
HAL Id: hal-01959606
https://hal.science/hal-01959606v2

Submitted on 18 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High throughput automated detection of axial
malformations in Medaka fish embryo

Diane Genest, Élodie Puybareau, Marc Léonard, Jean Cousty, Noémie de
Crozé, Hugues Talbot

To cite this version:
Diane Genest, Élodie Puybareau, Marc Léonard, Jean Cousty, Noémie de Crozé, et al.. High through-
put automated detection of axial malformations in Medaka fish embryo. Computers in Biology and
Medicine, 2019, 105, pp.157-168. �10.1016/j.compbiomed.2018.12.016�. �hal-01959606v2�

https://hal.science/hal-01959606v2
https://hal.archives-ouvertes.fr


1 
 

High throughput automated detection of axial malformations in Medaka embryo 

Diane Genesta, b,*, 1, Elodie Puybareaua, c, 1, Marc Leonardb, Jean Coustya, Noémie De Crozéb, Hugues Talbota 

a Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, 2 Boulevard Blaise Pascal, 93162 

Noisy-le Grand, France 

 b L'OREAL Research & Innovation, 1 avenue Eugène Schueller, 93600 Aulnay sous Bois, France 

c EPITA Research and Development Laboratory (LRDE), 14-16 rue Voltaire, 94270 Le Kremlin-Bicêtre 

Abstract 

Fish embryo models are widely used as screening tools to assess the efficacy and /or toxicity of 

chemicals. This assessment involves the analysis of embryos morphological abnormalities. In this article, 

we propose a multi-scale pipeline to allow automated classification of fish embryos (Medaka: Oryzias 

latipes) based on the presence or absence of spine malformations. The proposed pipeline relies on the 

acquisition of fish embryo 2D images, on feature extraction based on mathematical morphology operators 

and on machine learning classification. After image acquisition, segmentation tools are used to detect the 

embryo before analysing several morphological features. An approach based on machine learning is then 

applied to these features to automatically classify embryos according to the presence of axial 

malformations. We built and validated our learning model on 1,459 images with a 10-fold cross-

validation by comparison with the gold standard of 3D observations performed under a microscope by a 

trained operator. Our pipeline results in correct classification in 85% of the cases included in the database. 

This percentage is similar to the percentage of success of a trained human operator working on 2D 

images. The key benefit of our approach is the low computational cost of our image analysis pipeline, 

which guarantees optimal throughput analysis. 
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Introduction 

Toxicological screening of chemicals is based on the analysis of reliable biological descriptors of model 

organisms. To assess the effect of compounds, several endpoints are analysed per individual, generating 

a large amount of data. For processing the data, automation appears to be necessary. 

 

In compliance with international regulations relative to the welfare of animals used for scientific purposes 

[1][2], fish embryos provide ethically acceptable models for the development of screening methods to 

assess human and environmental toxicity of chemicals [3][4]. Moreover, early developmental stages of 

certain species such as Zebrafish (Danio rerio) and Medaka (Orizia latipes) are transparent, which 

facilitates observation of their organogenesis. Finally, fishes are vertebrates and key mechanisms of 

embryonic development are conserved throughout evolution from fishes to human. Fish embryos are thus 

considered to be a relevant model for studying the impact of chemicals on human embryonic development 

[5][6] and are commonly used in pharmacology and toxicology studies [7][8]. In this study, Medaka 

embryos are used.  We focus on the eleutheroembryo stage that follows hatching and that is characterized 

by the presence of the yolk sac providing the energy supply necessary to organism development [9][10]. 

In the further article, eleutheroembryos are referred to as alevins. 

 

Objectives and constraints 

Developmental toxicology assessment consists of classifying alevins according to the presence or the 

absence of malformations and is performed manually most of the time [11][12]. This assessment uses 

visual analyses that depend on both the operator and the observation conditions. This means that an 

operator can have a different analysis of the same data set depending on the observation conditions. To 

improve this process, which is time-consuming and subjective, some form of automation is required. 

Image processing tools and pattern recognition have been widely used in alevins studies and high-

throughput screening [13][14][15]. In particular, several articles have shown the efficiency of supervised 

learning techniques in the scope of alevins phenotypes classification [16]. Nevertheless, most of the 

proposed methods are limited to the analysis of the alevin seen from a precise orientation, implying to 

manually position each alevin in this specific orientation before starting the image acquisition [17]. In 

some of these studies, image-based observations are considered as ground truth [16]. Because every 
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malformation is not always visible from every point of view, taking image-based observations as a 

reference can occult some of these malformations. Here, we propose an experimental protocol that does 

not require manual positioning of the alevin in a given orientation and that considers as ground truths the 

observation of the alevin under a microscope by a trained user who has the possibility to analyse the 

given alevin from any possible orientations. Such conditions correspond to the use case of the software in 

a real assay. 

 

Our objective is to propose an automated method for classification of alevins with or without a spine 

malformation, one of the most common developmental abnormalities observed [17][18]. This 

classification is based on the analysis of 2D images acquired according to the protocol described in [19]. 

In the acquired images, the alevins can appear in any orientation from the lateral view to the dorsal view 

(Figure 1a to c). Moreover, spine malformations cover an important variety of phenotypes, from the most 

obvious malformation to slightest defects of the spine curvatures (Figure 1d and e). Some specific cases 

of strongly bent alevins are refered as hook-shaped (Figure 1f). This huge variety in alevins phenotypes 

makes spine malformation complicated to characterize.  Mathematical morphology operators can provide 

an accurate description serving as input to a Machine Learning classifier. Working with 2D images 

implies loss of information compared to 3D observations made under a microscope. To validate the 

proposed set up, we challenge ground truth reliability by quantifying the gap between observations under 

a microscope and on 2D images. In addition, in order to quantify human subjectivity, we provide an 

estimation of the inter-observer subjectivity rate according to image-based observations made by three 

different observers. 
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Figure 1. Images of 9 dpf Medaka alevins as acquired by our set-up. a to c: healthy alevins shown in 

lateral view in a, three-quarters view in b and dorsal view in c. d to f: alevins showing different types of 

spine malformations, d being a major spine malformation (lateral view), e a slight “S-shaped” 

malformation (three quarter view) and f a hook-shaped alevin (dorsal view). 

 

Assessing the efficacy of our automated classifier implies to pay attention to both the sensitivity and the 

specificity of the classification. The sensitivity (i.e. the capacity of a test to indicate a correct positive 

result) corresponds to the proportion of malformed alevins correctly detected. Specificity refers to the 

ability of the test to correctly indicate a negative result, i.e. the ratio of healthy alevins correctly 

detected. The overall accuracy is the average of both numbers weighted by their population. The 

chemicals safety assessment involves reducing the number of false negatives, i.e. high sensitivity. On 

the other hand, in particular in an industrial context, specificity also needs to be high, because false 

detection of abnormalities could penalize production. Consequently, both specificity and sensitivity 

tests must be optimized, which corresponds to the conventional choice of optimizing the overall 

accuracy. 
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Proposed method 

In this article, we describe a new automated method to detect alevin spine malformations. Most of these 

malformations are characterized by abnormal spine curvature. Some alevins also exhibit shortened 

spines or humps. Inter-individual variability and the single orientation acquired in 2D images 

complicates the detection of axial malformations, due to the variability in alevin orientation from one 

image to the other. The first difficulty is thus to identify relevant parameters in order to characterize 

such a panel of malformations. Our method is based on binary spine modelling in order to extract 

numerical values relative to spine characterization. To this end, we consider an approach based on the 

morphological skeleton [20][21]. Features such as dimensions, curvature, angles are then deduced from 

this skeleton and gathered in a features vector in order to feed a random forest classifier [22]. The 

flowchart of our methodology is summarized in Figure 2. 

