by induction starting from the fact that all the T ∗

q , pn + 1 ≤ q ≤ m are rejected
which corresponds to the event

∀ pn + 1 ≤ q ≤ m, Uq >
λ(θn, Φθn

(T ∗
q − T ∗

pn
, νn))

λ∗
.

The random variable 1{τi=pi, 1≤i≤n} depends on (θℓ, νℓ, 1 ≤ ℓ ≤ n − 1, T ∗
i , 1 ≤ i ≤ pn, Uj, 1 ≤

j ≤ pn) where by construction νℓ = φθℓ−1
(T ∗

pℓ
− T ∗

pℓ−1
, νℓ−1), θℓ = H((θℓ−1, νℓ), Vℓ) which implies

that (θℓ, νℓ, 1 ≤ ℓ ≤ n − 1) depend on (T ∗
i , 1 ≤ i ≤ pn−1, Uj , 1 ≤ j ≤ pn−1, Vk, 1 ≤ k ≤

n − 1). Thus Vn is independent of all the other random variables of thinning that are present in
g(xt)1{Nt=n,τi=pi, 1≤i≤n, N∗

t
=m}. The conditional expectation of g(xt)1{Nt=n,τi=pi, 1≤i≤n,N∗

t
=m}

w.r.t. the vector (T ∗
i , 1 ≤ i ≤ m+1, Uj, 1 ≤ j ≤ m, Vk, 1 ≤ k ≤ n−1) is therefore an expectation

indexed by this vector as parameters. Since the law of H(x, Vn) is Q(x, ·) for all x ∈ E we obtain
for p1 < p2 < ... < pn ≤ m,

E[g(xt)1{Nt=n,τi=pi, 1≤i≤n, N∗
t =m}]

= E[
∑

θ∈Θ

Q(x−
T ∗

pn−1

, θ) g(θ, Φθ(t − T ∗
pn

, νn))

F (θ, Uj , 1 ≤ j ≤ m, T ∗
ℓ , 1 ≤ ℓ ≤ m + 1, Vk, 1 ≤ k ≤ n − 1)], (19)

with

F (θ, Uj , 1 ≤ j ≤ m, T ∗
ℓ , 1 ≤ ℓ ≤ m + 1, Vk, 1 ≤ k ≤ n − 1)

= 1{N∗
t =m,τi=pi, 1≤i≤n}

m∏

q=pn+1

1
Uq>

λ(θ,Φθ (T ∗
q −T ∗

pn
,νn))

λ∗

.

In (19) the random variables (Uq, pn + 1 ≤ q ≤ m) are independent of the vector (T ∗
i , 1 ≤ i ≤

m + 1, Uj , 1 ≤ j ≤ pn, Vk, 1 ≤ k ≤ n − 1). Conditioning by this vector we obtain

E[g(xt)1{Nt=n,τi=pi, 1≤i≤n, N∗
t

=m}]

=
∑

θ∈Θ

E[Q(x−
T ∗

pn−1

, θ) g(θ, Φθ(t − T ∗
pn

, νn))1{N∗
t

=m,τi=pi, 1≤i≤n}

m∏

q=pn+1

(1 − λ(θ, Φθ(T ∗
q − T ∗

pn
, νn))

λ∗
)].

We can iterate on the latter form by first conditioning Vn−1 by all the other r.v. and then
conditioning (Uq, pn−1 + 1 ≤ q ≤ pn) by all the remaining ones and so on. However the
terms that appear do not have the same structure since the Uq correspond to a rejection for

11



pn−1 + 1 ≤ q ≤ pn − 1 whereas Upn
corresponds to an acceptation. So that the next step yields

E[g(xt)1{Nt=n,τi=pi, 1≤i≤n, N∗
t =m}]

=
∑

α∈Θ

∑

θ∈Θ

E[Q(x−
T ∗

pn−2

, α)Q ((α, νn), θ) g(θ, Φθ(t − T ∗
pn

, νn))1{N∗
t

=m,τi=pi, 1≤i≤n−1}

λ(α, Φα(T ∗
pn

− T ∗
pn−1

, νn−1))

λ∗

pn−1∏

q=pn−1+1

(1 −
λ(α, Φα(T ∗

q − T ∗
pn−1

, νn−1))

λ∗
)

m∏

q=pn+1

(1 − λ(θ, Φθ(T ∗
q − T ∗

pn
, νn))

λ∗
)], (20)

where we write νn for simplicity keeping in mind that νn = Φθn−1(T ∗
pn

−T ∗
pn−1

, νn−1) = Φθn−1(T ∗
pn

−
T ∗

pn−1
, Φθn−2(T ∗

pn−1
− T ∗

pn−2
, νn−2)) = Φα(T ∗

pn
− T ∗

pn−1
, Φθn−2(T ∗

pn−1
− T ∗

pn−2
, νn−2)).

Moreover the previous arguments apply to E(g(xt)f(θi, νi, 1 ≤ i ≤ n − 1, θn, νn, T ∗
k , 1 ≤ k ≤

m)1{Nt=n,τi=pi, 1≤i≤n, N∗
t

=m}) and provide

E[g(xt)f(θi, νi, 1 ≤ i ≤ n − 1, θn, νn, T ∗
k , 1 ≤ k ≤ m)1{Nt=n,τi=pi, 1≤i≤n, N∗

t
=m}]

=
∑

θ∈Θ

E[Q(x−
T ∗

pn−1

, θ)g(θ, Φθ(t − T ∗
pn

, νn))f(θi, νi, 1 ≤ i ≤ n − 1, θ, νn, T ∗
k , 1 ≤ k ≤ m)

1{N∗
t

=m,τi=pi, 1≤i≤n}

m∏

q=pn+1

(1 − λ(θ, Φθ(T ∗
q − T ∗

pn
, νn))

λ∗
)]. (21)

We prove below Proposition 2.2. The other statements can be proved analogously.

Proof of Proposition 2.2. By assumption the (jump) characteristics (λ̃, Q̃) of (x̃t) depend only
on θ. Let p1 < p2 < ... < pn ≤ m. Applying the same arguments as in (21) to (x̃t) and using
the definitions of Z̃ℓ, 0 ≤ ℓ ≤ n and R̃n we obtain,

E[g(x̃t) R̃n 1{Ñt=n,τ̃i=pi,1≤i≤n,N∗
t

=m}]

=
∑

θ∈Θ

E[Q̃(θ̃n−1, θ) g(θ, Φθ(t − T ∗
pn

, ν̃n)) Z̃n

n−1∏

ℓ=0

Z̃ℓ 1{N∗
t

=m,τ̃i=pi, 1≤i≤n}] (1 − λ̃(θ)

λ∗
)m−pn

=
∑

θ∈Θ

E[Q̃(θ̃n−1, θ) g(θ, Φθ(t − T ∗
pn

, ν̃n))

n−1∏

ℓ=0

Z̃ℓ 1{N∗
t

=m,τ̃i=pi, 1≤i≤n} (1 − λ̃(θ)

λ∗
)m−pn

(
(1 − λ̃(θ)

λ∗
)m−pn

)−1 Q(x̃−
T ∗

pn−1

, θ)

Q̃(θ̃n−1, θ)

m∏

q=pn+1

(1 −
λ(θ, Φθ(T ∗

q − T ∗
pn

, ν̃n))

λ∗
)]

=
∑

θ∈Θ

E[Q(x̃−
T ∗

pn−1

, θ) g(θ, Φθ(t − T ∗
pn

, ν̃n)) Z̃n−1

n−2∏

ℓ=0

Z̃ℓ 1{N∗
t

=m,τ̃i=pi, 1≤i≤n}

m∏

q=pn+1

(1 − λ(θ, Φθ(T ∗
q − T ∗

pn
, ν̃n))

λ∗
)].
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We iterate the previous argument based on the use of (21) and we use the definition of Z̃n−1 to
obtain

E[g(x̃t)R̃n1{Ñt=n,τ̃i=pi, 1≤i≤n, N∗
t

=m}]

=
∑

α∈Θ

∑

θ∈Θ

E[Q(x̃−
T ∗

pn−2

, α)Q((α, ν̃n), θ) g(θ, Φθ(t − T ∗
pn

, ν̃n))

n−2∏

ℓ=0

Z̃ℓ 1{N∗
t =m,τ̃i=pi, 1≤i≤n−1}

m∏

q=pn+1

(1 −
λ(θ, Φθ(T ∗

q − T ∗
pn

, ν̃n))

λ∗
)

λ(α, Φα(T ∗
pn

− T ∗
pn−1

, ν̃n−1))

λ∗

pn−1∏

q=pn−1+1

(1 −
λ(α, Φα(T ∗

q − T ∗
pn−1

, ν̃n−1))

λ∗
)],

where for short ν̃n = φα(T ∗
pn

− T ∗
pn−1

, ν̃n−1) and ν̃n−1 = φθ̃n−2
(T ∗

pn−1
− T ∗

pn−2
, ν̃n−2). Comparing

the latter expression to (20) and using an induction we conclude that

E[g(x̃t)R̃n1{Ñt=n,τ̃i=pi, 1≤i≤n, N∗
t

=m}] = E[g(xt)1{Nt=n,τi=pi,1≤i≤n,N∗
t

=m}].

