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Abstract

Matrix inequality based results are proposed for the design of direct adaptive control. The focus
is on guaranteeing robustness of the closed-loop when facing both structured parametric uncertainties
and input disturbances. Results apply to systems in descriptor form with polytopic uncertainties and
readily extend to systems rational in the uncertain parameters. The exposed methodology is an extension
of previous studies started in cooperation with Alexander L. Fradkov. These studies aim at applying
up-to-date linear robust control tools for passivity-based adaptive control. The paper contributes to
this framework with new parameter-dependent Lyapunov functions and new degrees of freedom in the
adaptive laws offering the possibility to design controllers with improved closed-loop performances.
Keywords: Adaptive control; Uncertain polytopic systems; Descriptor systems; LMIs; Practical stability;
L2 performance.

1 Introduction

Adaptive control is an attractive methodology to improve performances and robustness of closed-loop con-
trolled systems in comparison to linear time-invariant control. Its potentials have been studied for decades
starting from intuitive gradient adaptation and then growing in maturity with theoretical Lyapunov-based
results such as in [26]. Adaptive control strategies share the idea of adjusting with non-linear rules the
parameters of the control law, but have various more or less complex architectures. In [2] the central view-
point is to adjust parameters of a classical two-degrees of freedom controller to bring the closed-loop to
behave as a given reference model. It leads to controllers containing the reference model, several filters and
the adaptive two-degrees of freedom controller which is close to be of the same order of the plant. Results
are essentially for linear single-input single-output systems, but extensions are also provided for non-linear
systems using back-stepping strategies. Such results are extended to more general non-linear systems in
[21] in which the filters are explicitly described as elements for parameter-estimation, and combined to the
control strategy. These methods are shown to be related to speed-gradient approches in [15]. Such combined
estimation/control enters the classification of [18] as indirect adaptive strategies which require estimation
of parameters. More recent results such as [16] increase further the complexity of the adaptation rule with
estimates of the states of the plant, even when plant states are actually measured. In [1] adaptation is re-
visited with a new methodology based on immersion and invariance which can be seen as an extension of
stable attractive sub-manifolds discussed in [15]. The exposed adaptive strategy leads to output feedback
adaptive controllers that include estimators of both the state and the unknown parameters, and requires,
as in model reference adaptive control, the a priori definition of ideal dynamics that drive the adaptation
rule. Opposite to this indirect adaptive control strategy, the direct (or simple) adaptive control described
in [20] applies the adaptation rules directly to the controller parameters without necessarily augmenting the
controller architecture with filters for estimation and observation.

In results discussed above, improvements are often claimed in terms of robustness. This claim is rea-
sonable for indirect adaptive controllers that construct and use estimates of the uncertainties, but it is at
the expense of high order controllers and complex intricate laws. Moreover, it sometimes requires restrictive
assumptions such as ”matching conditions” meaning that uncertainties and control inputs are in the same
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subspace. Proving robustness is less trivial for direct adaptive control. It often needs strong assumptions
such as passivity in [12, 32] or almost passivity in [14, 4].

To go beyond these restrictive assumptions, to keep the adaptive law as simple as possible, and to provide
constructive design methods, we have started together with Alexander L. Fradkov to introduce tools used
in linear robust control for the direct adaptive control design. Preliminary work includes [27] in which the
passivity assumptions are kept but handled with linear matrix inequalities (LMIs), or [28] for first results
concerning L2 performance in the robust-adaptive context. These results were further extended and applied
to satellite examples in [29]. Alternative related robust-adaptive results are in [8] where LMI methods
are used to design parameter-dependent state-feedback controllers in which the parameters are estimates
obtained by an adaptive law, and in [35] where LMI methods are proposed for the analysis of strict positive
realness of closed-loop systems with simple adaptive control, results extended to the discrete-time case in
[6], and which consider H∞ performance in [5]. At the difference of our results these last cited contributions
do not address the design of the adaptive controllers.

Within this robust-adaptive framework, the goal of the present paper is to design a simple adaptive
controller which ensures that the closed-loop system is stable, and to minimize an input-output performance
(robustness to disturbances), while guaranteeing these properties whatever uncertainties on the model param-
eters bounded in given intervals (robustness to parametric uncertainties). The employed tools are polytopic
modeling of uncertain systems (as in upper cited references in the robust-adaptive contexts, but at the
difference of [22] where uncertainties are norm-bounded), Lyapunov theory, and results are formulated in
terms of matrix inequalities ([7]). Thanks to recent results from [34, 25] the polytopic representation is
not restrictive for systems rationally dependent on the uncertain parameters, but this is at the expense of
reformulating the system in descriptor form where the dynamics are driven by an implicit linear application.
Results are formulated in terms of matrix inequalities and rely on quadratic parameter dependent Lyapunov
functions. The ability to handle descriptor systems and to introduce parameter-dependent Lyapunov func-
tions is thanks to the S-variables approach described in details in [11], approach which is inspired of the
S-procedure by [36].

Results of this paper are extensions of [23] and are applicable to any linear uncertain system for which
one has designed a stabilizing linear time-invariant (LTI) control. At the difference of results such as [6]
no passivity property is needed, at least not explicitly (asymptotically stable linear systems can be seen
as passive for properly chosen inputs/outputs by eventually adding a parallel feedforward gain as stated in
[3, 19, 13]). The initial LTI control for the given plant is converted using LFTs ([10]) into an equivalent
problem of diagonal static output feedback control for an augmented plant. Adaptation is applied to tune
in real time the gains of this diagonal control. The adaptive rule involves a weighted sum of the measured
signals from the augmented plant and a projection function as in [30] which guarantees bounded adaptive
gains. The crucial design problem is to tune the weighted sum and the set in which the adaptive gains are
constrained to be. Compared to [28] the results we propose have the following improvement: they apply to
descriptor systems and hence to any linear system rationally dependent of uncertain parameters. Compared
to [23] the improvements are: to consider L2 performance; to build Lyapunov functions in which all terms are
parameter-dependent; and that the adaptive gains evolve in sets which are not centered at the initially given
LTI control gain. This last feature allows to improve significantly the performance but is at the expense
of non-convexity in the design of the adaptive law parameters. The design is based on a heuristic iterative
LMI scheme inspired from existing ones for static-output feedback design (see [31] for a survey about these
heuristics).