 

The proposed method comprises two phases. The learning phase builds the classification model, which 

is then used to classify data during the testing phase. Learning is based on a set of labelled data. It 

begins with a pre-processing step (described in detail in the Appendix) that reduces the acquired data to 

the region of interest [19]. In the feature extraction step, the alevin spine is segmented using 

mathematical morphology operators [23]. Following segmentation, morphological parameters are 

measured on the spine and the alevin mask. A random forest classifier is built and fitted to the set of 

labelled data. During the testing phase, features are also extracted from the testing dataset and images 

are classified according to the trained random forest model. 

 

Our pipeline is made up of simple and fast operators, that are, for the most part, available in off-the-

shelf image analysis software packages such as the PINK image processing library [24] and scikit-learn 

library [25]. 
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Figure 2. Flowchart of the alevin morphological abnormalities detection assay based on image processing. 

This detection method is assessed by cross-validation in the presented study. 

 

Contributions and outlines 

The main contributions to this article are the following: 

- A dataset of 1459 alevins associated with ground-truth is built. Each alevin is screened under a 

microscope and through observation of acquired 2D images. For each alevin, the presence or 

absence of malformations is established by a trained operator during the microscope observations, 

such labelling being considered as ground-truth. Furthermore, a second labelling is produced by 

independently reading the 2D images, allowing one to assess the loss of information due to the 2D 

acquisition of 3D alevins. To challenge ground truth reliability, additional observations and 

labelling are performed by three experts on a subset of 200 images, making assessment of inter-

expert subjectivity possible; 

- The efficacy of mathematical morphology operators is shown for characterizing alevin 

malformations and for feeding an automated classifier; 



7 
 

- The 2D images are used to show that alevins can automatically be classified with an accuracy 

similar to image-based human classification and with time efficiency (a few seconds for each 

image) that is compatible with its use in a high throughput industrial context. 

Section 1 introduces the classifier used in the proposed approach, presenting the functions and 

mechanisms related to the random forest estimator. The features extraction process is presented in 

Section 2, including the description of our automated method for alevin spine segmentation and for 

spine geometrical description. Section 3 explains how the learning model is established. The 

experimental setup is described in Section 4 and the assessment results are provided in Section 5. 

 

1. Background notions for random forest classification 

Decision trees are often used as predictive models for classification purposes in supervised learning. In 

this section, we quickly recall the basic concepts behind decision trees and random forest classifiers. 

 

A decision tree is a directed binary tree where non-leaf nodes carry decision rules and where leaves are 

labelled. The decision rules associated with each node take the form of Boolean test functions pointed 

toward their respective children. The label associated to a leaf corresponds to a final class. More 

formally, a decision tree is a 4-tuple (𝑁, 𝑃, 𝐹, 𝐿) defined by the ensemble of nodes 𝑁, the ensemble of 

parent relations between them 𝑃, the mapping 𝐹 which associates a Boolean test function to each non-

leaf node and a mapping 𝐿 that provides a label to each leaf node. 

 

A decision tree-based algorithm classifies data based on a set of features (a.k.a. descriptors). At each 

non-leaf node, an associated test function takes a single feature as argument and compares it to a fixed 

threshold. Depending on the result of the comparison, either the right or the left child node is chosen. 

Thus, starting from the root of the tree and given a feature vector, a path is created from the root 

through the nodes until it reaches a leaf. The algorithm returns as output, the label of this leaf. The 

definition of a test function ensemble 𝐹 is given in Section 3. 

 

The accuracy of a decision tree-based algorithm can be assessed on a data sample by comparing the 

predicted values on this sample with a corresponding set of correctly labelled data. On a sample of size 
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𝑛sample, we respectively call 𝑦 and 𝑦̂ the series of labelled and predicted values. If 𝑦𝑖  is the label of the 

ith data and 𝑦𝑖̂ is the corresponding predicted value, then we calculate the accuracy rate of the algorithm 

on this sample as the fraction of correct predictions over the total number of data in this sample. More 

precisely, the accuracy of the sample is given by: 

(1) 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦̂) =  
1

𝑛sample
∑ 1(𝑦𝑖 , 𝑦𝑖̂)

𝑛sample

𝑖=1
, 

where 1(𝑦𝑖 , 𝑦𝑖̂) is equal to 1 if 𝑦𝑖  is equal to 𝑦𝑖̂ and 0 otherwise. 

 

Fitting a Boolean test function to a training set of labelled data consists of finding the most relevant 

feature and its associated optimal threshold, according to certain criteria, like optimal accuracy on a 

training set. Then, the training set is split into two parts according to this Boolean test function and the 

process is carried out recursively on the two child nodes, until another criterion is fulfilled, such as 

desired accuracy or maximum branch depth. A limitation of decision trees is their tendency to overfit 

the data. Overfitting is defined as the tendency of a classifier to correspond too closely to a particular 

set of training data, jeopardizing its ability to correctly classify future observations. For this reason, it is 

recommended to not train decision trees on the entire available dataset but to train and test respectively 

on a collection of subsets and their complement in multiple ways. This process is called cross-

validation.  

 

Overfitting can also be reduced significantly by training multiple decision trees, using multiple subsets 

of features and submitting the results of these trees to a voting process. This process is what forms the 

basis to Random Forests (RF). RF are defined as an ensemble of decision trees that outputs a final 

prediction class corresponding to a function of every tree output classes. This principle is based on the 

idea that, as a single entity, a decision tree is not effective for high dimensional data. However the 

combination of many weak decision trees can produce a stronger and more reliable classifier  [22]. To 

this end, RF are fitted using the general technique of bootstrap aggregating, or bagging. Each decision 

tree is computed (node split functions are defined) on a random subset of the training dataset, using a 

randomly selected set of features [26]. This technique is currently used to reduce misclassification error 

due to single application of the partitioning clustering procedure [27][28].  
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Feature characterization is a key requirement for decision tree building. The aim of this process is to 

obtain various objective descriptions of the data that needs to be classified. Such descriptions are then 

used as arguments to the decision functions. In our method, the classifier is designed to classify images 

of alevins depending on the presence or the absence of axial malformation. The following section 

describes features that enable characterization of such malformations. 

 

2. Feature extraction for alevin spine characterization 

We describe in this section a method for obtaining a geometric description of alevins from 2D images.  

Image analysis, including mathematical morphology, is used to characterize the spinal shape of alevins 

from grey-scale images [23][29]. Section 2.1 proposes a procedure to approximate the alevin’s spine. 

Feature characterization is presented in Section 2.2. 

 

2.1. Alevin axial segmentation method 

In this section, we start from a first segmentation of the whole alevin contour obtained during a pre-

processing step summarized in the appendix. We denote by ℳ the resulting segmentation (Figure 4a). 

Our aim is then to obtain, from ℳ, a segmentation which approximates the curve of the alevin’s spine. 

After smoothing the contour of the alevin, this methodology implements morphological skeletonisation. 

More precisely, the spine approximation method uses the curvilinear skeleton principle described in 

[20]. An overview of the spine segmentation from the alevin mask is given in Figure 3. 