It remains to sum up on pi, 1 ≤ i ≤ n and m.

3 Strong error estimates

In this section we are interested in strong error estimates. Below, we state the main assumptions
and theorems of this section, the proofs are given in sections 3.2, 3.3 respectively.

Assumption 3.1. For all θ ∈ Θ and for all A ∈ B(Θ), the functions ν 7→ λ(θ, ν) and ν 7→
Q((θ, ν), A) are Lipschitz with constants Lλ > 0, LQ > 0 respectively independent of θ.

Theorem 3.1. Let Φθ and Φθ satisfying (14) and let (xt, t ∈ [0, T ]) and (xt, t ∈ [0, T ]) be the
corresponding PDPs constructed in section 2.1 with x0 = x0 = x for some x ∈ E. Assume that
Θ is finite and that λ and Q satisfy Assumption 3.1. Then, for all bounded functions F : E → R

such that for all θ ∈ Θ the function ν 7→ F (θ, ν) is LF -Lipschitz where LF is positive and
independent of θ, there exists constants V1 > 0 and V2 > 0 independent of the time step h such
that

E
[
|F (xT ) − F (xT )|2

]
≤ V1h + V2h2.

Remark 3.1. When the numerical scheme Φθ is of order p ≥ 1, which means supt∈[0,T ] |Φθ(t, ν1)−
Φθ(t, ν2)| ≤ eC1T |ν1 − ν2| + C2hp we have E

[
|F (xT ) − F (xT )|2

]
≤ V1hp + V2h2p.

Assumption 3.2. There exist positive constants ρ, λ̃min, λ̃max such that for all (i, j) ∈ Θ2,
ρ ≤ Q̃(i, j) and λ̃min ≤ λ̃(i) ≤ λ̃max < λ∗.

Theorem 3.2. Let Φθ and Φθ satisfying (14) and let (x̃t, t ∈ [0, T ]) and (x̃t, t ∈ [0, T ]) be
the corresponding PDPs constructed in section 2.1 with x̃0 = x̃0 = x for some x ∈ E. Let
(R̃t, t ∈ [0, T ]) and (R̃t, t ∈ [0, T ]) be defined as in Corollary 2.1. Under assumptions 3.1 and
3.2 and for all bounded functions F : E → R such that for all θ ∈ Θ the function ν 7→ F (θ, ν) is
LF -Lipschitz (LF > 0), there exists a positive constant Ṽ1 independent of the time step h such
that

E
[
|F (x̃T )R̃T − F (x̃T )R̃T |2

]
≤ Ṽ1h2,

where R̃T has been defined in Corollary 2.1.
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We now introduce the random variable τ † which will play an important role in the strong error
estimate of Theorem 3.1 as well as in the identification of the coefficient c1 in the weak error
expansion in section 4 (see the proof of Theorem 4.1 in section 4.2).

Definition 3.1. Let us define τ† := inf
{

k > 0 : (τk, θk) 6= (τk, θk)
}

.

The random variable τ† enables us to partition the trajectories of the couple (xt, xt) in a sense
that we precise now. Consider the event

{min(Tτ† , T τ †) > T } =
{

NT = NT , (T1, θ1) = (T 1, θ1), . . . , (TNT
, θNT

) = (T NT
, θNT

)
}

, (22)

where (Tn) and (T n) denote the sequences of jump times of (xt) and (xt). On this event
{min(Tτ† , T τ†) > T } the trajectories of the discrete time processes (Tn, θn) and (T n, θn) are
equal for all n such that Tn ∈ [0, T ] (or equivalently T n ∈ [0, T ]). Moreover the complement
i.e {min(Tτ† , T τ†) ≤ T } contains the trajectories for which (Tn, θn) and (T n, θn) differ on [0, T ]
(there exits n ≤ NT ∨ NT such that Tn 6= T n or θn 6= θn).

3.1 Preliminary lemmas

In this section we start with two lemmas which will be useful to prove Theorems 3.2 and 3.3.

Lemma 3.1. Let K be a finite set. We denote by |K| the cardinal of K and for i = 1, . . . , |K|
we denote by ki its elements. Let (pi, 1 ≤ i ≤ |K|) and (pi, 1 ≤ i ≤ |K|) be two probabilities

on K. Let aj :=
∑j

i=1 pi and aj :=
∑j

i=1 pi for all j ∈ {1, . . . , |K|}. By convention, we set
a0 = a0 := 0. Let X and X be two K-valued random variables defined by

X := G(U), X := G(U),

where U ∼ U([0, 1]), G(u) =
∑|K|

j=1 kj1aj−1<u≤aj
and G(u) =

∑|K|
j=1 kj1aj−1<u≤aj

for all u ∈
[0, 1]. Then, we have

P(X 6= X) ≤
|K|−1∑

j=1

|aj − aj |.

Proof of Lemma 3.1. By definition of X and X and since the intervals ]aj−1, aj ]∩]aj−1, aj ] are
disjoints for j = 1, . . . , K, we have

P(X = X) =

|K|∑

j=1

P

(
U ∈ ]aj−1, aj ]∩]aj−1, aj ]

)
.

Moreover, for all 1 ≤ j ≤ |K|, we have

P

(
U ∈ ]aj−1, aj ]∩]aj−1, aj ]

)
=

{
0 if ]aj−1, aj ]∩]aj−1, aj ] = ∅,
aj ∧ aj − aj−1 ∨ aj−1 if ]aj−1, aj ]∩]aj−1, aj ] 6= ∅.

Thus, denoting by x+ := max(x, 0) the positive part of x ∈ R and using that x+ ≥ x, we obtain

P(X = X) ≥
|K|∑

j=1

(aj ∧ aj − aj−1 ∨ aj−1).
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Adding and subtracting aj ∨ aj in the the above sum yields

P(X = X) ≥
|K|∑

j=1

(aj ∨ aj − aj−1 ∨ aj−1) +

|K|∑

j=1

(aj ∧ aj − aj ∨ aj).

The first sum above is a telescopic sum. Since a|K| = a|K| = 1 and a0 = a0 = 0, we have

P(X = X) ≥ 1 −∑|K|−1
j=1 |aj − aj |.

Lemma 3.2. Let (an, n ≥ 1) and (bn, n ≥ 1) be two real-valued sequences. For all n ≥ 1, we
have

n∏

i=1

ai −
n∏

i=1

bi =

n∑

i=1

(ai − bi)

n∏

j=i+1

aj

i−1∏

j=1

bj

Proof of Lemma 3.2. By induction.

3.2 Proof of Theorem 3.1

First, we write

E
[
|F (xT ) − F (xT )|2

]

= E

[
1min(T

τ† ,T
τ† )≤T |F (xT ) − F (xT )|2

]
+ E

[
1min(T

τ† ,T
τ† )>T |F (xT ) − F (xT )|2

]

=: P + D,

where τ † is defined in Definition 3.1. The order of the term P is the order of the probability that
the discrete processes (Tn, θn) and (T n, θn) differ on [0, T ]. The order of the term D is given by
the order of the Euler scheme squared because the discrete processes (Tn, θn) and (T n, θn) are
equal on [0, T ]. In the following we prove that P = O(h) and that D = O(h2).

Step 1: estimation of P . The function F being bounded we have P ≤ 4M2
FP
(
min(Tτ† , T τ†) ≤ T

)

where MF > 0. Moreover, for k ≥ 1,
{

τ † = k
}

=
{

τ† > k − 1
}⋂{

(τk, θk) 6=
(
τk, θk

)}
. Hence

P
(
min(Tτ † , T τ†) ≤ T

)
=
∑

k≥1

E

[
1min(Tk,T k)≤T1τ†=k

]

=
∑

k≥1

E

[
1min(Tk,T k)≤T1τ†>k−11(τk,θk) 6=(τk,θk)

]

≤
∑

k≥1

Jk + 2Ik

where

Jk := E

[
1min(Tk,T k)≤T1τ†>k−11τk=τ k

1θk 6=θk

]
, Ik := E

[
1min(Tk,T k)≤T1τ†>k−11τk 6=τ k

]
.

(23)
We start with Jk. First note that, for k ≥ 1, {τk = τk} = {Tk = T k} and that on the event

{Tk = T k}, we have min(Tk, T k) = Tk, so that Jk = E

[
1Tk≤T1τ†>k−11τk=τ k

1θk 6=θk

]
. We
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emphasize that it makes no difference in the rest of the proof if we choose min(Tk, T k) = T k.