The outline of the paper is as follows. First in preliminaries we recall the framework of descriptor
systems with polytopic uncertainties and the LMI results that allow to compute upper bounds on the robust
L2 performance of these LTI systems. Then Section 3 exposes the main results of the paper, namely the
matrix inequalities for the analysis of the performance of the proposed adaptive control, its implications
in terms of Lyapunov inequalities and the heuristic algorithm for the design of the parameters. Section 4
is devoted to an illustrative numerical example. Section 5 draws some conclusions and is followed by an
Appendix which contains the proofs of the main results.

Notation: I stands for the identity matrix. AT is the transpose of the matrix A. {A}S stands for the
symmetric matrix {A}S = A + AT . Tr(A) is the trace of A. If f is a vector F = diag(f) stands for the
diagonal matrix whose diagonal elements are the coefficients fi of f . For a matrix A ∈ Rn×m of rank r,
A⊥ ∈ R(n−r)×n stands for the matrix of maximal rank such that A⊥A = 0, and A◦ ∈ Rm×r stands for the
full rank matrix such that AA◦ is full rank. A � B is the matrix inequality stating that A−B is symmetric
positive definite. The terminology “congruence operation of A on B” is used to denote ATBA. If A is full
column rank, and B � 0, the congruence operation of A on B gives a positive definite matrix: ATBA � 0.
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A matrix inequality of the type N(X) � 0 is said to be a linear matrix inequality (LMI for short), if N(X)
is affine in the decision variables X. Ξv̄ = {ξv=1...v̄ ≥ 0,

∑v̄
v=1 ξv = 1} is the unitary simplex in Rv̄.

The coefficients ξv of ξ are barycentric coordinates of uncertain polytopic matrices. Throughout this paper
uncertainties are assumed constant (ξ̇ = 0).

2 Preliminaries

2.1 Descriptor systems with uncertainties

Let us consider linear systems in descriptor form with dynamics represented by implicit differential equations
as follows

Ex(ξ)ẋ(t) + Eπ(ξ)π(t) = A(ξ)x(t) +Bw(ξ)w(t) +Bu(ξ)u(t) (1)

where x(t) ∈ Rnx is the state, w(t) ∈ Rmw is a perturbation, u(t) ∈ Rmu is the control input and π(t) ∈ Rnπ
is an auxiliary signal algebraically linked to the others via the n scalar equations of the matrix representation

M(ξ) =
[
Ex(ξ) Eπ(ξ) −A(ξ) −Bw(ξ) −Bu(ξ)

]
∈ Rn×(nx+nπ+nx+mw+mu) (2)

A special case of such representation is the classical state-space representation

ẋ(t) = A(ξ)x(t) +Bw(ξ)w(t) +Bu(ξ)u(t) (3)

which corresponds to the situation when nπ = 0, n = nx and Ex(ξ) = In.
The advantage of the descriptor representation involving differential-algebraic equations is that it includes

a more general class of systems (see [17] for a complete overview) and it is a more natural way of representing
systems when building models based on physical laws and when subsystems have complex interconnections.
The auxiliary signal π is used as an alternative to other more classical descriptor representations where
signals such as π are included in the ‘state’ x and where the Ex matrix is assumed square. The advantages
of our formulation, borrowed from [9], is that it allows to concentrate on the true states of the system, and
to bring new freedom for modeling. One of such degrees of freedom, is to transform any system rational in
the uncertainties into a model in which the system matrices are affine in the uncertainties (see [11]). For
this reason we shall assume without loss of generality compared to the case when matrices are rational in
the uncertain parameters, that M(ξ) is a polytopic matrix described by

M(ξ) =

v̄∑
v=1

ξvM
[v] : M [v] =

[
E

[v]
x E

[v]
π −A[v] −B[v]

w −B[v]
u

]
(4)

where v̄ is the number of vertices of the polytope, a generic vertex being denoted M [v], and the barycentric
coordinates ξ1, . . . , ξv̄ belong to the simplex Ξv̄.

Assumption 1 It is assumed that one can build a factorisation
[
Ex(ξ) Eπ(ξ)

]
= E1(ξ)

[
E2x E2π

]
such that E1(ξ) =

∑v̄
v=1 ξvE

[v]
1 ∈ Rn×q is full column rank for all uncertainties ξ ∈ Ξv̄, and where E2x ∈

Rq×nx and E2π ∈ Rq×nπ . Let rπ ≤ nπ be the rank of E2π, define E2 = E⊥2πE2x ∈ R(q−rπ)×nx , and let
rx ≤ nx be the rank of E2.

General descriptor systems as defined by equation (1) have two special features in comparison to state-
space representations (3):

• Algebraic constraints may impose linear dependence between components of the state (and of the
auxiliary signal π). The equilibrium whose (asymptotic) stability shall be studied is hence not a single
point but the null space of a linear application. More precisely, we shall study the stability of the
nx − rx dimensional sub-space E2x = 0.

• Initial conditions on the state x(0) may not satisfy the algebraic constraints. In such case the differential
equations impose that these states shall jump to some other value (reset step type function on the
states) at time t = 0+. This corresponds to impulses on the derivatives of the states and is a common
feature of descriptor systems. Due to the algebraic equations it is possible to build representations of
the type (1) in which the impulses of the derivatives imply also impulses on some components of the
state. The systems considered in this paper shall not have such impulses on the states and are said
impulse-free. This assumption is common to all LMI-based results for descriptor systems.
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Assumption 1 allows the derivation of results for descriptor systems with uncertainties in the Ex and Eπ
matrices which is usually not the case in the litterature. But it imposes that the equilibrium subspace
E2x = 0 and the impulse-free nature of the system are both independent of the uncertainties.

2.2 Diagonal static output-feedback control

We shall consider output-feedback control u = Koy and performances in terms of L2 induced norm of the
transfer from the disturbance w to an exogenous output z. Both equations defining y(t) ∈ Rp and z(t) ∈ Rpz
are for simplicity assumed to be uncertainty independent:

z(t) = Czx(t) +Dzww(t) , y(t) = Cyx(t) (5)

Assumption 2 Without loss of generality we assume that the system is square, p = mu and that Ko =
diag(ko) is a diagonal matrix.

See Appendix A for the proof that the assumption is lossless. Any dynamic LTI control may be equiva-
lently converted to this case.

