Genetic intimacy of filamentous viruses and endoparasitoid wasps
Ignacio Bravo

To cite this version:
Ignacio Bravo. Genetic intimacy of filamentous viruses and endoparasitoid wasps. Peer Community in Evolutionary Biology, Peer Community in, 2018, pp.100062. 10.24072/pci.evolbiol.100062. hal-01959812

HAL Id: hal-01959812
https://hal.archives-ouvertes.fr/hal-01959812
Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License
Genetic intimacy of filamentous viruses and endoparasitoid wasps

Ignacio G Bravo

1 MIVEGEC, CNRS – Montpellier, France

A recommendation of


Viruses establish intimate relationships with the cells they infect. The virocell is a novel entity, different from the original host cell and beyond the mere combination of viral and cellular genetic material. In these close encounters, viral and cellular genomes often hybridise, combine, recombine, merge and excise. Such chemical promiscuity leaves genomics scars that can be passed on to descent, in the form of deletions or duplications and, importantly, insertions and back and forth exchange of genetic material between viruses and their hosts.

In this preprint [1], Di Giovanni and coworkers report the identification of 13 genes present in the extant genomes of members of the Leptopilina wasp genus, bearing sound signatures of having been horizontally acquired from an ancestral virus. Importantly the authors identify Leptopilina boulardi filamentous virus (LbFV) as an extant relative of the ancestral virus that served as donor for the thirteen horizontally transferred genes. While pinpointing genes with a likely possible viral origin in eukaryotic genomes is only relatively rare, identifying an extant viral lineage related to the ancestral virus that continues to infect an extant relative of the ancestral host is remarkable. But the amazing evolutionary history of the Leptopilina hosts and these filamentous viruses goes beyond this shared genes. These wasps are endoparasitoids of Drosophila larvae, the female wasp laying the eggs inside the larvae and simultaneously injecting venom that hinders the immune response. The composition of the venoms is complex, varies between wasp species and also between individuals within a species, but a central component of all these venoms are spiked structures that vary in morphology, symmetry and size, often referred to as virus-like particles (VLPs).

In this preprint, the authors convincingly show that the expression pattern in the Leptopilina
wasps of the thirteen genes identified to have been horizontally acquired from the LbFV ances-
tor coincides with that of the production of VLPs in the female wasp venom gland. Based on
this spatio-temporal match, the authors propose that these VLPs have a viral origin. The data
presented in this preprint will undoubtedly stimulate further research on the composition,
function, origin, evolution and diversity of these VLP structures, which are highly debated (see
for instance [3] and [2]).

References

virus relative as a source of adaptive genes for parasitoid wasps. bioRxiv 342758, ver. 5

tacharya S, Wang R, Singh S, et al. Novel Organelles with Elements of Bacterial and
Eukaryotic Secretion Systems Weaponize Parasites of Drosophila. Current Biology 27


Appendix

Reviews by Alejandro Manzano-Marín and one anonymous reviewer, DOI:
10.24072/pci.evolbiol.100062