Since {τ† > k − 1} =
⋂k−1

i=0 {(τi, θi) = (τ i, θi)}, we can rewrite Jk as follows

∑

1≤p1<...<pk
α1,...,αk−1∈Θ

E[1{τi=τi=pi,1≤i≤k}1{θi=θi=αi,1≤i≤k−1}1T ∗
pk

≤T1θk 6=θk
]. (24)

By construction we have θk = H((θk−1, νk), Vk) and θk = H((θk−1, νk), Vk). The random variable
1{τi=τi=pi,1≤i≤k}1{θi=θi=αi,1≤i≤k−1}1T ∗

pk
≤T depends on the vector (Ui, 1 ≤ i ≤ pk, T ∗

j , 1 ≤ j ≤
pk, Vq, 1 ≤ q ≤ k − 1) which is independent of Vk. Conditioning by this vector in (24) and
applying Lemma 3.1 yields

E[1{τi=τi=pi,1≤i≤k}1{θi=θi=αi,1≤i≤k−1}1T ∗
pk

≤T1θk 6=θk
]

≤ E


1{τi=τi=pi,1≤i≤k}1{θi=θi=αi,1≤i≤k−1}1T ∗

pk
≤T

|Θ|−1∑

j=1

|aj(αk−1, νk) − aj(αk−1, νk)|


 .

From the definition of aj (see (12)), the triangle inequality and since Q is LQ-Lipschitz, we

have
∑|Θ|−1

j=1 |aj(αk−1, νk) − aj(αk−1, νk)| ≤ (|Θ|−1)|Θ|
2 LQ|νk − νk|. Since we are on the event

{τi = τ i = pi, 1 ≤ i ≤ k}⋂{θi = θi = αi, 1 ≤ i ≤ k − 1}, the application of Lemma 2.1 yields

|νk − νk| ≤ eLT ∗
pk kCh. Thus Jk ≤ C1hE[1Tk≤T k] where C1 is a constant independent of h.

Moreover,
∑

k≥1 1Tk≤T k =
∑NT

k=1 k ≤ N2
T and E[N2

T ] ≤ E[(N∗
T )2] < +∞ so that

∑
k≥1 Jk =

O(h). From the definition of Ik (see (23)), we can write

Ik = E

[
1min(Tk,T k)≤T1τ†>k−1(1τk<τ k

+ 1τk>τk
)
]

= E
[
1Tk≤T1τ†>k−11τk<τk

]
+ E

[
1T k≤T1τ†>k−11τk>τk

]

=: I
(1)

k + I
(2)

k .

The second equality above follows since {τk < τk} = {Tk < T k} and {τk > τk} = {Tk > T k}.

We only treat the term I
(1)

k , the term I
(2)

k can be treated similarly by interchanging the role of

(τk, Tk) and (τk, T k). Just as in the previous case, we can rewrite I
(1)

k as follows

∑

1≤p1<...<pk
α1,...,αk−1∈Θ

E[1{τi=τi=pi,1≤i≤k−1}1{θi=θi=αi,1≤i≤k−1}1T ∗
pk

≤T1τk=pk
1pk<τk

]. (25)

In (25) we have {τk = pk} ∩ {pk < τk} ⊆ {λ(αk−1, Φαk−1
(T ∗

pk
− T ∗

pk−1
, νk−1)) < Upk

λ∗ ≤
λ(αk−1, Φαk−1

(T ∗
pk

−T ∗
pk−1

, νk−1))}. The random variable 1{τi=τ i=pi,1≤i≤k−1} 1{θi=θi=αi,1≤i≤k−1}

1T ∗
pk

≤T depends on (Ui, 1 ≤ i ≤ pk−1, T ∗
j , 1 ≤ j ≤ pk, Vq, 1 ≤ q ≤ k − 1) which is independent of

Upk
. Conditioning by this vector in (25) yields

E[1{τi=τi=pi,1≤i≤k−1}1{θi=θi=αi,1≤i≤k−1}1T ∗
pk

≤T1τk=pk
1pk<τ k

]

≤ E[1{τi=τi=pi,1≤i≤k−1}1{θi=θi=αi,1≤i≤k−1}1T ∗
pk

≤T

|λ(αk−1, Φαk−1
(T ∗

pk
− T ∗

pk−1
, νk−1)) − λ(αk−1, Φαk−1

(T ∗
pk

− T ∗
pk−1

, νk−1))|]

Using the Lipschitz continuity of λ then Lemma 2.1 we get that I
(1)

k ≤ C2hE[1Tk≤T k] where

C2 is a constant independent of h. Concerning the term I
(2)

k , we will end with the estimate
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I
(2)

k ≤ C2hE[1T k≤T k]. We conclude in the same way as in the estimation of Jk above that∑
k≥1 Ik = O(h).

Step 2: estimation of D. Note that for n ≥ 0 we have {NT = n}∩{min(Tτ† , T τ†) > T } = {NT =
n} ∩ {NT = n} ∩ {τ† > n}, where we can interchange the role of {NT = n} and {NT = n}.
Thus, using the partition {NT = n, n ≥ 0}, we have

D =
∑

n≥0

E

[
1NT =n1NT =n1τ†>n

∣∣F (θn, Φθn
(T − Tn, νn)) − F (θn, Φθn

(T − Tn, νn))
∣∣2
]

The application of the Lipschitz continuity of F and of Lemma 2.1 yields
∣∣F (θn, Φθn

(T − Tn, νn)) − F (θn, Φθn
(T − Tn, νn))

∣∣ ≤ LF eLT (n + 1)Ch.

Then, we have D ≤ C3h2
∑

n≥0 E
[
1NT =n(n + 1)2

]
where C3 is a constant independent of h.

Since
∑

n≥0 E
[
1NT =n(n + 1)2

]
= E[(NT + 1)2] ≤ E[(N∗

T + 1)2] < +∞, we conclude that D =

O(h2).

3.3 Proof of Theorem 3.2

First we reorder the terms in R̃T . We write R̃T = Q̃T S̃T H̃T where

Q̃T =

ÑT∏

l=1

Q(x̃−
T ∗

τ̃l

, θ̃l)

Q̃(θ̃l−1, θ̃l)
, (26)

S̃T =

ÑT∏

l=1

λ(θ̃l−1, Φθ̃l−1
(T ∗

τ̃l
− T ∗

τ̃l−1
, ν̃l−1))

λ∗

τ̃l∏

k=τ̃l−1+1

(1 −
λ(θ̃l−1, Φθ̃l−1

(T ∗
k − T ∗

τ̃l−1
, ν̃l−1))

λ∗
) (27)

N∗
T∏

l=τ̃ÑT
+1

(1 −
λ(θ̃ÑT

, Φθ̃ÑT

(T ∗
l − T ∗

τ̃ÑT

, ν̃ÑT
))

λ∗
),

H̃T =

ÑT∏

l=1

(
λ̃(θ̃l−1)

λ∗
(1 − λ̃(θ̃l−1)

λ∗
)τ̃l−τ̃l−1−1

)−1
(

(1 − λ̃(θ̃ÑT
)

λ∗
)N∗

T −τ̃ÑT

)−1

. (28)

Likewise we reorder the terms in R̃T writing R̃T = Q̃
T

S̃T H̃T where Q̃
T

and S̃T are defined as

(26) and (27) replacing x̃ and Φ by x̃ and Φ. Since the processes (θ̃n) and (τ̃n) do not depend
on Φ or Φ, the term H̃ is the same in R̃ and R̃ . To prove Theorem 3.2, let us decompose the
problem and write

|F (x̃T )R̃T − F (x̃T )R̃T | = |(F (x̃T ) − F (x̃T ))R̃T + (R̃T − R̃T )F (x̃T )|
≤ |F (x̃T ) − F (x̃T )||R̃T | + |R̃T − R̃T ||F (x̃T )|,

so that

E
[
|F (x̃T )R̃T − F (x̃T )R̃T |2

]
≤ 2E

[
|F (x̃T ) − F (x̃T )|2|R̃T |2

]
+ 2E

[
|R̃T − R̃T |2|F (x̃T )|2

]

=: 2D + 2C.

In the following we show that C = O(h2) and that D = O(h2).
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Step 1: estimation of C. The function F being bounded we have C ≤ M2
FE
[
|R̃T − R̃T |2

]
where

MF is a positive constant. Moreover, for all θ ∈ Θ, we have (1 − λ̃(θ)/λ∗)−1 ≤ (1 − λ̃max/λ∗)−1

and (λ̃(θ)/λ∗)−1 ≤ (λ̃min/λ∗)−1. Thus, H̃T ≤
(

λ̃min

λ∗ (1 − λ̃max

λ∗ )
)−N∗

T

and using the definition of

R̃ and R̃ (see (26), (27) and (28)) we can write

|R̃T − R̃T | ≤
(

λ̃min

λ∗
(1 − λ̃max

λ∗
)

)−N∗
T (

|Q̃
T

− Q̃T |S̃T + |S̃T − S̃T |Q̃
T

)
.