2.3 Robust L2 performance of descriptor systems

Assumption 3 It is assumed that one has pre-designed a diagonal static output-feedback control u = Koy,
Ko = diag(ko) ∈ Rp×p such that there exist P̂ [v] = P̂ [v]T ∈ R(q−rπ)×(q−rπ), Ŷ [v] ∈ Rnx×(nx−rx), Ŝ ∈
R(q+nx+mw)×n, ε̂ ≥ 0 and γ2

o solution to the following LMIs for all v = 1 . . . v̄:

(E2E
◦
2 )T P̂ [v](E2E

◦
2 ) � 0 (6){

N̂T
2xP̂

[v]
e N̂1x + ŜM̂ [v]

c

}S
+ ε̂N̂T

2xE
T
2 E2N̂2x + N̂T

z N̂z − γ2
oN̂

T
w N̂w ≺ 0 (7)

where
N̂1x =

[
Iq 0q,nx 0q,mw

]
, N̂2x =

[
0nx,q Inx 0nx,mw

]
,

N̂z =
[

0pz,q Cz Dzw

]
, N̂w =

[
0mw,q 0mw,nx Imw

]
,

M̂
[v]
c =

[
E

[v]
1 −(A[v] +B

[v]
u KoCy) −B[v]

w

]
,

P̂
[v]
e = (ET2 P̂

[v] + Ŷ [v]E⊥2 )E⊥2xπ.

According to [11] Assumption 3 implies that the closed-loop with static output-feedback gain u = Koy is
robustly stable and γo is a guaranteed upper-bound on the robust L2 induced norm of the closed-loop system.
We do not give all the details of the proof of this result here (see [11]) but in order to better understand the
main adaptive control results that follow, let us give some key elements of the proof:

• Equation (6) allows to define a parameter-dependent Lyapunov function V (x, ξ) = xTET2 P̂ (ξ)E2x
where P̂ (ξ) =

∑v̄
v=1 ξvP̂

[v] which is strictly positive for all x such that E2x 6= 0.

• Equation (7) allows to prove that whatever ξ ∈ Ξv̄ the following property holds along the trajectories
of the system (1)(5):

V̇ (x, ξ) + ε̂xTET2 E2x+ (zT z − γ2
ow

Tw) < 0 (8)

In case of zero disturbances (w ≡ 0) this implies that the derivative of the Lyapunov function is
negative and the state converges asymptotically to the set E2x = 0. In case of zero initial conditions
E2x(0) = 0, taking the integral over time of the inequality (8) implies ‖z‖ ≤ γo‖w‖, thus proving the
L2 induced norm performance.
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3 Main result

3.1 Diagonal direct adaptive control

The goal of this paper is to design an adaptive control law based on the knowledge of Ko for which we
may prove improvements in terms of robust L2 performance. The considered adaptive control is of direct
adaptive type and defined for each i = 1 . . . p by the following scalar equations:

ui(t) = ki(t)yi(t), (9)

k̇i(t) = projE(kic,ri)(ki(t), hi(t)), (10)

hi(t) = −giGiy(t)yi(t)− σi(ki(t)− koi) (11)

where kic ∈ R, ri ∈ R, Gi ∈ R1×p, gi ∈ R and σi ∈ R are parameters to be determined. Before getting to
the main results, let us describe these adaptation rules.

• (9) indicates that the adaptive control mimics the static output-feedback control where the static gains
koi are replaced by dynamic gains. This structure is convenient in practice because it does not imply
any modification in the control architecture compared to the initial LTI control. The compact version
of (9) is denoted

u(t) = K(t)y(t) (12)

with K(t) = diag(k(t))∈ Rp×p.

• The proj function in (10) is built accordingly to [30] in such a way that the gains ki(t) are bounded in
predefined sets E(kic, ri). These predefined sets are intervals:

ki ∈ E(kic, ri) ⇔ (kic − ki)2 ≤ ri2 ⇔ ki ∈ [ kic − ri kic + ri] (13)

where kic is the center of the interval, ri is its radius. The larger is the scalar ri, the wider is the
interval. The projE(kic,ri)(ki(t), hi(t)) function works as follows:

– If ki(t) is in the interior of the set E(kic, di) then k̇i(t) = hi(t). The adaptation rule (11) is applied
without any modification.

– If ki(t) = kic + ri and hi(t) ≥ 0 then k̇i(t) = 0. As soon as hi(t) < 0 then k̇i(t) = hi(t).

– If ki(t) = kic − ri and hi(t) ≤ 0 then k̇i(t) = 0. As soon as hi(t) > 0 then k̇i(t) = hi(t).

The differential equation (10) hence works as a saturated integrator with values saturated between
kic − ri and kic + ri. The result of the projE(kic,ri)(ki(t), hi(t)) function can also be understood as

k̇i(t) = hi(t) + qi(t) where most of the time qi(t) = 0. The situations when it is non-zero are

– ki(t) = kic+ri and hi(t) ≥ 0. In such case qi(t) = −hi(t) ≤ 0 and whatever fi ∈ [kic−ri, kic+ri]
one has (ki(t)− fi)qi = (kic + ri − fi)qi ≤ 0.

– ki(t) = kic−ri and hi(t) ≤ 0. In such case qi(t) = −hi(t) ≥ 0 and whatever fi ∈ [kic−ri, kic+ri]
one has (ki(t)− fi)qi = (kic − ri − fi)qi ≤ 0.

This allows to conclude that at all times k̇i(t) = hi(t) + qi(t) with (ki(t) − fi)qi ≤ 0 whatever fi ∈
[kic − ri, kic + ri].
For the ease of notations we shall denote Kc, R, H(t), Q(t) diagonal Rp×p matrices with components
kic, ri

2, hi(t) and qi(t) on their respective diagonals, and the compact version of (10) is denoted

K̇(t) = projE(Kc,R)(K(t), H(t)) = H(t) +Q(t) (14)

It works as a diagonal element-wise saturated integrator. Its properties are that (if all gains are
initialized in the intervals) at all times one has (Kc−K(t))T (Kc−K(t)) ≤ R2 and (K(t)−F )Q(t) ≤ 0
is element-wise negative whatever value F ∈ E(Kc, R).
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• The adaptation rule (11) contains two terms. The term σi(ki(t)− koi) with a positive value of σi is a
damping term that drives asymptotically the gain ki(t) back to koi if the system has reached yi ≡ 0.
The term giGiy(t)yi(t) pushes the gain ki(t) in a direction that depends of the product between yi(t)
and a linear combination of all measured outputs Giy(t). The positive scalar gi tunes the speed of
adaptation. In the following Γ and Σ are diagonal Rp×p matrices with elements gi and σi respectively
on their diagonals, G∈ Rp×p is the matrix whose rows are the row vectors Gi∈ Rp×p, and

H(t) = −Γ ∈ Gy(t)yT (t)− Σ(K(t)−Ko) (15)

is the matrix version of the adaptation rule (· denotes the element-wise product).

