Detection and identification of archaeological features using aerial LIDAR data in a forested environment (Châtillon-sur-Seine, Côte-d’Or, France).

Emmanuel Chevigny, Ludovic Granjon, Laure Saligny, Dominique Goguey, Yves Pautrat, Alexandra Cordier, Matthieu Delcamp

To cite this version:

Emmanuel Chevigny, Ludovic Granjon, Laure Saligny, Dominique Goguey, Yves Pautrat, et al.. Detection and identification of archaeological features using aerial LIDAR data in a forested environment (Châtillon-sur-Seine, Côte-d’Or, France). TRAIL 2014: Formation et recherche pour l’interprétation archéologique des données LiDAR, 2014, Fragnes, France. 2015. hal-01959838

HAL Id: hal-01959838
https://hal.archives-ouvertes.fr/hal-01959838
Submitted on 25 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The study area is located in the northern part of the Côte d’Or (Burgundy, France) in the state forest of Chatillon-sur-Seine (a). The place is covered by sets of protohistoric to medieval dry-stone structures were GPS prospection investigations were performed during ten years (Vix Program). To complete this prospection, LiDAR data were acquired by PNF (Parcs Nationaux de France) in 2012, on a 400 km² area.

The objective of this work is to identify feature types defined for GPS prospection from LiDAR data indices. To evaluate the recognition of feature type with LiDAR data, we used two indices calculated on the LiDAR DEM (50 cm resolution). The local slope map highlights morphological variations of each feature, leading to define feature type. As some features present the same appearance on slope map, the topographic positive openness was calculated to determine the negative or positive elevation of features. For openness index, we used 8 directions on a 20 pixels radius distance (10 m diameter).

GPS typology VS LiDAR data

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Definition</th>
<th>2D representation</th>
<th>Local slope</th>
<th>Positive openness</th>
<th>Key factors of recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murée (b)</td>
<td>Dry-stone wall; plot limits</td>
<td></td>
<td>low slope in centerline = top of the wall; medium slope with the same footprint around centerline = two sides of the wall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murée sur épaulement</td>
<td>Dry-stone wall or anthropogenic embankment; plot limits</td>
<td></td>
<td>low slope in centerline = top of the wall; medium slope with wide footprint = embankment and wall side; medium slope with small footprint = wall side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Épaulement</td>
<td>Nature or anthropogenic embankment; plot limits</td>
<td></td>
<td>medium slope with wide footprint = embankment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fossé</td>
<td>Ditch; plot limits</td>
<td></td>
<td>low slope in centerline = ditch bottom; medium slope with the same footprint around centerline = two sides of the ditch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemin/Voie (c)</td>
<td>Path/Roman road; communication road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertre (d)</td>
<td>Dry-stone mound; sree or plot limit (aligned) or tumulus</td>
<td></td>
<td>Circular to ovoid forms (rarely quadrangular); low slope in center = top of the mound, medium slope surrounding center = moundsides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavation (minière ou lavière)</td>
<td>Excavation; mining or quarry</td>
<td></td>
<td>Circular form; low slope in center = bottom of the excavation, medium slope surrounding center = excavation sides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place à feux</td>
<td>Charcoal burning, charcoal place production</td>
<td></td>
<td>Circular form; low slope in center area = fire place, two medium slope surrounding center area with crescent shaped = one is dug border and the other is backfilled border</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertre surfacique</td>
<td>Surficial dry-stone mound, more than 10 m diameter; probably tumulus</td>
<td></td>
<td>Circular to ovoid forms higher than 10 m diameter; low to medium slope in center = top of the mound, medium to high slope surrounding center = mound sides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Four à chaux</td>
<td>Lime kiln; lime place production</td>
<td></td>
<td>Circular form higher than 10 m diameter; high slope in the center = excavation; low slope around center = top of the mound; medium slope outside = side of the mound; access area to center feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cairrière</td>
<td>Quarry, place of stone extraction</td>
<td></td>
<td>No particular form; high slope with small footprint = quarry face, low slope = extracted area</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application and validation

This method was applied on a 2.5 km² area, where:
- 106 line, 192 point and 12 surface features were recorded by GPS
- 164 line, 398 point and surface features were recorded by LiDAR

Feature types recognized by LiDAR were compared to GPS records.

- **70 % of linear features observed with LiDAR were great classified**
 - 1 % forgotten
 - 5 % misclassified (Murée <> Épaulement)
 - 10 % misclassified (Murée sur épaulement)
 - 14 % misclassified (Murée <> Murée sur épaulement)
- **81 % of point features from LiDAR were great classified**
 - 5 % forgotten
 - 5 % not visible
 - 3 % double GPS acquisitions on the field
 - 6 % misclassified (elargished mound were classified as small embankment)
- **84 % of surface features from LiDAR were great classified**
 - 8 % classified as multi features
 - 8 % misclassified with GPS (lower than 10 m diameter)

To evaluate GPS and LiDAR classification availability, 2D cross-sections were performed on the LiDAR DEM for all misclassification areas.

The results show that LiDAR data recognition is conform to 2D topographic profile.

The misclassification of features observed on GPS data may be due to:
- A bad estimation of low topographical variations on the field
- A continuous record on the field, which do not take into account all morphological changes (observable on LiDAR) on a linear structure

Discussion

This work shows that local variations of slope values combined with topographic positive openness facilitate the detection of new structures and their assignments to one of the typology defined by the GPS prospection.

The high altimetric resolution of LiDAR data allows to observed low topographical changes, with decimetric variations. However, the location of these features is not easy to be assessed, and the determination of feature types is almost impossible. Therefore, a return to the field is needed to validate the assumptions from LiDAR data.