We set J = |Q̃
T

− Q̃T |S̃T and I = |S̃T − S̃T |Q̃
T

. To provide the desired estimate for C, we

proceed as follows. First, we work ω by ω to determine (random) bounds for J and I from which
we deduce a (random) bound for |R̃T − R̃T |. Finally, we take the expectation. We start with I.
For all (θ, ν) ∈ E and for all t ≥ 0 we have, from Assumption 2.1, that 1 − λ(θ, Φθ(t, ν))/λ∗ ≤ 1
and λ(θ, Φθ(t, ν))/λ∗ ≤ 1. Then, using Lemma 3.2 (twice) we have

|S̃T − S̃T | ≤ 1

λ∗

ÑT +1∑

l=1

τ̃l∧N∗
T∑

k=τ̃l−1+1

|λ(θ̃l−1, Φθ̃l−1
(T ∗

k − T ∗
τ̃l−1

, ν̃l−1)) − λ(θ̃l−1, Φθ̃l−1
(T ∗

k − T ∗
τ̃l−1

, ν̃l−1))|.

Using the Lipschitz continuity of λ and Lemma 2.1, we find that, for all l = 1, . . . , ÑT + 1 and
k = τ̃l−1 + 1, . . . , τ̃l ∧ N∗

T ,

|λ(θ̃l−1, Φθ̃l−1
(T ∗

k − T ∗
τ̃l−1

, ν̃l−1)) − λ(θ̃l−1, Φθ̃l−1
(T ∗

k − T ∗
τ̃l−1

, ν̃l−1))| ≤ eLT Chl.

Moreover, for all l = 1, . . . , ÑT + 1 we have τ̃l ∧ N∗
T − τ̃l−1 ≤ N∗

T so that |S̃T − S̃T | ≤ N∗
T (N∗

T +
1)2C1h where C1 is a positive constant independent of h. Finally, since Q̃

T
≤ ρ−N∗

T we have

I ≤ ρ−N∗
T N∗

T (N∗
T + 1)2C1h. (29)

Now, consider J . Note that from Assumption 2.1 we have S̃T ≤ 1. We use the same type of
arguments as for I. That is, we successively use Lemma 3.2, the Lipschitz continuity of Q and
Lemma 2.1 to obtain

J ≤ ρ−N∗
T (N∗

T )2C2h, (30)

where C2 is a positive constant independent of h. Then, we derive from the previous estimates
(29) and (30) that

|R̃T − R̃T | ≤ Ξ1(N∗
T )C3h,

where Ξ1(n) =
(

ρ λ̃min

λ∗ (1 − λ̃max

λ∗ )
)−n

n(n + 1)2 and C3 = max(C1, C2). Finally, we have E[|R̃T −
R̃T |2] ≤ C3h2

E[Ξ1(N∗
T )2]. Since E[Ξ1(N∗

T )2] < +∞ we conclude that C = O(h2).

Step 2: estimation of D. Recall that x̃T = (θ̃ÑT
, Φθ̃ÑT

(T − T̃ÑT
, ν̃ÑT

)) and x̃T = (θ̃ÑT
, Φθ̃ÑT

(T −
T̃ÑT

, ν̃ÑT
)). Then, using the Lipschitz continuity of F , Lemma 2.1 and since ÑT ≤ N∗

T we get

|F (x̃T ) − F (x̃T )| ≤ LF eLT (ÑT + 1)Ch ≤ LF eLT (N∗
T + 1)Ch.

Moreover, |R̃T | ≤
(

ρ λ̃min

λ∗ (1 − λ̃max

λ∗ )
)−N∗

T

so that D ≤ C4h2
E[Ξ2(N∗

T )2] where C4 is a positive

constant independent of h and Ξ2(n) = (n + 1)
(

ρ λ̃min

λ∗ (1 − λ̃max

λ∗ )
)−n

. Since E[Ξ2(N∗
T )2] < +∞

we conclude that D = O(h2).
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4 Weak error expansion

In this section we are interested in a weak error expansion for the PDMP (xt) of section 2.3
and its associated Euler scheme (xt). First of all, we recall from [5] that the generator A of the
process (t, xt) which acts on functions g defined on R+ × E is given by

Ag(t, x) = ∂tg(t, x) + f(x)∂νg(t, x) + λ(x)

∫

E

(g(t, y) − g(t, x))Q(x, dy), (31)

where for notational convenience we have set ∂νg(t, x) := ∂g
∂ν (t, θ, ν), ∂tg(t, x) := ∂g

∂t (t, x) and
f(x) = fθ(ν) for all x = (θ, ν) ∈ E. Below, we state the assumptions and the main theorem of
this section. Its proof which is inspired by [27] (see also [24] or [16]) is delayed in section 4.2.

Assumption 4.1. For all θ ∈ Θ and for all A ∈ B(Θ), the functions ν 7→ Q ((θ, ν), A), ν 7→
λ (θ, ν) and ν 7→ fθ (ν) are bounded and twice continuously differentiable with bounded derivatives.

Assumption 4.2. The solution u of the integro differential equation
{

Au(t, x) = 0, (t, x) ∈ [0, T [×E,
u(T, x) = F (x), x ∈ E,

(32)

with F : E → R a bounded function and A given by (31) is such that for all θ ∈ Θ, the function
(t, ν) 7→ u(t, θ, ν) is bounded and two times differentiable with bounded derivatives. Moreover the
second derivatives of (t, ν) 7→ u(t, θ, ν) are uniformly Lipschitz in θ.

Theorem 4.1. Let (xt, t ∈ [0, T ]) be a PDMP and (xt, t ∈ [0, T ]) its approximation constructed
in section 2.3 with x0 = x0 = x for some x ∈ E. Under assumptions 4.1. and 4.2. for any
bounded function F : E → R there exists a constant c1 independent of h such that

E[F (xT )] − E[F (xT )] = hc1 + O(h2). (33)

Remark 4.1. If (x̃t) is a PDMP whose characteristics λ̃, Q̃ satisfy the assumptions of Proposi-
tion 2.2 and (x̃t) is its approximation we deduce from Theorem 4.1 that

E[F (x̃T )R̃T ] − E[F (x̃T )R̃T ] = hc1 + O(h2). (34)

4.1 Further results on PDMPs: Itô and Feynman-Kac formulas

Definition 4.1. Let us define the following operators which act on functions g defined on R+×E.

T g(t, x) := ∂tg(t, x) + f(x)∂νg(t, x),

Sg(t, x) := λ(x)

∫

E

(g(t, y) − g(t, x))Q(x, dy).

From Definition 4.1, the generator A defined by (31) reads Ag(t, x) = T g(t, x) + Sg(t, x). We
introduce the random counting measure p associated to the PDMP (xt) defined by p([0, t]×A) :=∑

n≥1 1Tn≤t1Yn∈A for t ∈ [0, T ] and for A ∈ B(E). The compensator of p, noted p′, is given
from [5] by

p′([0, t] × A) =

∫ t

0

λ(xs)Q(xs, A)ds.

Hence, q := p − p′ is a martingale with respect to the filtration generated by p noted (Fp
t )t∈[0,T ].

Similarly, we introduce p, p′, q and (Fp
t )t∈[0,T ] to be the same objects as above but corresponding

to the approximation (xt). The fact that p′ is the compensator of p and that q is a martingale
derives from arguments of the marked point processes theory, see [4].
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Definition 4.2. Let us define the following operators which act on functions g defined on R+×E.

T g(t, x, y) := ∂tg(t, x) + f(y)∂νg(t, x),

Ag(t, x, y) := T g(t, x, y) + Sg(t, x).

Remark 4.2. For all functions g defined on R+ ×E, T g(t, x, x) = T g(t, x), so that Ag(t, x, x) =
Ag(t, x).

The next theorem provides Itô formulas for the PDMP (xt) and its approximation (xt). For all
s ∈ [0, T ], we set η(s) := T n + kh if s ∈ [T n + kh, (T n + (k + 1)h) ∧ T n+1[ for some n ≥ 0 and
for some k ∈ {0, . . . , ⌊(T n+1 − T n)/h⌋}.

Theorem 4.2. Let (xt, t ∈ [0, T ]) and (xt, t ∈ [0, T ]) be a PDMP and its approximation respec-
tively constructed in section 2.3 with x0 = x0 = x for some x ∈ E. For all bounded functions
g : R+ × E → R continuously differentiable with bounded derivatives, we have

g(t, xt) = g(0, x) +

∫ t

0

Ag(s, xs)ds + Mg
t , (35)

where Mg
t :=

∫ t

0

∫
E(g(s, y) − g(s, xs−))q(dsdy) is a true Fp

t -martingale, and

g(t, xt) = g(0, x) +

∫ t

0

Ag(s, xs, xη(s))ds + M
g

t , (36)

where, M
g

t :=
∫ t

0

∫
E

(g(s, y) − g(s, xs−))q(dsdy) is a true Fp
t -martingale.

Proof of Theorem 4.2. The proof of (35) is given in [5]. We prove (36) following the same
arguments. Since q = p − p′, we have

M
g

t =
∑

k≥1

1T k≤t

(
g(T k, xT k

) − g(T k, x−

T k

)
)

−
∫ t

0

Sg(s, xs)ds.

Consider the above sum. As in [5], we write, on the event {N t = n}, that
∑

k≥1

1T k≤t

(
g(T k, xT k

) − g(T k, x−

T k

)
)

= g(t, xt) − g(0, x) −
[

g(t, xt) − g(T n, xT n
) +

n−1∑

k=0

g(T k+1, x−

T k+1
) − g(T k, xT k

)

]
.