The proposed adaptive rule fits to the (diagonal) structure of the original controller Ko. This feature is
useful for implementation as it was done in [29] because it does not require to change the control architecture
when moving from LTI to adaptive control.

3.2 Linear matrix inequalities for adaptive control

We now state the main result of this paper. It involves the following matrix inequalities[
R2 Kc − F [v]

Kc − F [v] I

]
� 0, (16)

[
R2 Kc −Ko

Kc −Ko I

]
� 0, (17)

(E2E
◦
2 )TP [v](E2E

◦
2 ) � 0, (18){

NT
2xP

[v]
e N1x + SM

[v]
c

}S
+ εNT

2xE
T
2 E2N2x + α(NT

z Nz − γ2NT
wNw)

+2NT
y R

2Ny − 2NT
yuNK

TNKNyu +
{
NT
y G

TN
[v]
F Nyu

}S
≺ 0,

(19)

where the notations are as follows

N1x =
[
Iq 0q,nx 0q,mw 0q,p

]
, N2x =

[
0nx,q Inx 0nx,mw 0nx,p

]
,

Nz =
[

0pz,q Cz Dzw 0pz,p
]
, Nw =

[
0mw,q 0mw,nx Imw 0mw,p

]
,

Ny =
[

0p,q Cy 0p,mw 0p,p
]
, Nyu =

[
0p,q Cy 0p,mw 0p,p
0p,q 0p,p 0p,mw −Ip

]
,

M
[v]
c =

[
E

[v]
1 −(A[v] +B

[v]
u KoCy) −B[v]

w −B[v]
u

]
,

NK =
[
Kc −Ko Ip

]
, N

[v]
F =

[
F [v] −Ko Ip

]
,

P
[v]
e = (ET2 P

[v] + Y [v]E⊥2 )E⊥2xπ.

Theorem 1 Consider the system described by (1), (4), (5) and a static control gain Ko. The upper defined
inequalities are such that:

(a) If conditions of Assumption 3 hold, then the constraints (16), (17), (18), (19) are feasible for all
vertices v = 1 . . . v̄ with the following choice of decision variables:

P [v] = αP̂ [v], Y [v] = αŶ [v], S =

[
αŜ
0

]
, ε = αε̂, G = αĜ,

F [v] = Ko, Kc = Ko, R2 = αβI, γ = γo

were α > 0 and β > 0 are sufficiently small positive scalars.

(b) If the matrix inequalities (16), (17), (18), (19) are feasible for all vertices v = 1 . . . v̄ where S, R2 =
diag(r2), G, Kc = diag(kc), γ ε, α are decision variables common to all inequalities, and P [v] = P [v]T ,
Y [v], F [v] = diag(f [v]) are vertex-dependent decisions variables, then, whatever choice of Γ = diag(g) �

6



0, Σ = diag(σ) � 0, the system (1), (4), (5) in closed-loop with the adaptive control (12), (14), (15) is
such that

V̇ (x,K, ξ) + 2εxTET2 E2x+ α(zT z − γ2wTw) < 8

p∑
i=1

σi
ri

2

gi
(20)

where V (x,K, ξ) is a parameter-dependent Lyapunov function defined by

V (x,K, ξ) = xTET2 P (ξ)E2x+ Tr
[
(K − F (ξ))TΓ−1(K − F (ξ))

]
(21)

with P (ξ) =
∑v̄
v=1 ξvP

[v] and F (ξ) =
∑v̄
v=1 ξvF

[v].

The proof is given in Appendix B.
The result of this theorem is an extension of the preliminary result in [23]. The novelties compared to

that previous result are: L2 type performance with respect to the pair of outputs-inputs z/w; Adaptive gains
evolve in sets which are not centered at the initially chosen value Ko but at a new value Kc that should be
designed; The Lyapunov function (21) is parameter-dependent not only for the quadratic in state x term
but also for the quadratic in state K term. The improvement brought by Kc 6= Ko provides new degrees of
freedom that may lead to controllers with better closed-loop performance. It is indeed the case as illustrated
on a numerical example in the next section. The improvement with respect to the parameter-dependent
Lyapunov function reduces the conservatism of the results.

3.3 Properties of the adaptive control law

We shall now discuss the implications of (20) for the closed-loop system. This property will be named
‘practical L2 performance’ meaning that it is almost the same as (8) which proves the L2 performance of
the LTI system. The difference is the right-hand side term than may be considered as small, which allows
to conclude about practical stability only (convergence to a neighborhood of the equilibrium).

Consider for a start several critical cases.

• Assume that r̄ = maxpi=1 ri = 0. This case corresponds to the situation without adaptation (k(t) =
ko = f), the inequalities (16), (17), (18), (19) boil down to those of Assumption 3 and hence the
smallest value of γ solution of the matrix inequality constraints of Theorem 1 is exactly γo. In this
case there is no adaptation, the system is trivially identical to the one with LTI control, and has the
same performances.

• Assume that r̄ > 0, there is hence room for adaptation, at least of one of the p control parameters.
The optimal value of γ under constraints in Theorem 1 is, because of property (a), less or equal to the
one obtained for the non-adaptive control: γ ≤ γo. Because the conditions are not convex, there is no
systematic method to find the adaptive control parameters such that γ < γo, but from a theoretical
point of view it is attainable. We shall see on the numerical example that it is achievable in practice.

• Assume that r̄ > 0 and σ̄ = maxpi=1 σi = 0, i.e. the adaptive rules are without damping terms.
The adaptive gains are not required to converge asymptotically to the original non-adaptive values
ko. In this case equations (20) and (8) coincide. The same conclusions can be drawn, meaning that
the adaptive and non adaptive control laws stabilize asymptotically the state x to E2x = 0 when
there are no perturbations. Moreover, for zero initial conditions E2x(0) = 0 one gets the following L2

performance with adaptive control: ‖z‖ ≤ γ‖w‖. Since it is possible to find solutions such that γ ≤ γo,
adaptive control can be proved to perform better than the initially provided LTI gain, in the sense
that one gets a smaller guaranteed upper bound on the robust L2 performance.