 

Firstly, in order to filter out any artefact ramification, we begin by filling the convex areas on the alevin 

contour ℳ with a morphological closing 𝜑Γ𝑟1
 by a disk-shaped structuring element Γ𝑟1  of size 

𝑟1 [23]. In the following, we denote by ℳ′, the result of this process applied to ℳ: 

(1) ℳ′ = 𝜑Γ𝑟1
(ℳ). 
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Figure 3. Flowchart of alevin spine approximation. 

 

On the other hand, concave areas due to alevin abnormalities such as significant oedemas or poor initial 

segmentation are more problematic because they may cause important ramifications in the subsequent 

skeleton application step. To filter out these concave areas, which can be more or less significant in 

size, we consider an iterative process which determines the smallest amount of filtering used to obtain a 

skeleton without any ramification. In our methodology, such filtering is performed with morphological 

openings by disk-shaped structuring elements. More precisely, we consider the curvilinear skeleton 

𝑆𝑖(𝑋) of the largest connected component of the opening of 𝑋 by a disk-shaped structuring element of 

radius 𝑖. Hence, if we denote by 𝑟2 the minimal radius considered in the proposed setting, we consider 

the resulting skeleton 𝒮1 defined by: 

(2) 𝒮1 = 𝑆𝑟2+3.min(5,𝜆)(ℳ
′), 

where 𝜆 = min {𝑖 ∈ ℕ such as 𝑆𝑟2+3𝑖(ℳ
′) has two extremities}. A further pruning step removes 

potential residual ramifications in 𝒮1, by filtering out the skeleton branches with a length less than 𝛼 

pixels. We write: 

(3) 𝒮2 = 𝑝𝑟𝑢𝑛𝑖𝑛𝑔𝛼(𝒮1), 

where 𝑝𝑟𝑢𝑛𝑖𝑛𝑔𝛼 denotes the skeleton pruning strategy of parameter 𝛼. 
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Figure 4. Spine approximation steps on the cropped image of an alevin. The red line represents the 

contour of the initial mask ℳ in a, the initial curvilinear skeleton 𝒮2 in b, the extended curvilinear 

skeleton 𝒮 in c and the straight line ℒ linking both ends. 

 

From its definition, the curvilinear skeleton 𝒮2 (Figure 4b) does not reach the borders of the alevin’s 

shape ℳ (Figure 4a). In order to more effectively approximate the alevin’s actual spine, both 

extremities of the skeleton 𝒮2 are detected and extended up to the mask boundaries. To achieve this, for 

each skeleton extremity 𝑝𝑖, we draw the straight line linking 𝑝𝑖  to the point located five points behind 

the skeleton curve. This segment extends past 𝑝𝑖all the way to the border of ℳ. The resulting skeleton  

is denoted by 𝒮 in the following (Figure 4c). This spine segmentation is accurate in cases of alevins 

seen in dorsal view because such alevins appear symmetric. However, in lateral view, the spine 

segmentation is systematically deviated near the yolk sac, instead of following the dorsal line. 

Nevertheless, it is not a problem for our purpose. Indeed, exact spine segmentation is not a goal per-se. 

It is a way to measure features for classification (see Section 2.2), and the observed deviation does not 

highly impact the features measurement further described. Finally, both skeleton extremities are then 
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linked via a line segment ℒ, as shown in (Figure 4d). Because a healthy alevin is expected to present a 

straight spine when it is anaesthetized, this segment is used in the following section as a reference to 

compare the actual alevin’s spine to a healthy spine. 

 

2.2. Geometrical features description 

Classifying alevin malformations from images by using a learning-based approach requires an accurate 

description of the malformation that we want to detect. Hence, from the segmentations obtained as 

described in Section 2.1, we select relevant and discriminative features to reliably distinguish between 

alevins with and without a spine abnormality. Features are measured through the assessments of (i) the 

alevin dimensions (Section 2.2.1), (ii) the curvature (Section 2.2.2), (iii) the regularity (Section 2.2.3) 

and (iv) the discontinuities of the alevin’s shape (Section 2.2.4). 

 

2.2.1. Dimension measurement on the alevin masks 

A first set of parameters, namely 𝑎alevin, 𝑙alevin, 𝑤max, 𝑤mean, 𝑟image
1  and 𝑟image

2  described below are related 

to the dimensions of the alevin. The alevin area 𝑎𝑎𝑙𝑒𝑣𝑖𝑛 is measured on mask ℳ in number of pixels. The 

parameter 𝑙alevin refers to the alevin’s length, measured as the Euclidean length of the skeleton 𝒮. 

Maximum and average widths are calculated using the maximal balls principle. For that, the Euclidean 

distance map is computed to the exterior of the alevin mask ℳ [30][31] and restricted to the skeleton 𝒮. 

Thus, each point of the skeleton is associated with its distance to the external part of the alevin mask1. 

The largest and the average values are extracted and multiplied by two to obtain the maximal and average 

widths denoted by 𝑤max and 𝑤mean, respectively. We compute the ratios 𝑟image
1  and 𝑟image

2  between the 

alevin’s length and width as follow: 

(4) 𝑟image
1 =

𝑤mean

𝑙alevin
 ; and 𝑟image

2 =
𝑤max

𝑙alevin
. 

 

2.2.2. Curvature assessment from the graphical representation of the alevin’s spine 

The aim of this part is to extract features related to spine deviation from the straight line joining its two 

extremities. The relevant parameters are denoted by 𝐴𝑈𝐶, 𝑑max, 𝑑mean, 𝑟graph
1 , 𝑟graph

2 , and 𝑟graph
3 . We 

                                                      
1 This weighted skeleton is called the extinction function [23] 
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build an image representation of the alevin’s spine in order to simplify its analysis in a direct 

orthonormal frame. We aim to lay both the spine extremities on the abscissa axis. To this end, we 

search for the composition of the translation T⃗⃗  and the rotation R that register the line segment joining 

the extremities of the spine curve to the segment [(0,0), (𝑙, 0)] where 𝑙 is the distance between the two 

extremities. The result is shown on Figure 5b. 

 

a 

 

b 

Figure 5. Graphical representation of the curvilinear skeleton 𝒮 in a direct orthonormal frame. The spine 

curve is represented after translation 𝑇⃗  (a) and after translation 𝑇⃗  and rotation 𝑅 (b). 

 

Depending on the curve shape, it is not always possible to represent the detected alevin spine as an 

explicit function. In particular, when multiple points of the curve, representing the alevin spine in the 

presenting orthonormal frame, have the same abscissa, the spine is considered to have a hook. This case is 

described in Section 4.2 and Figure 1f. In the normal case, we consider the spine curve as the graphic 

representation of a function 𝑓 in an orthonormal frame. We write (𝑥𝑖 , 𝑓(𝑥𝑖)) the coordinates of the ith 

point of the curve. The total number of points on the curve is 𝑛. This representation is used to measure 

several numerical parameters, which are chosen for their ability to characterize the spine shape. In 

particular, the abscissas axis is taken as reference and spine deviation is estimated with the following 

features. 

 

The area under the curve (AUC) of the function |𝑓| is computed using the trapezoidal rule [32], where |𝑓| 

is the absolute value of 𝑓(𝑥) for every points 𝑥 of the domain: 
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(5) 𝐴𝑈𝐶 = ∑
(|𝑓(𝑥𝑖−1)|+|𝑓(𝑥𝑖)|)

2

𝑛
𝑖=1 × (𝑥𝑖 − 𝑥𝑖−1). 