For all k ≤ n−1, we decompose the increment g(T k+1, x−

T k+1
)−g(T k, xT k

) as a sum of increments

on the intervals [T k+ih, (T k+(i+1)h)∧Tk+1] ⊂ [T k, T k+1]. Without loss of generality we are led
to consider increments of the form g(t, θ, φθ(t, ν))−g(ih, θ, yi(x)) for some i ≥ 0, t ∈ [ih, (i+1)h]
and for all x = (θ, ν) ∈ E where we recall that φ is defined by (16). The function g is smooth
enough to write

g(t, θ, φθ(t, ν)) − g(ih, θ, yi(x)) =

∫ t

ih

(∂tg + fθ(yi(x))∂νg) (s, θ, φθ(s, ν))ds.

Then, the above arguments together with definition 4.2 yields

g(t, xt) − g(T n, xT n
) +

n−1∑

k=0

g(T k+1, x−

T k+1
) − g(T k, xT k

) =

∫ t

0

T g(s, xs, xη(s))ds.
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The following theorem gives us a way to represent the solution of the integro-differential equation
(32) as the conditional expected value of a functional of the terminal value of the PDMP (xt).
It plays a key role in the proof of Theorem 4.1.

Theorem 4.3 (PDMP’s Feynman-Kac formula [6]). Let F : E → R be a bounded function.
Then the integro-differential equation (32) has a unique solution u : R+ × E → R given by

u(t, x) = E[F (xT )|xt = x], (t, x) ∈ [0, T ] × E.

4.2 Proof of Theorem 4.1

We provide a proof in two steps. First, we give an appropriate representation of the weak error
E[F (xT )] − E[F (xT )]. Then, we use this representation to identify the coefficient c1 in (33).

Step 1: Representing E[F (xT )] − E[F (xT )]. Let u denote the solution of (32). From Theorem
4.3 we can write E[F (xT )] − E[F (xT )] = E[u(T, xT )] − u(0, x). Then, the application of the Itô
formula (36) to u at time T yields

u(T, xT ) = u(0, x) +

∫ T

0

Au(s, xs, xη(s))ds + M
u

T .

Since (M
u

t ) is a true martingale, we obtain

E[u(T, xT ) − u(0, x)] = E

[∫ T

0

Au(s, xs, xη(s))ds

]
.

For s ∈ [0, T ] we have Au(s, xs, xη(s)) = ∂tu(s, xs)+f(xη(s))∂νu(s, xs)+Su(s, xs) (see Definition
4.2). From the regularity of λ, Q and u (see assumptions 4.1 and 4.2), the functions ∂tu, ∂νu
and Su are smooth enough to apply the Itô formula (36) between η(s) and s respectively. This
yields

∂tu(s, xs) = ∂tu(η(s), xη(s)) +

∫ s

η(s)

A(∂tu)(r, xr, xη(r))dr + M
∂tu

s − M
∂tu

η(s),

∂νu(s, xs) = ∂νu(η(s), xη(s)) +

∫ s

η(s)

A(∂νu)(r, xr, xη(r))dr + M
∂ν u

s − M
∂ν u

η(s),

Su(s, xs) = Su(η(s), xη(s)) +

∫ s

η(s)

A(Su)(r, xr, xη(r))ds + M
Su

s − M
Su

η(s).

Moreover, since η(r) = η(s) for r ∈ [η(s), s], we have

f(xη(s))∂νu(s, xs) = f(xη(s))∂νu(η(s), xη(s))

+

∫ s

η(s)

f(xη(r))A(∂νu)(r, xr, xη(r))dr + f(xη(s))(M
∂ν u

s − M
∂ν u

η(s)),

so that

Au(s, xs, xη(s)) = Au(η(s), xη(s), xη(s)) +

∫ s

η(s)

Υ(r, xr, xη(r))dr

+ M
∂tu

s − M
∂tu

η(s) + f(xη(s))(M
∂ν u

s − M
∂ν u

η(s)) + M
Su

s − M
Su

η(s),
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where,
Υ(t, x, y) :=

(
A(∂tu) + f(y)A(∂νu) + A(Su)

)
(t, x, y). (37)

Since Au(t, x, x) = Au(t, x), the first term in the above equality is 0 by Theorem 4.3. By using

Fubini’s theorem and the fact that (M
∂tu

t ) and (M
Su

t ) are true martingales, we obtain

E

[∫ T

0

M
∂tu

s − M
∂tu

η(s)ds

]
= E

[∫ T

0

M
Su

s − M
Su

η(s)ds

]
= 0.

Moreover, since (M
∂ν u

t ) is a Fp
t -martingale, we have

E

[∫ T

0

f(xη(s))(M
∂ν u

s − M
∂ν u

η(s))ds

]
=

∫ T

0

E

[
f(xη(s))E[M

∂ν u

s − M
∂ν u

η(s)|Fp
η(s)]

]
ds = 0.

Collecting the previous results, we obtain E[F (xT )]−E[F (xT )] = E

[∫ T

0

∫ s

η(s) Υ(r, xr, xη(r))drds
]

.

We can compute an explicit form of Υ in term of u, f , λ, Q and their derivatives. Indeed, Υ is
given by (37), and we have

A(∂tu)(t, x, y) = ∂2
ttu(t, x) + f(y)∂2

tνu(t, x) + S(∂tu)(t, x),
(
fA(∂νu)

)
(t, x, y) = f(y)

(
∂2

tνu(t, x) + f(y)∂2
ννu(t, x) + S(∂νu)(t, x)

)
,

A(Su)(t, x, y) = ∂t(Su)(t, x) + f(y)∂ν(Su)(t, x) + S(Su)(t, x).

The application of the Taylor formula to the functions ∂2
ttu, ∂2

tνu, ∂2
ννu, S(∂tu), S(∂νu), ∂t(Su),

∂ν(Su) and S(Su) at the order 0 around (η(r), xη(r)) yields Υ(r, xr, xη(r)) = Υ(η(r), xη(r), xη(r))+
O(h). Setting Ψ(t, x) = Υ(t, x, x) and recalling that for r ∈ [η(s), s], η(r) = η(s) and that
|s − η(s)| ≤ h, we obtain

E[F (xT )] − E[F (xT )] = E

[∫ T

0

(s − η(s))Ψ(η(s), xη(s))ds

]
+ O(h2).

Consider the expectation in the right-hand side of the above equality. We decompose the integral
into a (finite) sum of integrals on the intervals [T n+kh, (T n+(k+1)h)∧T n+1] where Ψ is constant.

Without loss of generality, we are led to consider integrals of the form
∫ t

kh
(s − kh)Cds for some

k ≥ 0, t ∈ [kh, (k + 1)h] and C a bounded constant. We have
∫ t

kh
(s − kh)Cds = t−kh

2

∫ t

kh
Cds

moreover adding and subtracting h in the numerator of (t − kh)/2 yields
∫ t

kh

(s − kh)Cds =
h

2

∫ t

kh

Cds +
t − (k + 1)h

2

∫ t

kh

Cds.

Since C is bounded we deduce that
∫ t

kh(s − kh)Cds = h
2

∫ t

kh Cds + O(h2). Since Ψ is assumed

bounded and E[NT ] < +∞, the above arguments yields the following representation

E[F (xT )] − E[F (xT )] =
h

2
E

[∫ T

0

Ψ(η(s), xη(s))ds

]
+ O(h2). (38)

Step 2: From the representation (38) to the expansion at the order one. In this step, we show that

E

[∫ T

0
Ψ(η(s), xη(s))ds

]
= E

[∫ T

0
Ψ(s, xs)ds

]
+ O(h). First, we introduce the random variables Γ

and Γ defined by Γ :=
∫ T

0 Ψ(η(s), xη(s))ds and Γ :=
∫ T

0 Ψ(η(s), xη(s))ds and write

E[|Γ − Γ|] = E

[
1min(T

τ† ,T
τ† )≤T |Γ − Γ|

]
+ E

[
1min(T

τ† ,T
τ† )>T |Γ − Γ|

]
,
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where τ † is defined in Definition 3.1. Since Ψ is bounded and P(min(Tτ† , T τ†) ≤ T ) = O(h) (see

the proof of Theorem 3.1), we have E

[
|Γ − Γ|1min(T

τ† ,T
τ† )≤T

]
= O(h). Now, recall from (22)

that, on the event {min(Tτ† , T τ†) > T }, we have Tk = T k and θk = θk for all k ≥ 1 such that Tk ∈
[0, T ]. Thus, for all n ≤ NT and for all s ∈ [T n, T n+1[ we have xη(s) = (θn, φθn

(η(s) − T n, νn))

and xη(s) = (θn, φθn
(η(s) − T n, νn)). Consequently, on the event {min(Tτ† , T τ†) > T } we have

|Γ − Γ| ≤
NT∑

n=0

∫ T n+1∧T

T n

|Ψ(η(s), θn, φθn
(η(s) − T n, νn)) − Ψ(η(s), θn, φθn

(η(s) − T n, νn))|ds.