• Assume that r̄ > 0 and g = minpi=1 gi → ∞, that is if one choses very high adaptation gains. Then
the same conclusions as for the case σ = 0 apply asymptotically. This property shall not be used in
practice because of implementation issues when choosing very high gains in the adaptation rule.

We now study the case when r̄ > 0, σ̄ > 0, g <∞ and evaluate the consequences in terms of convergence of
the state to a neighborhood of E2x = 0 (practical stability) and input/output performance during transients.
The system is driven by the equations (1), (5), u = Ky, (14), (15) which may be summarized as

φ(ẋ, x, k̇, k, w, ξ) = 0, z = ψ(x,w), k ≤ k ≤ k (22)
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where the state of the global non-linear system is composed of x ∈ Rnx and k ∈ Rp, w ∈ Rmw is a perturbation
input and z ∈ Rpz is an output. For the closed-loop system we have built a quadratic Lyapunov like function
which may be rewritten as

V (x, k, ξ) = xTET2 P (ξ)E2x+ (k − f(ξ))TΓ−1(k − f(ξ)) (23)

and whose derivative satisfies

V̇ (x, k, ξ) + 2εxTET2 E2x+ α(zT z − γ2wTw) < 8pσ
r2

g
. (24)

We shall show the implications of this property in terms of practical stability. Assume that at all times
‖w(t)‖ ≤ w̄ where w̄ is a bound on the euclidian norm of the instantaneous value of the perturbation. Then
(24) implies that for all t ≥ 0:

V̇ (x(t), k(t), ξ) + 2εxT (t)ET2 E2x(t) < 8pσ
r2

g
+ αγ2w̄2.

Since ki and fi(ξ) are bounded in intervals centered at kic of radius ri one gets that

(k − f(ξ))TΓ−1(k − f(ξ)) ≤ 4p
r2

g
.

This bound is used to define the following scalar

l1(ξ) =
λmax(P (ξ))

2ε
(8pσ

r2

g
+ αγ2w̄2) + 4p

r2

g

which is such that V (x, k, ξ) ≥ l1(ξ) implies 2εxT (t)ET2 E2x(t) > 8pσ r
2

g + αγ2w̄2. We hence can conclude

that all states satisfying V (x, k, ξ) ≥ l1(ξ) are such that V̇ (x, k, ξ) < 0. Lyapunov theory allows to conclude
that the set V (x, k, ξ) ≤ l1(ξ) is invariant and all trajectories starting out of this set converge asymptotically
to it. Define the second scalar

l2
2 = max

ξ∈Ξv̄

l1(ξ)

λmin(P (ξ))

This value is such that V (x, k, ξ) ≤ l1(ξ) implies xTET2 E2x ≤ l2
2. We hence conclude that the norm of

the vector E2x is robustly asymptotically less than l2. The state x converges to this neighborhood of the
equilibrium subspace E2x = 0. It is a practical stability property in comparison to asymptotic convergence
to the subspace itself.

Now assume that x(0) = 0, k(0) = kc and define ‖z‖2T =
∫ T

0
z(t)T z(t)dt. To study the practical input-

output performance of the system, take the integral from t = 0 to t = T of (24). It gives

V (x(T ), k(T ), ξ)− (kc − f(ξ))TΓ−1(kc − f(ξ)) + α(‖z‖2T − γ‖w‖2T ) < 8pTσ
r2

g

where V (x(T ), k(T ), ξ) > 0. Moreover, since the elements of f(ξ) are in intervals centered at kc with radius
at most r one gets

α(‖z‖2T − γ‖w‖2T ) < (8pTσ + 1)
r2

g

which also reads as

‖z‖2T < γ‖w‖2T +
8pTσ + 1

α

r2

g

illustrating an upper bound on how much the ’practical L2-performance’ is a degraded version of the L2

performance. For σ̄ 6= 0 the upper bounds on the additional terms are linear in time T .
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3.4 Heuristic algorithm for adaptive control design

The matrix inequality (19) is not linear and is not convex in the Kc parameters. We therefore cannot expect
a simple convex optimization result for the design of the G, Kc and R2 parameters that define the adaptive
law. An iterative-LMI heuristic algorithm is proposed instead.

Let M(P [v], Y [v], F [v], S,G,Kc, R
2, ε, α, γ) be the matrix inequalities composed of (16), (17), (18), (19).

Moreover let M1(P [v], Y [v], F [v], S,G,Kc,∆c, R
2, ε, α, γ) be the following matrix inequalities[

R2 Kc + ∆c − F [v]

Kc + ∆c − F [v] I

]
� 0,

[
R2 Kc + ∆c −Ko

Kc + ∆c −Ko I

]
� 0,

(E2E
◦
2 )TP [v](E2E

◦
2 ) � 0,{

NT
2xP

[v]
e N1x + SM

[v]
c

}S
+ εNT

2xE
T
2 E2N2x + α(NT

z Nz − γ2NT
wNw)

+2NT
y R

2Ny − 2NT
yuNK

TNKNyu +

{
−2NT

yu

[
∆c

0

]
NKNyu +NT

y G
TN

[v]
F Nyu

}S
≺ 0.

The two problems are very similar. The second one amounts to replacing Kc by an incremented version
Kc + ∆c and removing the second order term ∆c

2. The algorithm that follows is build based on the following
ideas:

• The starting point is the LTI controller Ko. Thanks to property (a) in Theorem 1, we know that the
constrains M shall be feasible under Assumption 3. Constraints M1 shall be feasible as well since M
and M1 coincide for the choice of ∆c = 0. Starting from this initialization value, the algorithm shall
start by searching for an adaptive law with gains evolving in sets centered at this value Ko and which
will not degrade too much the performance. The requirement on the performance is set to be γ1 = δγo
where γo is the solution to constraints in Assumption 3 and δ > 1 is the level of degradation. The
larger is the scalar δ the more freedom is given to the initialization phase.