The use of the absolute value allows analysing every alevin equally, even those with S-shaped spinal cord 

i.e. those for which function 𝑓 is somewhere above and somewhere below the line segment joining the 

extremities of the alevin’s spine. The maximal deviation 𝑑𝑚𝑎𝑥  and the average deviation 𝑑𝑚𝑒𝑎𝑛 are 

calculated considering the maximal and average distances between the spine curve and the abscissas axis 

respectively, meaning the maximum and average values of the curve ordinates: 

(6)  𝑑max =max(𝑓(𝑥𝑖)) 𝑓𝑜𝑟 𝑖 ∈ [0, 𝑛] ; and 

(7) 𝑑mean =
1

𝑛
∑ 𝑓(𝑥𝑖)

𝑛
𝑖=0 . 

From these parameters, three ratios 𝑟graph
1 , 𝑟graph

2 , and 𝑟graph
3  are considered to characterize the flatness of 

the spine: 

(8) 𝑟graph
1 =

𝑑max

𝑙alevin
 ; 𝑟graph

2 =
 𝑑max

𝑑mean
 ; and 𝑟graph

3 =
AUC

𝑙alevin
. 

 

2.2.3. Curve regularity assessment 

The spine shape can also be discriminant even if no important deviation is detectable. Even a slight curve 

in the alevin’s spine can be representative of an anomaly depending on the regularity of the curve. Indeed, 

a recently anaesthetized alevin or immediately after hatching and still undergoing deployment could have 

such an appearance without this necessarily pointing to a malformation. We now describe parameters 𝑟𝑝
2 

and 𝑟𝑐
2 that represent information about the regular appearance of the spine curve. For this purpose, we 

approximate the function 𝑓 (see Section 2.2.2) by a parabola. Hence, we define the parabolic function 𝑓𝑝 

defined by: 

(9) 𝑓𝑝(𝑥) = 𝑎1𝑥
2 + 𝑏1𝑥 + 𝑐1,  

where the triplet (𝑎1, 𝑏1, 𝑐1) is chosen to most effectively approximate the initial function 𝑓 via least-

squares. We then consider the determination coefficient 𝑟𝑝
2 as follows: 

(10) 𝑟𝑝
2 = 1 −

∑ (𝑓(𝑥𝑖)−𝑓𝑝(𝑥𝑖))
2𝑛

𝑖=0

∑ (𝑓(𝑥𝑖) −𝑚)2𝑛
𝑖=0

, 

where 𝑚 =
1

𝑛
∑ 𝑓(𝑥𝑖)

𝑛
𝑖=0  is the average of the function ordinates. In a similar way, we compute the 

determination coefficient 𝑟𝑐
2 of the cubic function 𝑓𝑐 defined by the equation 

𝑓𝑐(𝑥) =  𝑎2𝑥
3 +  𝑏2𝑥

2 +  𝑐2𝑥 +  𝑑2 and that most effectively approximates the initial function 𝑓: 
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(11) 𝑟𝑐
2 = 1 −

∑ (𝑓(𝑥𝑖)−𝑓𝑐(𝑥𝑖))
2𝑛

𝑖=0

∑ (𝑓(𝑥𝑖) −𝑚)2𝑛
𝑖=0

 . 

Both 𝑟𝑝
2 and 𝑟𝑐

2 coefficients are used as descriptors of spine curve regularity. 

 

2.2.4. Curve discontinuities assessment 

Some alevins exhibit disruptions in their spine, that can be detected by the presence of large, abrupt 

angles. Such irregularities may not cause important deviations with respect to the straight line linking 

both extremities. As a result, they cannot be sufficiently characterized by the previously described 

features. To reveal such irregularities, an algorithm was developed in order to approximate the skeleton 

by a broken line and to assess the main angles in the alevin curve. It consists of searching for the 

significant extrema of the piecewise affine function that best represents the spine curve and of linking 

them by line segments. 

  

We consider the skeleton curve as a 1D signal that is smoothed by a convolution with a Gaussian kernel 

of size 𝜎. This step reduces the number of spurious angular variations that are mostly due to the discrete 

aspect of the pixel-supported signal. Reflective boundary conditions are used to limit border effects on the 

skeleton signal. We then search for local extrema. Their coordinates are gathered in a vector 𝑉. Both 

extremities are added at the beginning and at the end of 𝑉. 

 

Because of the discrete domain representation, or due to some oscillations on the spine segmentation, 

some of these extrema are close to each other and do not represent significant angular changes. To filter 

out extrema that are not significant, we search for steady portions of the spine curve. We define as a 

steady portion a subsequence in vector 𝑉 that is as long as possible and whose successive points are close 

to each other. A vertical distance threshold 𝑑1 is defined below which two successive points of 𝑉 are 

considered to be within a steady portion. From the vector 𝑉, all the extrema located between the two 

extremities of a steady portion are removed. A horizontal distance threshold 𝑑2 is then defined, below 

which a steady portion is simplified by replacing its extremities with a unique centred point. The broken 

line that links the selected extrema is finally considered. An example of this process is presented in Figure 
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6. The number of angles 𝑛𝑎𝑛𝑔𝑙𝑒𝑠 detected on the broken line created, the minimal angle 𝜃𝑚𝑖𝑛, and the 

maximal angle 𝜃𝑚𝑎𝑥 are saved as features. 

 

  

 

 

c 

Figure 6. Alevin spine approximation by a piecewise affine function. The red line shows the spine 

segmentation 𝒮 in a, the approximated spine in b, superimposed on the cropped image. The approximated 

spine is represented in a direct orthonormal frame in c. In b and c: the areas (i) and (ii) are detected as 

steady portions of the curve whose only extremities are maintained as the broken line angles. The red 

crosses represent the extrema deleted from the initial spine graphical representation. In fine, the retained 

angles and the delineation of the approximated broken line appear in blue. For this alevin, the following 

parameters are measured: 𝑛angles = 5, 𝜃min = 149°, and 𝜃max = 172°. 

 

We summarize the parameters characterizing the alevin’s spine and used during classification in Table 1. 
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Alevin dimension descriptors 𝑎alevin ; 𝑙alevin ; 𝑤mean ; 𝑤max ; 𝑟image
1  , 𝑟image

2  

Curvature descriptors 𝐴𝑈𝐶 ; 𝑑max, 𝑑mean ; 𝑟graph
1 , 𝑟graph

2 , 𝑟graph
3  

Curve regularity descriptors 𝑟𝑝
2 ; 𝑟𝑐

2 

Curve break descriptors 𝑛angles ; 𝜃min ; 𝜃max 

Table 1. List of features extracted from alevin segmentations and used during axial classification 

 

3. Learning model  

Many parameters and rules are involved in our RF model and determine the capacity of the model to 

classify correctly. They are specified before the classifier training step and make it possible to adapt it 

to the data constraints. We present some of them in this section. 

