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ABSTRACT

This article presents a novel photoreceptor detection algorithm ap-
plied to in-vivo Adaptive Optics (AO) images of the retina obtained
from an advanced ophthalmic diagnosis device. Our algorithm is
based on a recursive construction of thresholded connectedcompo-
nents when the seeds of the recursions are the regional maxima of the
image. This algorithm results in a labeling of the AO image which
is then used to segment the image with a marker-controlled water-
shed algorithm. This method has been implemented in a software
currently used by medical experts, and preliminary resultsare very
encouraging.

Index Terms— Adaptive Optics, Photoreceptor detection, in
vivo diagnosis, retina imaging

1. INTRODUCTION

The light-sensitive tissue of the eye is the retina, which covers the
eye fundus. At a microscopic level, the retina is a stack of several
neuronal layers whose aim is to transform the incident lightin an
electrical signal (phototransduction) that will be transmitted to the
brain (Figure 1) [1, 2]. The photosensitive neurons are the photore-
ceptor cells (although some ganglion cells are responsive to light).
These are of two types: rods and cones. Rods function mainly in
dim light and provide black-and-white vision, while cones support
daytime vision and the perception of colour. Many inheritedand
acquired diseases or disorders may affect the retina [3, 4].Some
of these provoke progressive degeneration of the retina. While the
loss of rods is usually well tolerated in everyday life, lossof cones
leads to severe visual handicap. In some diseases such as retinitis
pigmentosa, visual loss can occur very early in life. Yet, inmost
cases, visual acuity usually deteriorates gradually over decades and
may end up to mere light perception.

In recent years, it became possible to image the living human
retina at the microscopic scale by means of new imaging systems:
Adaptive Optics (AO) [5, 6]. The AO images presented in this ar-
ticle are obtained with a prototypic AO system (rtx1 Adaptive Op-
tics Retinal Camera manufactured by Imagine Eyes, Orsay, France),
which is currently in operation in a clinical setting at the Clinical
Investigation Center 503 of theXV -XX hospital. Each acquisition
is a sequence of forty1392 × 1040 en-face images. In each image,
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Fig. 1. Schematic eye and retina. This figure is based on mate-
rials obtained from http://www.mrawde.com/blog/2008/05/reading-
in-the-dark.html and http://webvision.med.utah.edu/sretina.html.

considering a mean axial length of24.7mm, one pixel corresponds
to a 1.6µm × 1.6µm spot on the retina. The images that we are
dealing with are shown in Figure 2. They are the result of a reg-
istration/summation algorithm applied to the forty imagesacquired
successively, in order to increase the signal-to-noise ratio.

The obtained AO images are very useful to a physician. This
remark is illustrated in Figure 2, where a non degenerative (image
a) and degenerative cases (imageb, c, d) can easily be differenti-
ated. In [7], the authors illustrate the diagnosis power of retinal AO
images on degenerative cones distrophy by comparing manualdiag-
nosis procedures from these AO images with other usual diagnosis
procedures.

Automated retinal AO image analysis methods for assisting in
vivo diagnosis and follow up of early degenerative cones dystrophy
are essential for physicians. In this paper, we propose a novel al-
gorithm that aims at detecting the photoreceptors in the AO images
(Figure 2). The cornerstone of all the AO images based diagnosis
procedures presented in [7] is the detection of the cones in these im-
ages. From these detected cones, we can derive photoreceptor den-
sity maps or extract other statistical features useful for the diagnosis.

Automatic photoreceptors detection algorithms have already
been proposed in the literature. In [8], the authors proposed a multi-
step algorithm. First, they propose to work with an above-threshold
version of the image in order to eliminate the dim spots. Afterwards,
the regional maxima are detected from a low-pass filtered version
of the thresholded image in order to eliminate the noise. Finally,
a morphological dilation is used to merge close enough detected
spots. The structuring element is chosen according to the minimal
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Fig. 2. AO images ofa: a healthy eye.b: Retinitis Pigmentosa (RP)
c: Age-related Macular Distrophy (AMD) due to Drusen.d: Occult
Macular Distrophy (OMD).

cone spacing. In [9], the same kind of procedure is proposed but
the regional maxima detection is performed by decreasing greylevel
regions in order to favor the brightest detected spots and avoid the
threshold step of the method in [8].

We distance these articles by providing a new low-level image
processing algorithm which is computationally very efficient. The
geometrical arguments from which we construct our algorithm are
the same as the ones used in [8, 9]: elimination of dim spots and
merging of too close spots. Our algorithm is simpler and morecom-
putationally efficient because directly constructed from the image
geometry and these geometric arguments. It is based on a recursive
construction of thresholded connected components when theseeds
of the recursions are the regional maxima of the image. The stopping
rules of this recursive construction are deduced from the previous ge-
ometrical arguments and the finally detected photoreceptors are the
highest greylevel spots in a merged maximum area (a thresholded
connected component).