• For fixed values of F [v], Kc and γ, the constraints M1 are linear in all other decision variables thus
allowing the search for an increment ∆c. This increment is searched while trying to increase the
intervals in which evolve the adaptive gains. More room for adaptation is expected to be profitable to
the system. The objective to be optimized is a weighted sum of the elements in the diagonal matrix
defining the size of the intervals: λTR2λ where λ ∈ Rp is a given vector.
The rationale for the choice of the parameter λ is as described in the following example. Assume that
Ko = diag(

[
1 10

]
) is the initially given LTI control gain. One can a priori decide to search for

intervals of adaptation that would be 10 times larger for the second coefficient compared to the first one.
In percentage, compared to the initial value, the intervals would hence be similar. One way to do so,

is to choose λ =
(

1 10
)T

and hence to maximize λTR2λ = R2
1 + 100R2

2. The size of the adaptation
interval for the second coefficient (given by R2) having a stronger weight in the maximization will be
larger, if the constraints allow it.

• The constraintsM1 are first order approximations of the true constraints. ∆c is hence to be understood
as a gradient and a new value of Kc may be searched for in this direction under constraints M. The
problem is not LMI but may be solved with a bisection over a positive scalar.

• For fixed values of G, Kc, R
2 and α, the constraints M are linear and one may optimize over the L2

performance indicator γ. This optimization can be understood as the analysis of the closed-loop for a
given adaptive control law. The result is a new guess of Lyapunov function parameters F [v].

Based on these considerations the algorithm is as follows. It alternates LMI optimization steps where
some of the Lyapunov decisions variables are fixed, with steps in which the control parameters are frozen.
This strategy is rather classical for static output feedback design as reported in [31]. The interesting difference
is that here the Lyapunov matrix P (ξ) is optimized at all steps.

Algorithm 1 The algorithm assumes as inputs, a baseline LTI control gain Ko, a scalar δ > 1 and a
vector λ ∈ Rp.
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• Initialization
Compute the L2 performance γo using conditions of Assumption 3. The decision variables are P̂ [v],
Ŷ [v], Ŝ, ε̂, γ2

o . If the conditions are infeasible, stop, the algorithm cannot be applied. Else, assign the

following values: ε0 = ε̂, γ1 = δγo, F
[v]
1 = Kc,1 = Ko, k = 1.

• Step k, 1

Maximize λTR2λ under constraintsM1(P [v], Y [v], F
[v]
k , S,G,Kc,k,∆c, R

2, ε0, α, γk). The decision vari-
ables are P [v], Y [v], S, G, ∆c, R

2, α. At the optimum assign the following value ∆c,k = ∆c.

• Step k, 2
Search by bisection a maximal scalar β ≥ 0 such that the following optimization problem is feasible:

Max λTR2λ under M(P [v], Y [v], F
[v]
k , S,G,Kc,k + β∆c,k, R

2, ε0, α, γk).
The decision variables are P [v], Y [v], S, G, β, R2, α. At the optimum assign the following values
Kc,k+1 = Kc,k + β∆c,k, Gk = G, R2

k = R2, αk = α.

• Step k, 3
Minimize γ under constraints M(P [v], Y [v], F [v], S,Gk,Kc,k+1, R

2
k, ε0, αk, γ).

The decision variables are P [v], Y [v], F [v], S, γ. At the optimum assign the following values F
[v]
k+1 =

F [v], γk+1 = γ.

• Termination
If γk − γk+1 is below some predefined threshold, stop, and assign k̄ = k. Else update k ← k+ 1 and go
to Step k, 1.

Because of the iterative search with alternating decision variables, the algorithm is such that the sequence
γk≥1 is decreasing: i.e. 0 ≤ γk+1 ≤ γk ≤ δγo for all k ≥ 1. The algorithm is hence guaranteed to converge,
but there is no expected property for the final value, except that the heuristic progresses slowly at that
point. There is no guarantee either that it will converge to a value strictly less than the performance of the
initial LTI control. γk̄ < γo may not hold because δ > 1.

Initialization, steps k, 1 and k, 3 are LMI problems. Step k, 2 implies to solve several LMI problems for
each step of the bisection. In our code we have chosen to search for 0 ≤ β ≤ 1 and started the bisection with
β = 1. In almost all cases this choice proved to be feasible. Hence, in practice, the average of LMIs solved
at Step k, 2 is close to one.

4 Numerical example

We shall as in [11] consider the quarter-car suspension system composed of a chassis with vertical position
hc and the wheel with vertical position hw. The dynamics of the system are given by

mcḧc = π , mwḧw = −π + kw(w − hw)

where mc is the mass of the chassis, mw the mass of the wheel, kw the wheel stiffness, w is the height of the
terrain relative to a mean position and π is the force of interaction between chassis and the wheel. The link
between the chassis and the wheel is composed of a spring with stiffness kc, a damper of constant c and an
actuator ũ:

π = kc(hw − hc) + c(ḣw − ḣc) + ũ.

For this system we are interested in having a good performance in terms of the chassis position z = hc in
response to disturbances w. The measurements are supposed to be limited to the chassis-wheel inter-distance
ỹ = hc − hw. Given these equations the plant is naturally in the following descriptor form

mc 0 0 0
0 1 0 0
0 0 mw 0
0 0 0 1
0 0 0 0

 ˙̃x+


−1
0
1
0
1

π =


0 0 0 0
1 0 0 0
0 0 0 −kw
0 0 1 0
−c −kc c kc

 x̃+


0
0
kw
0
0

w +


0
0
0
0
1

 ũ
z =

[
0 1 0 0

]
x̃

ỹ =
[

0 1 0 −1
]
x̃

(25)
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This simple example illustrates some of the advantages of our descriptor modeling framework. The Ex
matrix is affine in the parameters which would not be the case if working with non-descriptor state-space
representations that would inevitably include inverses of the masses. Compared to the model that may be
obtained when replacing π by its expression as a function of the state x: The interaction π between the
chassis and the wheel appear explicitly in the model which can be useful for understanding the structure of
the model; The matrices are sparser which happens to be useful with respect to numerical issues. Compared
to descriptor models where π is included in the ‘state’ x, our model highlights which components are involved
in the definition of stability and which are auxiliary for this issue.

We shall control this suspension with a second order control defined by

η̇ =

[
0 1

−1 + k1 −2 + k2

]
η +

[
0
1

]
ỹ

ũ =
[
k3 k4

]
η + k5ỹ

which may be rewritten as

η̇ =

[
0 1
−1 −2

]
η +

[
0 0 0 0 0
1 1 0 0 0

]
u+

[
0
1

]
ỹ

y =


1 0
0 1
1 0
0 1
0 0

 η +


0
0
0
0
1

 ỹ
ũ =

[
0 0 1 1 1

]
u

, u =


k1 0 0 0 0
0 k2 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 0 0 k5

 y

Applying results of Appendix A leads us to study the diagonal adaptive control of a linear descriptor system
of order nx = 5.