 

During learning, we search for the ensemble 𝑁 of nodes, the parent relations 𝑃 between them and the 

set 𝐹 of test functions associated with each node. For each tree, we firstly consider a single root node to 

which we associate all the labelled data from the training sample. Then, we recursively decide if the 

node needs to be split with the associated dataset. To decide if a node needs to be split or if the learning 

model needs to be stopped, we use the standard entropy criterion. Applied to a sample, entropy 

measures its level of impurity, in term of label distribution. A sample with an entropy of zero means this 

sample only contains elements with the same label. Conversely, entropy is maximal when uniform label 

distribution is observed in the sample. The entropy of a binary sample 𝑆 of labelled data is defined by: 

(12) 𝐻(𝑆) = −(𝑝𝐿−
log2𝑝𝐿−

) − (𝑝𝐿+
log2𝑝𝐿+

), 

where 𝑝𝐿+
 and 𝑝𝐿−

 are respectively the relative frequencies of the positive label 𝐿+ and the negative 

label 𝐿− in 𝑆. If the entropy of 𝑆 is higher than a given threshold, we divide the sample into two 

subsamples. In order to determine these two subsamples, we search for the related splitting function 𝑠 

defined as follows. Given a feature function Φ and a threshold 𝜗, the splitting function 𝑠 associated 

with Φ and 𝜗 is the map 𝑠Φ,𝜗 from the set of data into the set {True, False} such as 

𝑠Φ,𝜗(𝑥) =  True whenever the feature Φ(x) is higher than the value 𝜗 i.e  Φ(x) >  𝜗. 
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To any set 𝑆 of data and any splitting function 𝑠Φ,𝜗, the Gain(𝑆, 𝑠𝛷,𝜗) function is associated, defined as 

the difference between the entropy of 𝑆 and the weighted mean of the entropies of the subsets 𝑆True and 

𝑆False made of the elements of 𝑆 for which the splitting function is True and for which the splitting 

function is False respectively: 

(13) Gain(𝑆, 𝑠Φ,𝜗) = 𝐻(𝑆) − [
𝑛True

𝑛
× 𝐻(𝑆True)  + 

𝑛False

𝑛
× 𝐻(𝑆False)], 

where 𝑛, 𝑛True and 𝑛False are the numbers of elements in 𝑆, in 𝑆True, and in 𝑆False, respectively. The 

gain can be interpreted as encoding the information that would be gained by branching the node on the 

attribute Φ with threshold 𝜗. At each node, all features Φ and thresholds 𝜗 are tested and we select the 

splitting function that maximizes the gain. This leads to a new partition, for which child nodes are then 

analysed recursively in the same way. 

 

Some parameters control the size and the complexity of the trees. We can specify maximal tree depth, 

the minimum number of elements required to split an internal node and to be at a leaf node. Such 

parameters appear as stop criteria in the tree growing process described above. 

 

A weighting system can be used in order to favour one of the two labels. Such weighting intervenes in 

the calculation of the labels relative frequencies 𝑝𝐿−
 and 𝑝𝐿+

. If we denote 𝑤𝐿−
 and 𝑤𝐿+  the weights 

respectively associated with labels 𝐿− and 𝐿+, then the final relative frequency of each label is given by: 

(14) 𝑝𝐿−
= 

𝑤𝐿−× 𝑛𝐿−

(𝑤𝐿−× 𝑛𝐿−)+ (𝑤𝐿+ × 𝑛𝐿+)
 ; 𝑝𝐿+

= 
𝑤𝐿+× 𝑛𝐿+

(𝑤𝐿−× 𝑛𝐿−)+ (𝑤𝐿+ × 𝑛𝐿+)
. 

 

4. Experimental setup 

In this section, we describe the experimental setup to which the proposed classification method is applied. 

This setup includes the acquisition protocol, the validation dataset and ground truth establishment, the 

relevant tested methods and the performance measures. 

 

4.1. Experimental protocol and image acquisition 
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On the first day of the experiment, the individual fish eggs are manually placed in a 24-well plate, 1 egg 

per well, each well containing 2 mL of incubation medium with or without the studied chemical [33]. 

Medium replacements are performed every two days. After nine-days’ exposure, 1.5mL of the 

incubation medium is removed from each well and the embryos are anaesthetized with Tricaine 

(0,18 g/L final). For each well, we record one photograph at a resolution of 1776 × 2360 pixels. More 

details are provided in [19]. 

 

4.2. Database description 

The database described in this manuscript has not been gathered with the aim of a thorough 

toxicological test, but for developing and testing computer programs. It means that each image was 

selected according to the presence or the absence of spine malformation that is to be automatically 

detected. The pictured alevins have been exposed to a wide variety of chemicals, including none. The 

nature of the chemical used is not significant in this study. 

 

As seen in Section 2.2, feature characterization of our abnormality detection test depends on the 

alevin’s skeleton representation on an orthonormal coordinate system. Such a representation implies 

that each abscissa is linked to a single ordinate. However, some alevins are not compatible with this 

graphic representation process and so the geometric description cannot be obtained. It can apply to 

some alevins that are so tightly wound that their spine form a hook (Figure 1f). To deal with these 

cases, alevins identified as such are directly labelled as having a hook-shaped spinal malformation 

without undergoing the learning-based classification. 

 

Thus, in our validation process, several subsets of our datasets need to be considered. From a total 

dataset of 1,471 images of alevins (called “Dataset 0”), 12 are identified before feature extraction as 

being hook-shaped by the early malformation detection step of our program. The remaining dataset of 

1,459 usable images (called “Dataset 1”) constitutes the database used for the machine learning 

validation step. The datasets establishment process is summarized in Figure 7. 
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Figure 7. Datasets description. 

 

4.3. Ground truth establishment 

On the day of image acquisition, each alevin is interactively observed under a microscope by an expert 

who manually and visually assesses the presence or the absence of any malformations. Interactive 

visual inspection using a microscope means that the alevin can be manipulated by the experts and thus 

observed from any relevant angle. Also, there is no discrete artefact due to image acquisition. This 

allows the operator to detect a malformation with high accuracy. For these reasons, this method is the 

most reliable way to assess whether an alevin has a morphological abnormality or not. It can be used to 

validate the automated classification method but also, more generally, to evaluate the quality of the 

complete alevin abnormalities detection assay, including plate preparation, data acquisition and data 

processing. 

 

For our purpose, these microscope-based observations serve as ground truth. We focus on the expert 

observations that concern the presence or the absence of axial malformations. According to this ground 

truth and as it is shown in Figure 7, the dataset of 1,459 images contains 270 images of alevins with a 

spine malformation and 1,189 images of alevins without. 

 

4.4. Tested classification methods 

This section introduces the details and the setup of the classification methods tested on the dataset and on 

the ground truth previously described in Sections 4.2 and 4.3. More precisely, we describe the setting of 
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parameters presented in Section 2 as well as classification performed by an expert which is used for 

comparison purposes with the proposed automated method. 

 

Since microscope-based observations are considered as ground truth for assessing axial deformations, it 

is necessary to point out that our proposed assay suffers from inherent limitations due to the 2D imaging 

acquisition system. Indeed, our data acquisition is restricted to a single 2D image, and so we observe 

one orientation only. Because some axial malformations are not visible from every point of view, it can 

happen that some abnormalities may not be detectable on the acquired images. As our automated 

classification (named 𝐴𝐶) relies on image analysis, only considering the program misclassifications rate 

compared to ground truth does not paint the whole picture. To characterize the misclassification rate 

linked to data acquisition limitations, we compare our results with visual classification performed by an 

expert observing only 2D images. We term this “human classification” or 𝐻𝐶. The following results of 

𝐴𝐶 and 𝐻𝐶 are compared in Section 5. 