From the regularity assumptions 4.1 and 4.2, the function ν 7→ Ψ(t, θ, ν) is uniformly Lipschitz
in (t, θ) with constant LΨ as sum and product of bounded Lipschitz functions. Thus, from this
Lipschitz property and the application of Lemma 2.1, we get

|Ψ(η(s), θn, φθn
(η(s) − T n, νn)) − Ψ(η(s), θn, φθn

(η(s) − T n, νn))| ≤ LΨCeLT (n + 1)h.

From the above inequality, we find that E
[
1min(T

τ† ,T
τ† )>T |Γ − Γ|

]
≤ LΨCeLT T hE[NT (NT +1)].

Since NT ≤ N∗
T and E[N∗

T (N∗
T +1)] < +∞ we conclude that E

[
1min(T

τ† ,T
τ† )>T |Γ − Γ|

]
= O(h).

We have shown that E

[∫ T

0
Ψ(η(s), xη(s))ds

]
= E

[∫ T

0
Ψ(η(s), xη(s))ds

]
+ O(h). Secondly, from

the regularity assumptions 4.1 and 4.2, the function (t, ν) 7→ Ψ(t, θ, ν) is uniformly Lipschitz in
θ. Moreover, for all s ∈ [0, T ] there exits k ≥ 0 such that both s and η(s) belong to the same
interval [T k, T k+1[ so that xs = (θk, φθk

(s − T k, νk)) and xη(s) = (θk, φθk
(η(s) − T k, νk)). Thus,

from the Lipschitz continuity of Ψ, from the fact that |s − η(s)| ≤ h and since fθ is uniformly
bounded in θ we have |Ψ(s, xs) − Ψ(η(s), xη(s))| ≤ Ch where C is a constant independent of
h. Then, we obtain sups∈[0,T ] |E[Ψ(s, xs)] − E[Ψ(η(s), xη(s))]| ≤ Ch from which we deduce that∣∣∣E
[∫ T

0 Ψ(η(s), xη(s))ds
]

− E

[∫ T

0 Ψ(s, xs)ds
]∣∣∣ ≤ CT h. Finally, the weak error expansion reads

E[F (xT )] − E[F (xT )] =
h

2
E

[∫ T

0

Ψ(s, xs)ds

]
+ O(h2).

5 Numerical experiment

In this section, we use the theoretical results above to apply the MLMC method to the PDMP
2-dimensional Morris-Lecar (shortened PDMP 2d-ML).

5.1 The PDMP 2-dimensional Morris-Lecar

The deterministic Morris-Lecar model has been introduced in 1981 by Catherine Morris and
Harold Lecar in [23] to explain the dynamics of the barnacle muscle fiber. This model belongs
to the family of conductance-based models (just as the Hodgkin-Huxley model [19]) and takes
the following form

{
dv
dt = 1

C

(
I − gLeak(v − VLeak) − gCaM∞(v)(v − VCa) − gKn(v − VK)

)
,

dn
dt = (1 − n)αK(v) − nβK(v),

(39)
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where M∞(v) = (1 + tanh[(v − V1)/V2])/2, αK(v) = λK(v)N∞(v), βK(v) = λK(v)(1 − N∞(v)),
N∞(v) = (1 + tanh[(v − V3)/V4])/2, λK(v) = λK cosh((v − V3)/2V4).

In this section we consider the PDMP version of (39) that we denote by (xt, t ∈ [0, T ]), T > 0,
whose characteristics (f, λ, Q) are given by

• f(θ, ν) = 1
C

(
I − gLeak(ν − VLeak) − gCaM∞(ν)(ν − VCa) − gK

θ
NK

(ν − VK)
)

,

• λ(θ, ν) = (NK − θ)αK(ν) + θβK(ν),

• Q
(

(θ, ν), {θ + 1}
)

= (NK−θ)αK(ν)
λ(θ,ν) , Q

(
(θ, ν), {θ − 1}

)
= θβK(ν)

λ(θ,ν) .

The state space of the model is E = {0, . . . , NK} × R where NK ≥ 1 stands for the number of
potassium gates. The values of the parameters used in the simulations are V1 = −1.2 , V2 = 18,
V3 = 2, V4 = 30, λK = 0.04, C = 20, gLeak = 2, VLeak = −60, gCa = 4.4, VCa = 120, gK = 8,
VK = −84, I = 60, NK = 100.
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Figure 1: 10 trajectories of the characteristics of the PDMP 2d-ML on [0, 100].

24



5.2 Classical and Multilevel Monte Carlo estimators

In this section we introduce the classical and multilevel Monte Carlo estimators in order to
estimate the quantity E [F (xT )] where (xt, t ∈ [0, T ]) is the PDMP 2d-ML and F (θ, ν) = ν for
(θ, ν) ∈ E so that F (xT ) gives the value of the membrane potential at time T . Note that other
possible choices are F (θ, ν) = νn or F (θ, ν) = θn for some n ≥ 2. In those cases, the quantity
E [F (xT )] gives the moments of the membrane potential or the number of open gates at time T
so that we can compute statistics on these biological variables.
Let X := F (xT ). In the sequel it will be convenient to emphasize the dependence of the Euler
scheme (xt) on a time step h. We introduce a family of random variables (Xh, h > 0) defined by
Xh := F (xT ) where for a given h > 0 the corresponding PDP (xt) is constructed as in section
2.3 with time step h. In particular, the processes (xt) for h > 0 are correlated through the same
randomness (Uk), (Vk) and (N∗

t ). We build a classical Monte Carlo estimator of E[X ] based on
the family (Xh, h > 0) as follows

Y MC =
1

N

N∑

k=1

Xk
h , (40)

where (Xk
h , k ≥ 1) is an i.i.d sequence of random variables distributed like Xh. The parameters

h > 0 and N ∈ N have to be determined. We build a multilevel Monte Carlo estimator based on
the family (Xh, h > 0) as follows

Y MLMC =
1

N1

N1∑

k=1

Xk
h∗ +

L∑

l=2

1

Nl

Nl∑

k=1

(Xk
hl

− Xk
hl−1

), (41)

where
(

(Xk
hl

, Xk
hl−1

), k ≥ 1
)

for l = 2, . . . , L are independent sequences of independent copies

of the couple (Xhl
, Xhl−1

) and independent of the i.i.d sequence (Xk
h∗ , k ≥ 1). The parameter

h∗ is a free parameter that we fix in section 5.4. The parameters L ≥ 2, M ≥ 2, N ≥ 1 and
q = (q1, . . . , qL) ∈]0, 1[L with

∑L
l=1 ql = 1 have to be determined, then we set Nl := ⌈Nql⌉,

hl := h∗M−(l−1).

We also set X̃ := F (x̃T )R̃T where R̃T is defined as in Proposition 2.2 with an intensity λ̃ and a
kernel Q̃ that will be specified in section 5.4 and let (X̃h, h > 0) be such that X̃h := F (x̃T )R̃T

for all h > 0 . By Proposition 2.2, we have E[X ] = E[X̃ ] and E[Xh] = E[X̃h] for h > 0.
Consequently, we build likewise a multilevel estimator Ỹ MLMC based on the family (X̃h, h > 0).

The complexity of the classical Monte Carlo estimator Y MC depends on the parameters (h, N)
and the one of the multilevel estimators Y MLMC and Ỹ MLMC depends on (L, q, N). In order to
compare those estimators we proceed as in [21] (see also [24]), that is to say, for each estimator
we determine the parameters which minimize the global complexity (or cost) subject to the
constraint that the resulting L2-error must be lower than a prescribed ǫ > 0.
As in [21], we call V1, c1, α, β and Var(X) the structural parameters associated to the family
(Xh, h > 0) and X . We know theoretically from Theorem 3.1 (strong estimate) and Theorem
4.1 (weak expansion) that (α, β) = (1, 1) whereas V1, c1 and Var(X) are not explicit (we explain
how we estimate them in section 5.3). Moreover, the structural parameters Ṽ1, c̃1, α̃, β̃ and
Var(X̃) associated to (X̃h, h > 0) and X̃ are such that α̃ = α, c̃1 = c1 (see (34)), β̃ = 2 (see
Theorem 3.2) and Ṽ1, Var(X̃) are not explicit.
The classical and the multilevel estimators defined above are linear and of Monte Carlo type in
the sense described in [21]. The optimal parameters of those estimators are then expressed in
term of the corresponding structural parameters as follows (see [21] or [24]). For a user prescribed
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L

⌈
1 + log(|c1|

1
α h∗)

log(M) + log(A/ǫ)
α log(M)

⌉
, A =

√
1 + 2α

q

q1 = µ∗(1 + ρ(h∗)
β
2 )

qj = µ∗ρ(h∗)
β

2

(
n

−β
2

j−1
+n

−β
2

j√
nj−1+nj

)
, j = 2, . . . , L; µ∗ = 1/

∑
1≤j≤L qj

N
(
1 + 1

2α

) Var(X)

(
1+ρ(h∗)

β
2
∑

L

j=1

(
n

−β
2

j−1
+n

−β
2

j

)√
nj−1+nj

)2

ǫ2
∑

L

j=1
qj (nj−1+nj)

Table 1: Optimal parameters for the MLMC estimator (41).