The uncertain parameters are mc ∈ [ 320 , 384 ], mw ∈ [ 38 , 42 ], kc ∈ [ 171 , 189 ], kw ∈ [ 180 , 220 ] and
c ∈ [ 950 , 1050 ]. This generates polytopes of v̄ = 25 = 32 vertices. The number of matrix inequalities and
of the P [v] and F [v] variables is proportional to this value.

The Algorithm is applied with Ko = 0 because the system is open-loop stable. The initialization step
provides an upper bound on the L2 performance of the open-loop system γo = 5.74153. The parameter δ is

set to 1.05 and the weight to λ =
(

0.1 0.1 1
)T

. The iterations are summarized in Table 1 where kc,k+1

is the row vector of the diagonal elements of Kc,k+1 and rk is the row vector of the diagonal elements of Rk.

Table 1: Iterations of the Algorithm for Ko = 0
k kc,k+1 rk γk+1

1
[
−0.0003 −0.0000 0.0005

] [
2.7582 2.7582 14.5504

]
5.8833

2
[
−0.4662 −2.2413 −11.7436

] [
4.8025 5.7323 29.3170

]
5.8021

3
[
−0.9452 −3.5799 −13.8372

] [
4.6937 7.4833 32.2886

]
5.7396

4
[
−1.1673 −3.8574 −14.9313

] [
3.6247 7.8346 33.8038

]
5.7115

5
[
−1.7560 −4.4477 −16.1724

] [
3.4283 8.4603 35.0475

]
5.6941

6
[
−2.5678 −5.1463 −18.4074

] [
3.7472 9.1833 37.3132

]
5.6931

7
[
−3.2517 −5.7769 −19.9285

] [
3.8004 9.8363 38.9728

]
5.6913

8
[
−3.2561 −5.7812 −19.9405

] [
3.6755 9.8594 38.9862

]
5.6847

9
[
−3.2625 −5.7895 −19.9662

] [
3.4875 9.8810 39.0128

]
5.6840

The algorithm was run on a MacBook Pro 2.9 GHz Intel Core i5 with Matlab2016b. LMIs were coded
using YALMIP (R20141030 release) by [24] and solved using SDPT3 (version 4.0) by [33]. The global solver
time is about 3 minutes. The size of the LMI problem at initialization step is composed of 553 decision
variables and has 544 rows. The matrix inequalities solved during the other steps have 980 decision variables
and 838 rows.

At the final iteration the gains driving the adaptation are defined by

G =

 551.3594 551.3594 −624.3645
12.7737 12.7772 −30.8624
21.6927 21.6929 −107.8905

 .
11



The two first columns are identical which is not surprising since the two first signals of the measurements y
are the same.

The improvement in terms of value fo γ due to the adaptive control is not large but this may be due
to the choice of Ko or to drawbacks in the heuristic algorithm. To test further the method, we perform
the same procedure but with Ko = diag(kc,9) = diag

[
−3.2625 −5.7895 −19.9662

]
. That is, taking

as baseline control the center of the adaptation sets issued from the previous optimization. This value has
theoretically no specific property, but it happens to stabilize robustly the plant and the initialization step
provides an upper bound on the L2 performance of the open-loop system γo = 5.83996. This value of static
feedback gains gives a worse (robust upper bound) performance than when Ko = 0.

Table 2: Iterations of the Algorithm for Ko = diag(kc,9) from Table 1

k kc,k+1 rk γk+1

1
[
−3.2625 −5.7895 −19.9662

] [
0 0 0

]
5.9842

2
[
−6.9346 −12.2304 −65.0503

] [
6.9683 8.7498 56.3361

]
5.5541

3
[
−10.8279 −18.6620 −120.3926

] [
10.5657 16.2310 120.0982

]
3.1116

4
[
−19.6059 −32.5009 −189.0948

] [
44.7203 47.5955 197.5315

]
1.0009

The iterations are summarized in Table 2. This time the adaptive control is proved to outperform
significantly all other controllers. The adaptive control is characterized by the following matrices

Ko = diag
[
−3.2625 −5.7895 −19.9662

]
,

Kc = diag
[
−19.6059 −32.5009 −189.0948

]
,

R = diag
[

44.7203 47.5955 197.5315
]
,

G =

 997.1959 997.1959 −98.4674
−35.6224 −35.6224 2.4433
−2.4199 −2.4199 −395.3527

 .
The degrees of freedom brought by the new decision variable Kc are the source of the improvement.

5 Conclusions

The paper exposes new results for the analysis and the design of simple direct adaptive control laws for
uncertain systems. The main focus is on robustness both in terms of performance to external disturbances
and with respect to parametric uncertainties. One novelty is that results apply to systems represented in
descriptor form. Another novelty is that the adaptive gains are bounded in sets for which are not centered at
an a priori value. Conservatism is reduced compared to earlier results by the use of new parameter-dependent
Lyapunov functions. Results are illustrated on a numerical example. The adaptive control law is designed
with low computation burden although the complexity of the uncertain system is non-trivial. Additional
experiments including simulations of the closed-loop will be performed in the close future.
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A Proof that Assumption 2 is lossless

This assumption is without loss of generality. Indeed, assume the actual plant is of the type

Ẽx(ξ) ˙̃x+ Ẽπ(ξ)π = Ã(ξ)x̃+ B̃w(ξ)w + B̃u(ξ)ũ

z = C̃zx̃+ D̃zww

ỹ = C̃yx̃

and is controlled by a dynamic controller defined in state-space as

η̇ = ÃK(ko)η + B̃K(ko)ỹ

ũ = C̃K(ko)η + D̃K(ko)ỹ

where the matrices are affine in the coefficients of a vector ko of important control parameters (could be all
the non-zero coefficients of the controller). Using linear-fractional transform (LFT) results [10] this controller
may be re-written as

η̇ = AKη +B1u+B2ỹ
y = C1η +D12ỹ
ũ = C2η +D21u+D22ỹ

, u = Koy

where Ko = diag(ko) is a diagonal matrix containing the coefficients of the vector k. Then this closed-loop
system is the same as the following augmented descriptor system

Ex(ξ)

(
˙̃x
η̇

)
+ Eπ(ξ)π = A(ξ)

(
x̃
η

)
+Bw(ξ)w +Bu(ξ)u

z = Cz

(
x̃
η

)
+Dzww

y = Cy

(
x̃
η

)
controlled by u = Koy and where

Ex(ξ) =

[
Ẽx(ξ) 0

0 I

]
, Eπ(ξ) =

[
Ẽπ(ξ)

0

]
,
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A(ξ) =

[
Ã(ξ) + B̃u(ξ)D22C̃y B̃u(ξ)C2

B2C̃y AK

]
,

Bw(ξ) =

[
B̃w(ξ)

0

]
, Bu(ξ) =

[
B̃u(ξ)D21

B1

]
,

Cz =
[
Cz 0

]
,

Cy =
[
D12C̃y C1

]
.