The automated classifier parameters are set up as follow. All parameters described in Section 2 of this 

article are experimentally determined in order to optimize segmentation results. Segmentation and 

geometric parameters are listed in Table 2. To set up the classifier parameters described in Section 3 of 

this article, an implementation of the Iterative Grid Search algorithm is used that performs 

hyperparameter optimization by cross-validated grid-search over a specified parameters grid. We begin 

by defining a grid of parameters that will be searched during the process. Each grid parameter presents a 

range of test values. The algorithm exhaustively generates candidates from the specified parameters of 

this grid and fits the estimator on the whole dataset until finally retaining the best parameters 

combination. Manual specification of a limited set of hyperparameters reduces memory consumption 

during search. This method was used to set up the following parameters: the number of trees in the forest 

and the maximum depth of each tree are set to 30, the minimum number of samples required to split an 

internal node is set to 3 and the minimum number of samples required to be at a leaf node is set to 2. At 

each node, the quality of a split is measured with the entropy criterion presented in Section 3. In our 

program, we use the implemented algorithm GridSearch from the scikit-learn library [25]. 
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Parameter 

name 

Parameter description 

Parameter 

value 

𝑟1 

Radius of Γ𝑟1, the disk structuring element of the morphological closing 𝜑Γ𝑟1
 

(Equation (2)) 

10 

𝑟2 

Minimal opening radius used for skeletonisation 𝑆𝑟2+3.min (5,𝜆) 

(Equation (3)) 

14 

𝛼 Minimal branch length used for skeleton pruning (Equation (4)) 25 

𝜎 

Size of the convolution scaled window used for skeleton curve smoothing 

(Section 2.2.4) 
11 

𝑑1 

Minimal vertical distance that must separate two successive extrema to 

maintain them during spine approximation by a piecewise affine function 

(Section 2.2.4) 

4 

𝑑2 

Minimal horizontal distance required by a steady portion to be considered 

during spine approximation by a piecewise affine function (Section 2.2.4) 
10 

Table 2. Parameters determination for alevin spine segmentation and geometrical description of 

classification features. 

 

By testing different values for the weights 𝑤𝐿−
 and 𝑤𝐿+

 (see Equation (15)) associated with the negative 

positive dataset 𝐿− (non-malformed alevins) and to the true dataset 𝐿+ (malformed alevins) 

respectively, we discovered that overall classification accuracy is stable. For 14 different weightings, 

overall accuracy varies by less than 1%. Since overall accuracy is essentially constant, given the 

screening nature of the assay, priority is given to specificity. In terms of methodology, that means 

minimizing the number of errors within the dataset 𝐿−. It is equivalent with associating with the dataset 

𝐿− the highest relative frequency 𝑝𝐿−
, which depends on both its number of data 𝑛𝐿−

 and the weight of 

each data 𝑤𝐿− as it is described in Equation 15,  Section 3. According to the ground truth described in 

Section 4.3, the total database of 1,459 images contains 270 alevins with a spine malformation (positive 

dataset 𝐿+) and 1,189 alevins without (negative dataset 𝐿−). The relative frequencies are initially 80% 

for 𝐿− and 20% for 𝐿+. In order to partially balance them, a higher weight value is given to the data of 

the sparsest sample 𝐿+ than to the largest one 𝐿−. Nevertheless, weighting remains in favour of dataset 
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𝐿− that is prioritized. The following weighting is chosen: 1 for the negative dataset 𝐿− and 2 for the 

positive dataset 𝐿+. The following final relative frequencies are reached: 69% of negative data and 31% 

of positive data according to Equation 15. 

 

Once all the model parameters are set up, the model can be trained. All features are gathered in a matrix 

and corresponding ground truths constitute a binary data vector used as true labelled data. Both are used 

as input for the training algorithm and the model is fitted as explained in Section 3. 

 

4.5. Performance measurement 

In machine learning-based approaches, constructing a classifier involves optimizing its parameters on a 

predetermined training data sample with their associated labels. The classifier is then run on a test sample. 

In order to optimally use available data and minimize adverse training effects, we apply a cross-validation 

splitting strategy for our study. The basic k-fold approach is chosen [34]. During this process, the total 

database is split into k smaller equal-sized datasets. For each of the k consecutive iterations, the following 

procedure is applied: we train the model on k-1 subsets and then, we validate the resulting model on the 

remaining testing subset. As a result, at the end of the k iterations, results can be considered on the whole 

database, as the gathering of the results obtained on each testing data subset. Depending on the dataset 

size and thus the number of splits, cross-validation can suffer from bias and variance effects. When 

increasing the number of splits and therefore the size of the training sets, bias is reduced in the testing set, 

but we also reduce the number of test data so the output of the classifier is less certain. The variance of 

the classifier is thus said to be high. It is especially true if outliers happen to be selected in the limited 

testing set. On the contrary, the classifier has a lower variance by testing the model on more data. This 

implies a lower number of splits. In our method (called 𝐴𝐶 for “automated classifier”), the parameter k is 

set to 10 as an acceptable trade-off between both bias and variance optimization. We ensure the data split 

in each dataset respects the proportions of malformed and non-malformed alevins previously described in 

Sections 4.2 and 4.3. 

 

As for the human classifier (𝐻𝐶), the same cross-validation process cannot be applied, as it is not possible 

for the expert to forget what they have learned during a previous iteration. Iterations would not be 
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independent. For this reason, expert results are obtained in a single run by observing the whole database. 

The optimistic assumption behind this is that human observations have inherent low bias. 

 

For both methods, the results are presented in Section 5 in the form of confusion matrices. A confusion 

matrix [35] is defined as a classifier validation tool that represents distribution of correct and wrong 

classifications. Each column shows the number of occurrences for a predicted label whereas each line 

refers to the number of appearances of a true label. A predicted label is considered to be correct when it is 

the same as the true label according to the microscope-based ground truth (true negative 𝑇𝑁 or true 

positive 𝑇𝑃). Otherwise, it is considered to be incorrect (false negative 𝐹𝑁 or false positive 𝐹𝑃). See 

Table 3 for standard representation of a confusion matrix. 

 

                      Results 

Ground truth 

No axial 

malformation 

Axial 

malformation 

No axial malformation 𝑇𝑁 𝐹𝑃 

Axial malformation 𝐹𝑁 𝑇𝑃 

Table 3. Result presentation in the form of confusion matrix for the method under study. TN, TP, FN and 

FP respectively denote the true negative, the true positive, the false negative and false positive resulting 

with the considered method. 

 

Performance criteria are derived from this matrix. We calculate the percentages of true negatives, true 

positives, false positives and false negatives as follow: 

(15) specificity = true negative rate =  100 × (
𝑇𝑁

𝑇𝑁+𝐹𝑃
), 

(16) sensitivity = true positive rate =  100 × (
𝑇𝑃

𝑇𝑃+𝐹𝑁
), 

(17) FPR = false positive rate =  100 × (
𝐹𝑃

𝑇𝑁+𝐹𝑃
), 

(18) FNR = false negative rate =  100 × (
𝐹𝑁

𝑇𝑃+𝐹𝑁
). 

We specifically call sensitivity the rate of true positives and specificity the rate of true negatives. 

According to these definitions, true negative and false positive rates amount to 100% and represent the 

totality of negative data in the dataset according to ground truth. Symmetrically, true positive and false 
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negative rates also amount to 100% and represent the totality of positive data in the dataset according to 

ground truth.  

 

For both classifiers 𝐴𝐶 and 𝐻𝐶, the percentage accuracy is measured from the accuracy score previously 

described in Section 1: accuracy percentage(𝑦, 𝑦̂) = accuracy(𝑦, 𝑦̂) × 100. This scoring metric 

corresponds to the percentage of correct classifications among the total number of images in the database. 

It is also a performance criterion for the validation of our method. 

 

5. Experimental results and discussion 

Based on the setup described in the previous section, we present the results of the 𝐴𝐶 and 𝐻𝐶 methods. 

We assess their accuracy, before presenting the robustness, the quality control of early malformations 

detection and finally discussing our results. 