ǫ > 0, the classical Monte Carlo parameters h and N are

h(ǫ) = (1 + 2α)
−1
2α

(
ǫ

|c1|

) 1
α

, N(ǫ) =

(
1 +

1

2α

)
Var(X)

(
1 + ρhβ/2(ǫ)

)2

ǫ2
, (42)

where ρ =
√

V1/Var(X). The parameters of the estimator Y MLMC are given in Table 1 where
nl := M l−1 for l = 1, . . . , L with the convention n0 = n−1

0 = 0. The parameters of Ỹ MLMC are
given in a similar way using Ṽ1, β̃ and Var(X̃). Finally, the parameter M(ǫ) is determined as in
[21] section 5.1.

5.3 Methodology

We compare the classical and the multilevel Monte Carlo estimators in term of precision, CPU-
time and complexity. The precision of an estimator Y is defined by the L2-error ‖ Y −E[X ] ‖2=√

(E[Y ] − E[X ])2 + Var(Y ) also known as the Root Mean Square Error (RMSE). The CPU-
time represents the time needed to compute one realisation of an estimator. The complexity is
defined as the number of time steps involved in the simulation of an estimator. Let Y denote
the estimator (40) or (41). We estimate the bias of Y by

b̂R =
1

R

R∑

k=1

Y k − E[X ],

where Y 1, . . . , Y R are R independent replications of the estimator. We estimate the variance of
Y by

v̂R =
1

R

R∑

k=1

vk,

where v1, . . . , vR are R independent replications of v the empirical variance of Y . In the case
where Y is the crude Monte Carlo estimator we set

v =
1

N(N − 1)

N∑

k=1

(Xk
h − mN )2, mN =

1

N

N∑

k=1

Xk
h .
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If Y is the MLMC estimator, we set

v =
1

N1(N1 − 1)

N1∑

k=1

(Xk
h − m

(1)
N1

)2 +

L∑

l=2

1

Nl(Nl − 1)

Nl∑

k=1

(Xk
hl

− Xk
hl−1

− m
(l)
Nl

)2,

where m
(1)
N1

= 1
N1

∑N1

k=1 Xk
h and for l ≥ 2, m

(l)
Nl

= 1
Nl

∑Nl

k=1 Xk
hl

− Xk
hl−1

. Then, we define the
empirical RMSE ǫ̂R by

ǫ̂R =

√
b̂2

R + v̂R. (43)

The numerical computation of (43) for both estimators (40) and (41) requires the computation
of the optimal parameters given by (42) and in table 1 of section 5.2 which are expressed in term
of the structural parameters c1, V1 and Var(X). Moreover the computation of the bias requires
the value E[X ]. Since there is no closed formula for the mean and variance of X we estimate
them using a crude Monte Carlo estimator with h = 10−5 and N = 106. The constants c1 and
V1 are not explicit, we use the same estimator of V1 as in [21] section 5.1, that is

V̂1 = (1 + M−β/2)−2h−β
E
[
|Xh − Xh/M |2

]
, (44)

and we use the following estimator of c1

ĉ1 =
(
1 − M−α

)−1
h−α

E
[
Xh/M − Xh

]
. (45)

The estimator of c1 is obtained writing the weak error expansion for the two time steps h and
h/M , summing and neglecting the O(h2) term. In (44) we use (h, M) = (0.1, 4) and in (45),
we use (h, M) = (1, 4) and the expectations are estimated using a classical Monte Carlo of size
N = 104 on (Xh/M , Xh). We emphasize that we interested in the order of c1 and V1 so that we
do not need a precise estimation here.

5.4 Numerical results

In this section we first illustrate the results of Theorems 3.1 and 3.2 on the Morris-Lecar PDMP,
then we compare the MC and MLMC estimators. The simulations were carried out on a computer
with a processor Intel Core i5-4300U CPU @ 1.90GHz × 4. The code is written in C++ language.
We implement the estimator Ỹ MLMC (see section 5.2) for the following choices of the parameters
(λ̃, Q̃).

Case 1: λ̃(θ) = 1 and Q̃
(

θ, {θ + 1}
)

= NK−θ
NK

, Q̃
(

θ, {θ − 1}
)

= θ
NK

.

Case 2: λ̃(x, t) = λ(θ, v(t)) and Q̃((x, t), dy) = Q((θ, v(t)), dy) where v denotes the first compo-
nent of the solution of (39).

Cases 1 and 2 correspond to the application of Proposition 2.2. Based on Corollary 2.2 we also
consider the following case.

Case 3: Consider the quantity E[F (xT ) − F (x̃T )] where (xt) and (x̃t) are PDPs with charac-
teristics (Φ, λ, Q) and (Φ̃, λ, Q) respectively. By Corollary 2.2, we have E[F (x̃T )] = E[F (yT )R̃T ]
where (yt) is a PDP whose discrete component jumps in the same states and at the times as
the discrete component of (xt) do and (R̃t) is the corresponding corrective process. Thus, we
consider the quantity E[F (xT ) − F (yT )R̃T ] instead of E[F (xT ) − F (x̃T )].

The case 3 implies to use the following MLMC estimator which is slightly different from (41).

Ỹ MLMC =
1

N1

N1∑

k=1

Xk
h∗ +

L∑

l=2

1

Nl

Nl∑

k=1

Xk
hl

− X̃k
hl−1

,
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where
(

(Xk
hl

, X̃k
hl−1

), k ≥ 1
)

for l = 2, . . . , L are independent sequences of independent copies

of the couple (Xhl
, X̃hl−1

) = (F (xT ), F (yT )R̃T ) where (yt) is a PDP whose discrete component
jumps in the same states and at the same times as the Euler scheme (xt) with time step hl do,
whose deterministic motions are given by the approximate flows with time step hl−1 and (R̃t) is
the corresponding corrective process (see Corollary 2.2).

The figure 2 confirms numerically that E[|Xhl
− Xhl−1

|2] = O(hl) and that E[|X̃hl
− X̃hl−1

|2] =
O(h2

l ) for the cases 1,2 and 3 (see Theorems 3.1 and 3.2 respectively). Indeed, for T = 10 (see
figure 2a), we observe that the curve corresponding to the decay of E[|Xhl

−Xhl−1
|2] as l increases

is approximately parallel to a line of slope -1 and that the curves corresponding to the decay of
E[|X̃hl

− X̃hl−1
|2] in the cases 1,2 and 3 are parallel to a line of slope -2. We also see that the

curves corresponding to the cases 2 and 3 are approximately similar and that for some value of
l those curves go below the one corresponding to E[|Xhl

− Xhl−1
|2]. The curve corresponding to

the case 1 is always above all the other ones, this indicates that the L2-error (or the variance)
in the case 1 is too big (w.r.t the others) and that is why we do do not consider this case in the
sequel. As T increases (see figures 2b and 2c), the theoretical order of the numerical schemes
is still observed. However, for T = 20, a slight difference begin to emerge between the cases 2
and 3 (the case 3 being better) and this difference is accentuated for T = 30 so that we do not
represent the case 2.
For the Monte Carlo simulations we set T = 30, λ∗ = 10 and the time step involved in the
first level of the MLMC is set to h∗ = 0.1. We choose this value for h∗ because it represents
(on average) the size of an interval [T ∗

n , T ∗
n+1] of two successive jump times of the auxiliary

Poisson process (N∗
t ). The estimation of the true value and variance leads E[X ] = −31.4723 and

Var(X) = 335. Note that v(30) = −35.3083 where v is the deterministic membrane potential
solution of (39) so that there is an offset between the deterministic potential and the mean of
the stochastic potential. We replicate 100 times the simulation of the classical and multilevel
estimators to compute the empirical RMSE so that R = 100 in (43).

k ǫ = 2−k ǫ̂100 b̂100 v̂100 time (sec) N h cost
1 5.00e-01 4.32e-01 2.34e-01 1.52e-01 3.10e-01 2.16e+03 6.30e-02 3.43e+04
2 2.50e-01 2.59e-01 1.69e-01 3.87e-02 1.55e+00 8.47e+03 3.15e-02 2.69e+05
3 1.25e-01 1.17e-01 6.25e-02 9.78e-03 8.80e+00 3.34e+04 1.58e-02 2.12e+06
4 6.25e-02 5.67e-02 2.73e-02 2.47e-03 5.62e+01 1.32e+05 7.88e-03 1.68e+07
5 3.12e-02 2.50e-02 -1.78e-03 6.21e-04 3.93e+02 5.24e+05 3.94e-03 1.33e+08

Table 2: Results and parameters of the Monte Carlo estimator Y MC. Estimated values of the
structural parameters: c1 = 4.58, V1 = 7.25.

k ǫ = 2−k ǫ̂100 b̂100 v̂100 time (sec) L M h N cost
1 5.00e-01 3.89e-01 1.14e-01 1.38e-01 3.62e-01 2 2 0.1 2.60e+03 2.82e+04
2 2.50e-01 2.29e-01 1.19e-01 3.83e-02 1.44e+00 2 4 0.1 1.04e+04 1.16e+05
3 1.25e-01 1.21e-01 6.24e-02 1.07e-02 5.76e+00 2 7 0.1 4.22e+04 4.85e+05
4 6.25e-02 5.91e-02 1.38e-02 3.30e-03 2.69e+01 3 4 0.1 1.90e+05 2.37e+06
5 3.12e-02 3.47e-02 -1.39e-02 1.01e-03 1.08e+02 3 6 0.1 7.71e+05 9.99e+06

Table 3: Results and parameters of the Multilevel Monte Carlo estimator Y MLMC. Estimated
values of the structural parameters: c1 = 4.58, V1 = 7.25.
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(c) T=30.