The efficiency of our algorithm and its simplicity allows a vi-
sual and adaptive control of the algorithm parameterization, which
makes it easily tunable by non computer scientists like physicians.
An important facet of our work stands in the usability of our tool,
implemented as an ImageJ plugin in collaboration with physicians.

In Section 2, we present and geometrically justify our photore-
ceptor detection algorithm. Then, Section 3 details the main user
interactions provided with our implemented tool. Finally,in Section
4, we illustrate the results of our method when applied to various
images and propose a simple visual comparison with the method
proposed in [8], before concluding.

2. PHOTORECEPTOR DETECTION ALGORITHM

In order to illustrate the algorithm functioning, we accompany the
following discussion about the algorithm with Figure 3 which shows
the algorithm result for five different tolerance parameter(explained
below) choices on a unique1-dimensional grey level signal and with
Figure 4 which shows the result of our labeling algorithm when ap-
plied to a medical AO image of the retina.

In the used AO images, the photoreceptors that we aim at de-
tecting are bright spots, i.e. pixels with high grey levels.Hence a
first natural step of our algorithm is a simpleregional maxima de-
tection. Aregional maximum is a plateau of the grey level function,
i.e. a connected component of a levelα in which every pixel has a
grey level equal toα.This terminology is reused from existing works
on the component trees found in the literature [10]. Theseregional
maxima appear as RM on the top-left diagram of Figure 3.

Fig. 3. Illustration of the algorithm.

This rawregional maxima processing is not enough to qualify
theseregional maxima as the photoreceptors that we aim at detect-
ing. Indeed, aregional maximum with a low greylevel (i.e. a dim
spot) is not generally a photoreceptor. The thresholding ofthe AO
image is the solution proposed in [8] to eliminate these spots. Be-
sides, too closeregional maxima can be due to a unique photorecep-
tor. This idea led the authors of [8, 9] to morphologically filter the
extractedregional maxima. In our approach, we define a geometrical
concept of influence area of a maximum that we will call amaximum
area. The construction of thesemaximum areas induces the elimina-
tion of the undesired spots. Thesemaximum areas appear as colored
rectangles in Figure 3 for different tolerances.

A maximum area of a regional maximum is defined up to a tol-
erance parameter, denoted byT . This tolerance parameter finds its
roots in the component tree decomposition of an image [10]. In this
fructuous research field, an image is seen as a decompositionof α-
level connected components. The level range correspondingto the
greyscale range of the image, an image is decomposed in a stack of
connected components. The tolerance parameterT that we are using
in our algorithm tunes the height of the top part of this stackthat we
consider as amaximum area. The top parts of the stacks appear as
colored bars in Figure 3. When the color bar (or the tolerancetop
level) intersects a pixel, this pixel is incorporated in themaximum
area of the associatedregional maximum.

It is trivial to remark that the higher the tolerance value, the big-
ger themaximum areas of the regional maxima. Going further, for
a givenT , two or moreregional maxima can lead to the samemax-
imum area. In Figure 3, when the tolerance isT = 40 we can ob-
serve the fusion of Ph1 and Ph2 into one photoreceptor: Ph1 which
is of higher grey level. This is the first criterion that we useto elimi-
nateregional maxima of smallest grey levels, seeding the same fused



maximum area.
More technically, our algorithm constructs the connected com-

ponent rooted by all theregional maxima, taken in a decreasing
greylevel order. For eachregional maximum, this construction is re-
cursive around the consideredregional maximum and the recursivity
is stopped if we reach a pixel

• whose greylevel is out of the top stack of the image, i.e. out
of the connected component defined from the consideredre-
gional maximum by means of the tolerance; or

• already processed from anotherregional maximum: it means
that we reach a connected component of higher greylevelre-
gional maximum (the fusion of too close spots is performed
here by keeping only the brightest spot in a connected com-
ponent. Besides a filtering of the dimer spots is implicitely
performed); or

• whose greylevel is higher than the greylevel of the initialre-
gional maximum: it occurs when the reached higher greylevel
pixel was not itself aregional maximum because one of its di-
rect neighbors is higher (Once again, an implicit filtering of
the dim spots is performed here).

More than filtering the roughly detectedregional maxima, the im-
plemented algorithm labels the pixels since it is followed by the ap-
plication of a marker-controlled watershed segmentation algorithm.
Therefore, at each pixel is associated one of the following labels:

• MAX_POINT : a finally detected photoreceptor,
• EQUAL: inside aregional maximum,
• MAX_AREA: inside amaximal area.

Regional Maxima
MAX_AREA

EQUAL

MAX_POINT

Fig. 4. Pixel labeling illustration.