 

5.1. Accuracy of the spine detection assay 

We now present the results of classifiers 𝐴𝐶 and 𝐻𝐶 compared to the microscope-based ground truths. A 

result is considered incorrect if it detects a spine malformation that is not present in the ground truth (false 

positive), or on the contrary, if it does not return a malformation when a spine abnormality is visible in 

the ground truth (false negative). Table 4(a) and (b) show the confusion matrices obtained for 𝐴𝐶 and 𝐻𝐶 

respectively, on the 1,459 tested images of the database. Performance criteria are then derived from the 

confusion matrices and reported in Table 4(d). 

 

For 𝐴𝐶, we achieve a sensitivity of 40.4% and a specificity of 96%. False positive and false negative rates 

are 4.0% and 59.6% respectively. The corresponding percentage accuracy is 85.7%. For 𝐻𝐶, a sensitivity 

of 47.4% and a specificity of 97.8% are measured, for a false positive percentage of 2.2% and a false 

negative ratio of 55.6%. The corresponding percentage accuracy is 88.5%. Without any model retraining, 

the results of 𝐴𝐶 vs. 𝐻𝐶 were also compared, leading to a third confusion matrix. In this case, accuracy is 

equal to 91.2%, FPR and FNR are equal to 5% and 40.1% respectively, and sensitivity and specificity are 

equal to 59% and 95% respectively. 
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                         Classifiers 

results 

Ground truth 

𝐴𝐶 𝐻𝐶 

No axial 

malformation 

Axial 

malformation 

No axial 

malformation 

Axial 

malformation 

No axial malformation 1142 47 1163 26 

Axial malformation 161 109 142 128 

a 

                     

 𝐴𝐶 Results 

𝐻𝐶 results 

No axial 

malformation 

Axial 

malformation 

No axial malformation 1240 65 

Axial malformation 63 91 

b 

Performance criterion 𝑓 𝑓𝐴𝐶  𝑓𝐻𝐶 𝑓𝐴𝐶 𝑣𝑠 𝐻𝐶 

Specificity (%) 96.0 97.8 95.0 

Sensitivity (%) 40.4 47.4 59.0 

False Positive (%) 4.0 2.2 5.0 

False Negative (%) 59.6 52.6 41.0 

Accuracy (%) 85.7 88.5 91.2 

c 

Table 4. Results obtained by the automated classifier 𝐴𝐶 and the human classifier 𝐻𝐶 on the complete 

database of 1,459 images. The tables represent the confusion matrices of alevins with and without a spine 

malformation according to the 𝐴𝐶 and 𝐻𝐶 results compared to the microscope-based ground truth after 

10-fold cross validation in a, the confusion matrix of 𝐴𝐶 vs. 𝐻𝐶, without any retraining in b, and the 

classifier comparison metrics in c. 

 

It can be seen, for both the 𝐴𝐶 and 𝐻𝐶 classifiers, that specificity is maximized. On the other hand, we 

can see that sensitivity is low for both classifiers. Taking human observations as a gold standard, the 

error metrics of 𝐻𝐶 gives an insight into the amount of information loss between interactive 
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observations under a microscope and what is achievable using only 2D images. The overall accuracy of 

𝐻𝐶 is 88.5%, which is quite high. This result suggests that spine deformation can be detected with an 

acceptable accuracy from 2D images only, which has considerable implications for the automation of 

this test. Moreover, specificity is high, meaning very few false deformations are detected (2.2%). 

Concerning 𝐴𝐶, very similar results are observed, when compared to the human observer, with an 

accuracy of 85.7%. This comforts us in the intermediate conclusion that automating the spine 

deformation assay is indeed feasible. The FPR of 𝐴𝐶 is 4.0%, which is twice as much as the human 

observer but is still acceptable. The comparison of 𝐴𝐶 vs. 𝐻𝐶 shows an accuracy of 91.2%. This can be 

interpreted as saying that humans and computers do not make exactly the same mistakes but that they 

make them in similar numbers. In particular, 𝐴𝐶 agrees in 95% of the cases when 𝐻𝐶 detects no axial 

deformation, and 𝐴𝐶 agrees in 59% of the cases when 𝐻𝐶 does detect an axial deformation. This latter 

number may seem low, but axial deformations are relatively uncommon, so overall few errors are made. 

True negatives, true positives and a false positives of 𝐴𝐶 results are illustrated in Figure 8. 

 

 

 

       Figure 8. Results of alevin spine classification. The red line represents the result of the spine 

segmentation. The method leads to proper classification (a and b: no spine malformation; c and d: spine 

malformation) or to a false positive (e: false detection of a spine malformation). a and c are presented in 

dorsal view while b, d and e are presented in lateral views. 
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5.2. Robustness of the method and time efficiency 

With machine learning, the results of classification models currently vary depending on the partitioning 

data selected to train and test the model. Thus, assessing the robustness of our model means estimating 

the variability in the performance criteria obtained for several successive iterations of training and 

testing steps made on randomly determined splitting. For our purpose, two aspects are considered. 

Through the 10 iterations of the cross-validation, 10 different estimators are built and tested on 10 

different subsets that do not overlap. We begin by testing the variance of the models results by 

calculating the standard deviation of the percentage accuracy. In our experiments, the 𝐴𝐶 percentage 

accuracy varies between 81.5% and 91.0%, for an average of 85.7% over the 10 iterations and a 

standard deviation 𝜎𝑋 of 2.6. Such a low variability is acceptable. 

 

For scaling up, close attention is paid to analysing the change in the program results over 100 new 10-fold 

cross-validations. Each time, a new partitioning is made, splitting the total dataset into 10 subsets and a 

new cross-validation is applied. The corresponding true negative, true positive, false positive and false 

negative ratios are calculated according to the Equations 16 to 19. All the ratios were remarkably stable 

and argues that the cross validation principle applied in this validation process minimizes the partition’s 

influence on the results. 

 

5.3. Quality control of early data sorting 

As previously explained in Section 4.2, some images were excluded before applying the spine 

malformation detection test. On the dataset of 1,459 images, 12 are detected early as not being 

representative of our method on a direct orthonormal system due to the presence of a hook in the spine. 

However, referring to our ground truth, only 4 of them actually present a hooked spine. The other 8 cases 

detected were therefore wrongly excluded from the learning-based classification process due to the 

presence of impurities in the well that causes alevin segmentation errors during pre-processing. 

Segmentation improvements in pre-processing are worth taking into consideration, but were not 

implemented yet since the resulting improvement would be insignificant when taking into account the 

whole dataset (around 0.5%). 
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5.4. Inter-expert variability 

This last part of our study concerns inter-expert variability on a single data subset due to subjectivity. 

Indeed, as for microscope and for image-based observations, annotations from several experts can differ 

from each other. Several reasons can explain this fact, including operator fatigue and degree of 

expertise. For a single dataset observed by a unique operator, results can also differ depending on the 

data previously observed. For instance, a malformed alevin can appear healthy for an operator who 

previously saw an important number of highly abnormal alevins. On the contrary, when comparing to 

healthy alevins, an expert can sometimes interpret a slight curve due to natural positioning on the well 

as a malformation. For these reasons, quantifying inter-expert subjectivity is considered to be relevant. 