Figure 2: The plots (a),(b) and (c) show the decay of E[(Xhl
− Xhl−1

)2] and E[X̃hl
− X̃hl−1

)2]

(y-axis, logM scale) as a function of l with hl = h × M−(l−1), h = 1, M = 4, for different values
of the final time T . For visual guide, we added black solid lines with slopes -1 and -2.

The results of the Monte Carlo simulations are shown in tables 2 for the classical Monte Carlo
estimator Y MC and in tables 3 and 4 for the multilevel estimators Y MLMC and Ỹ MLMC (case 3).
As an example, the first line of table 3 reads as follows: for a user prescribed ǫ = 2−1 = 0.5,
the MLMC estimator Y MLMC is implemented with L = 2 levels, the time step at the first level
is h∗ = 0.1, this time step is refined by a factor nl = M l−1 with M = 2 at each levels and the
sample size is N = 2600. For such parameters, the numerical complexity of the estimator is
Cost(Y MLMC) = 28200, the empirical RMSE ǫ̂100 = 0.389 and the computational time of one

realisation of Y MLMC is 0.362 seconds. We also reported the empirical bias b̂100 and the empirical
variance v̂100 in view of (43).
The results indicate that the MLMC outperforms the classical MC. More precisely, for small
values of ǫ (i.e k = 1, 2, 3) the complexity and the CPU-time of the classical and the multilevel
MC estimators are of the same order. As ǫ decreases (i.e as k increases) the difference in
complexity and CPU-time between classical and multilevel MC increases. Indeed, for k = 5 the
complexity of the estimator Y MC is approximately 13 times superior to the one of Y MLMC and
19 times superior to the one of Ỹ MLMC. The same fact appears when we look at the complexity
ratio of the estimators Y MLMC and Ỹ MLMC (i.e Cost(Y MLMC)/Cost(Ỹ MLMC)) as ǫ decreases.
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k ǫ = 2−k ǫ̂100 b̂100 v̂100 time (sec) L M h N cost
1 5.00e-01 4.28e-01 1.98e-01 1.44e-01 3.13e-01 2 2 0.1 2.38e+03 2.50e+04
2 2.50e-01 2.47e-01 1.55e-01 3.72e-02 1.26e+00 2 3 0.1 9.46e+03 1.00e+05
3 1.25e-01 1.36e-01 8.90e-02 1.05e-02 5.00e+00 2 6 0.1 3.80e+04 4.11e+05
4 6.25e-02 6.22e-02 2.15e-02 3.41e-03 2.09e+01 3 4 0.1 1.58e+05 1.75e+06
5 3.12e-02 3.17e-02 6.07e-03 9.71e-04 8.35e+01 3 5 0.1 6.30e+05 7.02e+06

Table 4: Results and parameters of the Multilevel Monte Carlo estimator Ỹ MLMC (case 3).
Estimated values of the structural parameters: c̃1 = 3.91, Ṽ1 = 34.1.

However, the difference between the complexity of these two MLMC estimators increases more
slowly than the one between a MC and a MLMC estimator. Recall that the computational
benefit of the MLMC over the MC grows as the prescribed ǫ decreases.
Both classical and multilevel estimators provide an empirical RMSE which is close to the pre-
scribed precision (see tables 2, 3 and 4). We can conclude that the choice of the parameters
is well adapted. For the readability, figures 3a, 3b show the ratios of the complexities and the
CPU-times of the three estimators Y MC, Y MLMC and Ỹ MLMC as a function of ǫ.
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Figure 3: The plots (a) and (b) show the complexity and CPU-time ratios w.r.t the complexity
and CPU-time of the estimator Ỹ MLMC as a function of the prescribed ǫ (log2 scale for the x-axis,
log scale for the y-axis).

References

[1] D.F. Anderson and D.J. Higham. Multilevel Monte Carlo for continuous time Markov chains,
with applications in biochemical kinetics. Multiscale Model. Simul., 10(1):146–179, 2012.

[2] D.F. Anderson, D.J. Higham, and Y. Sun. Complexity of Multilevel Monte Carlo tau-
leaping. SIAM Journal on Numerical Analysis, 52(6):3106–3127, 2014.

[3] M. Benaïm, S. Le Borgne, F. Malrieu, and P-A. Zitt. Quantitative ergodicity for some
switched dynamical systems. Electron. Commun. Probab., 17:14 pp., 2012.

30



[4] P. Brémaud. Point Processes and Queues, Martingale Dynamics. Springer-Verlag New York
Inc, 1981.

[5] M.H.A. Davis. Piecewise-deterministic Markov processes: A general class of non-diffusion
stochastic models. Journal of the Royal statistical Society, 46:353–388, 1984.

[6] M.H.A. Davis. Markov Models and Optimization. Chapman and Hall, London, 1993.

[7] S. Dereich. Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correc-
tion. The Journal of Applied Probability, 21(1):283–311, 2011.

[8] S. Dereich and F. Heidenreich. A Multilevel Monte Carlo algorithm for Lévy-driven Stochas-
tic Differential Equations. Stochastic Processes and their Applications, 121(7):1565–1587,
2011.

[9] L. Devroye. Non-uniform random variate generation. Springer-Verlag, New York Inc., 1986.

[10] A. Ferreiro-Castilla, A.E. Kyprianou, R. Scheichl, and G. Suryanarayana. Multilevel Monte
Carlo simulation for Lévy processes based on the Wiener–Hopf factorisation. Stochastic
Processes and their Applications, 124(2):985 – 1010, 2014.

[11] M. B. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259–328, 2015.

[12] M.B. Giles. Multilevel Monte Carlo path simulation. Oper. Res., 56(3):607–617, 2008.

[13] D. Giorgi. Théorémes limites pour estimateurs Multilevel avec et sans poids. Comparaisons
et applications. PhD thesis, Université Pierre et Marie Curie - Paris 6, 2017.

[14] P.W. Glynn and C-H. Rhee. Exact estimation for markov chain equilibrium expectations.
Journal of Applied Probability, 51:377–389, 2014.

[15] P.W. Glynn and C-H. Rhee. Unbiased Estimation with Square Root Convergence for SDE
models. Operations Research, 63(5):1026–1043, 2015.

[16] C. Graham and D. Talay. Stochastic simulation and Monte Carlo. Springer, 2013.

[17] E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I. Second
Revised Edition, Springer, 2008.

[18] S. Heinrich. Multilevel Monte Carlo methods. Large-scale scientific computing, pages 58–67,
2001.

[19] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. Journal of Physiology, 117:500–544,
1952.

[20] M. Jacobsen. Point Process Theory and Applications, Marked Point and Piecewise Deter-
ministic Processes. Birkhäuser Boston, 2006.

[21] V. Lemaire and G. Pagès. Multilevel Richardson-Romberg extrapolation. Bernoulli,
23(4A):2643–2692, 2017.

[22] V. Lemaire, M. Thieullen, and N. Thomas. Exact simulation of the jump times of a class
of Piecewise Deterministic Markov Processes. Journal of Scientific Computing, 75:1776 –
1807, 2018.

31



[23] C. Morris and H. Lecar. Voltage oscillations in the barnacle giant muscle fiber. Biophysical
Journal, 35:193–213, 1981.

[24] G. Pagès. Numerical Probability: An Introduction with Applications to Finance. Universi-
text, Springer, Cham, 2018.

[25] K. Pakdaman, M. Thieullen, and G. Wainrib. Fluid limit theorems for stochastic hybrid
systems with application to neuron models. Advances in Applied Probability, 42(3):761–794,
2010.

[26] Z. Palmowski and T. Rolski. A technique for exponential change of measure for Markov
processes. Bernoulli, 8(6):767–785, 12 2002.

[27] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving
stochastic differential equations. Stochastic Analysis and Applications, 8(4):483–509, 1990.

[28] Y. Xia and M.B. Giles. Multilevel Path Simulation for Jump-Diffusion SDEs. In Leszek
Plaskota and Henryk Woźniakowski, editors, Monte Carlo and Quasi-Monte Carlo Methods
2010, pages 695–708, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

32