B Proof of Theorem 1

B.1 Proof of Property (a) in Theorem 1

Let us denote N
[v]
(7) the matrix on the left hand side of the ≺ sign in (7) and choose any matrix Ĝ. Assuming

that the v̄ inequalities N
[v]
(7) ≺ 0 hold, then for a sufficiently small values α > 0 and β > 0 the following

inequalities hold as well

N
[v]
(7) ≺ −2βN̂T

y N̂y −
α

2

(
ŜB[v]

u − N̂T
y Ĝ

T
)(

B[v]T
u ŜT − ĜN̂y

)
.

where N̂y =
[

0 Cy 0
]
. Apply a Schur complement argument to get[

N
[v]
(7) + 2βN̂T

y N̂y ŜB
[v]
u − N̂T

y Ĝ
T

B
[v]T
u ŜT − ĜN̂y − 2

αI

]
≺ 0

When rearranging the terms and multiplying the entire inequality by α one gets exactly (19) with P = αP̂ ,

Y = αŶ , S =

[
αŜ
0

]
, ε = αε̂, γ = γo, G = αĜ, F [v] = Ko, Kc = Ko and R2 = αβI. If it holds for γ = γo

then by convexity it also holds for any value γ ≥ γo.

B.2 Proof of Property (b) in Theorem 1

By convexity of matrix inequalities, the fact that (18) holds for all v = 1 . . . v̄ implies that for all ξ ∈ Ξv̄
one has (E2E

◦
2 )TP (ξ)(E2E

◦
2 ) � 0. Therefore the function xTET2 P (ξ)E2x is strictly positive for all x such

that E2x 6= 0. The function (21) is suitable to prove asymptotic convergence to the sub-space defined by
E2x = 0.

Consider now (19). By convexity of matrix inequalities, the fact that it holds for all vertices v = 1 . . . v̄
implies that for all uncertainties ξ ∈ Ξv̄ one has{

NT
2xPe(ξ)N1x + SMc(ξ)

}S
+ εNT

2xE
T
2 E2N2x + α(NT

z Nz − γ2
oN

T
wNw)

+2NT
y R

2Ny − 2NT
yuNK

TNKNyu +
{
NT
y G

TNF (ξ)Nyu
}S ≺ 0

(26)

where Pe(ξ) =
∑v̄
v=1 ξvP

[v]
e , Mc(ξ) =

∑v̄
v=1 ξvM

[v]
c and NF (ξ) =

∑v̄
v=1 ξvN

[v]
F . We shall now consider the

following vector

µ =


E2xxẋ+ E2xππ

x
w

(K −Ko)y

 .

Along trajectories of the closed-loop system (1), (5) with u = Ky, it is easy to notice that the following
properties hold

Pe(ξ)N1xµ = ET2 P (ξ)E2ẋ, Mc(ξ)µ = 0, N2xµ = x,

Nzµ = z, Nwµ = w, Nyµ = y,

NKNyuµ = (Kc −K)y, NF (ξ)Nyuµ = (F (ξ)−K)y.

Congruence of µ on (26) hence implies

2ẋTET2 P (ξ)E2x+ 2εxTET2 E2x+ α(zT z − γ2wTw)

+2yT
(
R2 − (Kc −K)T (Kc −K) +GT (F (ξ)−K)

)
y < 0.
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Thanks to the properties of (14) the term R2 − (Kc −K)T (Kc −K) is always positive. Using the fact that
yTGT (K −F (ξ))y = Tr(yTGT (K −F (ξ))y) = Tr(yyTGT (K −F (ξ))) and that the K and F (ξ) are diagonal
we get

2ẋTET2 P (ξ)E2x+ 2εxTET2 E2x+ α(zT z − γ2wTw)

−2
∑p
i=1(Giy)yi(ki − fi(ξ))< 0

(27)

where the fi(ξ) are the diagonal elements of F (ξ). We shall now consider the derivative of the parameter-
dependent Lyapunov function:

V̇ (x,K, ξ) = 2ẋTET2 P (ξ)E2x+ 2Tr
[
K̇TΓ−1(K − F (ξ))

]
= 2ẋTET2 P (ξ)E2x+ 2

∑p
i=1 k̇igi

−1(ki − fi(ξ))
= 2ẋTET2 P (ξ)E2x+ 2

∑p
i=1(−Giyyi − σi

gi
(ki − koi) + gi

−1qi)(ki − fi(ξ))

Combining this to (27) one gets

V̇ (x,K, ξ) + 2εxTET2 E2x+ α(zT z − γ2wTw) < 2

p∑
i=1

(−σi
gi

(ki − koi) + gi
−1qi)(ki − fi(ξ)) (28)

Now let us consider (16). With the same convexity arguments as earlier it implies that for all ξ ∈ Ξv̄ one
has [

R2 Kc − F (ξ)
Kc − F (ξ) I

]
� 0

which implies after a Schur complement argument that R2 � (Kc−F (ξ))(Kc−F (ξ)), that is F (ξ) ∈ E(Kc, R).
Because of this fact one concludes that qi(ki − fi(ξ)) ≤ 0 (see definition of qi). Combining this to (28) one
gets

V̇ (x,K, ξ) + 2εxTET2 E2x+ α(zT z − γ2wTw) < −2

p∑
i=1

σi
gi

(ki − koi)(ki − fi(ξ))

Because of (17), with the same reasoning as upper, Ko ∈ E(Kc, R). Hence koi, ki and fi(ξ) are bounded in
intervals centered at kic of radius ri, and we get ki − koi ≤ 2ri and ki − fi(ξ) ≤ 2ri thus proving (20).
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