Practicality aspects make the assessment complicated to perform on microscope observations. As the 

latter can take place only on the day of data acquisition, they require the presence of several available 

experts on the same day, unlike images that can be registered and analysed later. For this reason, our 

inter-expert assessment is performed on 2D images. Among the 1,459 images annotated by our main 

expert, named Expert 1, a subset of 200 images was annotated by two additional experts, named Expert 

2 and Expert 3. In this subset, the 2D observations of Expert 1 exactly match those made under the 

microscope. In this sense, we can consider this dataset as non-ambiguous. On such a dataset, we could 

reasonably expect Experts 2 and 3 to concur with the microscope. However, we note in Table 5(b) that 

Experts 2 and 3 recorded errors at a respective rate of 11.5% and 5.5%. This is comparable with the 

8.0% percentage error by the proposed automated method on this data. 

 

The subjectivity rate is defined as the percentage of images on which experts disagree. In our case, 

discrepancies are observed on 28 images, for a subjectivity rate of 14%. In addition, nearly all 

discrepancies are false positives. This rate is close to the programed error rate of 14.5% calculated on the 

whole database. This observation enables us to argue that operator subjectivity is a significant problem, 

which in particular may call into question the reliability of our ground truth. In addition, on the 200 data 

sample, we note that the error rate of our proposed method is 8.0%, which is in between the Experts 2 and 

3 respective error rates of 5.5% and 11.5%. We also note that the results distribution in Table 5(a) shows 
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that errors made by the program are more balanced between false positives and false negatives. These 

results can be considered to be acceptable. 

 

                   Results 

Ground truth 

Expert 2 Expert 3 Program 

No axial 

malformation 

Axial 

malformation 

No axial 

malformation 

Axial 

malformation 

No axial 

malformation 

Axial 

malformation 

No axial 

malformation 

154 23 167 10 

169 7 

Axial malformation 0 23 1 22 9 15 

a 

 Expert 2 Expert 3 Program 

Percentage errors between expert observations and 

ground truths on the 200 data samples 

11,5 5,5 8,0 

b 

Table 5. Results and error rates obtained for each observer and for the automated classifier versus the 

microscope-based ground truths during subjectivity assessment on a sample of 200 images. 

a: distribution of alevins with and without a spine malformation according to the results of Experts 2 

and 3 compared to the microscope-based ground truths. We report in b the percentage error calculated 

for each expert and for the automated classifier on this 200 data sample. 

 

5.5. Execution time 

The program is executed on a standard computer with a 3.60 GHz Intel® Core™ i7-4790 CPU and 32 

GB of RAM. The classifier training step can be repeated as much as necessary in about one second. Our 

program then classifies an image in only about 1 second, meaning that the test can be performed at the 

same time as the next well image is being acquired. 

 

6. Discussion 

This work aimed to develop an automated image processing-based assay for the detection of spine 

malformations in Medaka alevins. Since a screening test was the target, the emphasis was put on the 
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overall accuracy of the test. As shown in Section 5.1, we reached our objective by achieving a false 

positive rate of only 4% and a total accuracy of 85.7%. Nevertheless, optimizing overall accuracy first 

and specificity second inevitably implies lowering sensitivity, which is defined as the assay’s ability to 

correctly detect a malformation. In our assay, only 40% of the actual spine malformations are detected 

according to what is visible under a microscope. Since 𝐻𝐶 results are a little better at 47%, this seems to 

imply that many of these kinds of deformation cannot always be reliably detected from 2D images. To 

improve this, better acquisition devices would be needed, or more simply, experiments could be 

repeated or other deformation tests used. Eventually, the proposed assay is intended to be made part of a 

series of abnormality detection programs (including eyes, oedemas and swim bladder abnormalities) 

that could improve the sensitivity of the whole detection assay. Thus, in spite of these shortcomings, 

this program remains relevant and useful as a screening tool with regard to its high specificity. 

 

Several methodologies have been published in the context of alevin spinal cord analysis using image 

processing. Most were conducted on zebrafish embryos. Stegmaier et al assessed the development of 

specific neuron population by extracting a quantitative information from fluorescent proteins labelled 

spinal cord neurons in transgenic zebrafish [18]. Al-Saaidah et al described an automatic system for the 

detection of abnormal curvature zebrafish tail. However, the study is limited to the classification of 

obvious abnormalities in tail curvature (up or down) [17]. Jeanray et al proposed a way to classify 

multiple zebrafish phenotypes, including tail abnormalities, by applying supervised machine learning. 

This approach does not need features characterization as it is based on the extraction of dense random 

subwindows their description in raw pixel values and classification by extremely randomized tree. If the 

study shows result with a good correlation with that from experts on nine different zebrafish 

phenotypes, the error rates do not take into account the information loss from manual observations 

under microscope to those on 2D images, as every ground truth is obtained by looking directly on 

acquired images. In particular, in these two latest studies, the analysis is limited to the detection of 

defects specifically visible on the lateral side of the zebrafish, that implies to pay a particular attention 

to embryo positioning [16]. Contrary to these techniques, the methodology proposed in this article relies 

on a simple experimental setup, compatible with the high-throughput screening related constraints. The 

day of image acquisition, each alevin remains in its growing medium and the image is recorded without 
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manual positioning of the alevin, minimizing human manual intervention. The test is then based on a 

morphological analysis of the alevin on brightfield images, and was validated on more than 1400 

images. 

 

7. Conclusion and perspectives 

In this article, a fast and automated procedure was proposed to detect malformations in the spinal cord 

of Medaka alevins with minimal operator interaction, maximum speed and reliability. The objective of 

this procedure is to devise an image-based waterway pollution and toxicology assay. Based on 

mathematical morphology, our image-processing pipeline best approximates the spine of alevins in 

order to extract representative features. Based on these, a Random Forest model is trained to detect the 

presence or the absence of a spine malformation. This work illustrates the main difficulties linked to 

ground truth definition and the limitations of the data acquisition device to obtain a reliable automated 

process. 

The main contributions of this article are the following: 

- A dataset of 1,459 alevin images with associated ground-truth was constructed. To establish the 

ground truth, each alevin was screened interactively under a microscope by a trained operator prior 

to imaging, and the presence or absence of a malformation was carefully recorded. 

- Separately, the presence or absence of a malformation was assessed by a different, trained operator 

on the resulting 2D alevin images. The information loss leading to erroneous deformation 

estimations due to the interactive 3D to fixed 2D images transition was investigated.  

- Additional observations and labelling were performed by three experts on a subset of 200 images, 

to establish inter-expert subjectivity on 2D images; 

- An image analysis pipeline consisting essentially of mathematical morphology operators for 

characterizing alevins malformations by developing a number of relevant descriptors was proposed; 

- We have shown that alevins can be classified automatically as normal or deformed using the 

proposed descriptors and a Random Forests classifier. We have shown that our RF classifier can 

reach accuracy similar to image-based human classification and with time efficiency (about one 

second to process each image) that is compatible with its use in a high throughput industrial 

context. 
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The resulting alevin deformation image-based assay is intended to be a part of a more comprehensive 

morphological and functional abnormality detection test. For such a context, at the highest possible 

level of overall precision, it is more important that individual tests be specific rather than sensitive, 

since the sensitivity of the global assay is likely to increase by analysing other criteria, such as eye 

abnormalities, absence of swim bladder or presence of oedemas. Consequently, our assay proposal is 

designed with this in mind and favours specificity, as described in the main text.  

 

As for future work, quantitative studies of the cardiovascular system (heart frequency, blood flow 

estimation etc.) as well as the detection of swim bladder deformations, eye deformations and oedema 

are currently undergoing development. This method can also be transferred to the analysis of zebrafish 

organisms, also of interest to toxicological studies. 
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