Note that the proposed algorithm is a truncated adaptation of the
watershed by immersion algorithm [11] when applied to the inverted
image. In the inverted image, the origins of the basins used in the wa-
tershed by immersion are theregional maxima of the original image.
In our case, we are not interested in reaching a complete separation
of the basins (the maxima) but only in elicitating these basins until a
given height, i.e. themaximum areas up to a tolerance parameter).

3. ALGORITHM IMPLEMENTATION: AN INTERACTIVE
TOOL FOR THE PHYSICIANS

This algorithm is very rapid: after a complete cover of the image for
finding regional maxima, the recursive coverage is only applied to

the extractedregional maxima which highly diminishes the compu-
tational cost. When java-implemented as an imageJ plugin (which
is not the most rapid computational framework) the algorithm result
is instantly displayable. This remark is very important because it al-
lows us to provide an interactive tool to the final user, the physician.
This non algorithmic part of our work is greatly appreciatedby the
physicians who can thus easily interact with the algorithm and adapt
its parameters to his visual expertise in an intuitive way. This feature
highly contributes to the fact that, even if still in development, this
tool is already in use in a clinical context.

Among the proposed interactions, the parameterization (more
precisely the tolerance value choice) is the most important. The
highest the tolerance value, the smallest the number of detected
cones. As illustrated in Figure 2, the images are highly different
according to the involved disease or the acquisition conditions. It
does not seem possible to find an automatic robust optimal tolerance
selection method, but it is still one of our research interests. Thus,
in the tool that we develop and implement in collaboration with the
physicians, we proposed the solution of incorporating a scrollbar
to tune the tolerance parameter. Each time the user moves this
scrollbar, the detected photoreceptors directly appear ona refreshed
image. Thus, the physician is the judge of the best trade-offbetween
wrong detected cones and undetected cones.

Another way to interact on the photoreceptors detection is to
incorporate in our imageJ plugin the possibility to add non auto-
matically detected cones and to remove wrongly detected cones by
the hand. Note that in a following work, we propose to performa
statistical study of these two indices: the number of added cones
and the number of removed cones in order to evaluate our detection
algorithm. We assume that these indices quantitatively reflect the
subjective judgement of the physician about our algorithm.

4. ILLUSTRATIVE EXPERIMENTS

In order to illustrate the results of our algorithm on AO images of
the retina, we work with the images of Figure 2. All of them have
the same size:300× 300 (i.e. 480µm× 480µm). The first column
in Figure 5 presents the photoreceptors automatically detected with
our algorithm for respective tolerance ofT = 20, T = 30, T = 30

andT = 34. The tolerance has been interactively chosen by the
authors with an aim of visualizing the results at best. No manual
removal or addition of photoreceptors have been made here. The
second column presents the results obtained with the algorithm of
[8]. The parameters arefc: the cutoff frequency of the used lowpass
filter andthr is the chosen threshold. For proper parameterizations,
the obtained results are very similar for these methods. Nevertheless,
with our tool, the physicians have a less esoteric parameterization
procedure that leads to more usability.

Figure 6 presents the results that we obtain with the marker-
controlled watershed segmentation results using the same tolerance
parameters as in the previous experiment. The segmentationresult is
very useful to physicians. First it exhibits parts of low cone density
when the segmented parts are big (see Figure 6b, c andd). In other
words, the segmentation is a representation of informationdual to a
cone density map. Besides, the segmentation result provides infor-
mation about the cone mosaic configuration (e.g. hexagonal)in the
high cone density parts (see Figure 6a). The extracted quantitative
topographical information is of primary importance especially in the
context of longitudinal follow-ups of cone degenerative distrophies.
This is a real advantage for the physician to accompany his visual
judgment with a quantization of the disease evolution.
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Fig. 5. Comparative experiment: our algorithm (left column) vs. Li
and Roorda algorithm [8] (right column) results when applied to the
AO images of Figure 2.

5. CONCLUSION

In this paper, we proposed a new photoreceptor detection algorithm
applied to in-vivo AO images of the retina. This algorithm isbased
on a recursive construction of thresholded connected components
when the seeds of the recursions are theregional maxima of the im-
age. Our method is implemented as an imageJ plugin already inuse
in a clinical setting at theXV -XX hospital. This use shows its early
clinical value before any objective evaluation. In a raw comparative
study, our algorithm seems to provide at least as good results (in
terms of detection efficiency) as already existing approaches. The
main advantage of our approach stands more in its computational
efficiency, which is highly appreciated by the physicians especially
because we provide an interactive parameterization, allowing an op-
timal (according to the physician expertise) detection. Note that a
semi-subjective evaluation protocol is currently in progress with the
XV -XX hospital: a statistical study of correction indices derived
from the number of manually removed and added cones is estab-
lished.
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Fig. 6. Marker-controlled watershed segmentation results when ap-
plied to the AO images of Figure 2.
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