Schismatogobius (Gobiidae) from Indonesia, with description of four new species
Philippe Keith, Clara Lord, Hadi Dahruddin, Gino Limmon, Tedjo Sukmono,
Renny Kurnia Hadiaty, Nicolas Hubert

To cite this version:

HAL Id: hal-01959396
https://hal.archives-ouvertes.fr/hal-01959396
Submitted on 14 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Schismatogobius (Gobiidae) from Indonesia, with description of four new species

by

Philippe KEITH* (1), Clara LORD (1), Hadi DARHUDDIN (2), Gino LIMMON (3), Tedjo SUKMONO (4), Renny HADIATY (2) & Nicolas HUBERT (5)

Abstract. – The species of Schismatogobius from Indonesia are reviewed and compared to the known species described from the area. Eight species are recognized including four new species. These are described using genetic and morphometric approaches. The species differ by a high percentage of genetic divergence in partial COI gene (652 bp) and by several characters including the number of pectoral fin rays, the pattern of the ventral surface of the head in males and/or females, the pectoral fin colour pattern, the jaw length/head length ratio or the jaw length of male and/or female.

Résumé. – Revue des Schismatogobius (Teleostei: Gobiidae) d’Indonésie, avec description de quatre espèces nouvelles.

Des collections de spécimens de Schismatogobius provenant d’Indonésie ont été étudiées et comparées aux espèces décrites de la région. Huit espèces ont été répertoriées dont quatre nouvelles. Celles-ci sont décrites en utilisant des approches génétique et morphométrique. Elles diffèrent par un fort pourcentage de divergence de la séquence partielle du gène COI (652 pb) et par plusieurs caractères incluant, principalement, le nombre de rayons aux nageoires pectorales, la coloration de la surface ventrale de la tête du mâle et/ou de la femelle, le ratio longueur de la mâchoire/longeur de la tête ou la longueur de la mâchoire du mâle et/ou de la femelle.

Key words
Gobiidae
Schismatogobius
Indonesia
New species

The species of Schismatogobius de Beaufort, 1912, are distinctive scaleless freshwater gobies found in the tropical Indo-West Pacific. The genus has been collected in many freshwater streams, almost always above tidal influence. Recently, Keith et al. (2017) reviewed the species found between Papua New Guinea and Samoa, described seven new species, and gave diagnostic features for Schismatogobius.

In the region neighbouring Indonesian area, five species are presently assigned to Schismatogobius: S. marmoratus (Peters, 1868), described from Samar Island, Philippines; S. bruyensis de Beaufort, 1912, described from Ceram, Indonesia; S. insignus (Herre, 1927), described from Negros Island, Philippines; S. roxasi Herre, 1936, described from Panay, Philippines and S. amplivinculus Chen, Fang & Shao, 1995, described from Taiwan.

Even if S. insignus and S. roxasi are considered to be valid by some authors (Kottelat, 2013; Eschmeyer et al., 2016), their status is unclear. Indeed, the syntypes of S. insignus were destroyed during WWII and the diagnosis given by Herre (1927; 1936) for these two species did not mention some of the main diagnostic characters now used such as the number of pectoral fin rays, the distinctive markings on the ventral surface of head (mentum and isthmus), breast, frenum and pelvic fins (which are sexually dichromatic and generally, although slightly variable, unique to each species or a group of species), and the jaw length measurements in both sexes. Koumans (1940), who examined the syntypes of S. insignus before their destruction, placed them in S. bruyensis although some characters given by Herre (1927), as the banded pectoral fin drawing, did not agree with this species. Herre (1927), in his description of S. insignus, wrote at the end: ‘As this copy leaves my hands, Mr. Reveche, of Antique Province (= Panay), sends me four handsome specimens, 38 to 44 mm in length; they are ready to spawn. February 1926.’ So he considered these four specimens to be S. insignus. But later, in his description paper (Herre, 1936) of S. roxasi, he...
used the 44 mm specimen cited above (a male) as the holotype and wrote ‘it is close to *Gobio-
soma insignum* but differs in the extraordinary
development of the maxillary’. Herre separated
this species from *S. insignus* mainly with this
character as the others in the description are not
diagnostic. He ignored at this time that in *Schis-
amatogobius* the jaw lengths in males are always
much greater than in females, and the other three specimens ‘ready to spawn’ were prob-
ably females. Considering all of this, these four
specimens from Panay were probably the same
species *i.e.* *S. insignus*, as stated first by Herre
(1927), and *S. roxasi* is thus considered here as
a probable synonym of *S. insignus*.

Many surveys of rivers have been carried
out in Indonesia during the last seven years with
numerous *Schismatogobius* specimens being
collected, particularly during collaborative
work between the Institute for Research and
Development (IRD), the Indonesian Institute
of Sciences (LIPI) and the National Museum
of Natural History of Paris (MNHN). These expe-
ditions into remote areas (West Papua, Sulawe-
si, Sumatra, Java, Lombok, Bali, Ambon and
Ceram) have resulted in the collection of many
gobies and the discovery of several new spe-
cies (*Pouyau et al.*, 2012; *Keith et al.*, 2012a,
2012b, 2014a, 2104b; *Larson et al.*, 2014; *Hoese et al.*, 2015). The *Schismatogobius*
collections of many museums (AMS, ASIP, AUM,
BLIP, CAS, MNHN, MZB, NTM, QM, RMNH,
SMF, UF, USNM, WAM and ZMB) have been
also examined.

The purpose of this paper is to review those
Schismatogobius species found in Indonesia,
using genetic and morphometric approaches,
and to give descriptions of four new species. A
key for the species of the area is also provided.

MATERIALS AND METHODS

DNA Barcode analysis

Material examined

A total of 61 *Schismatogobius* specimens were
used for this analysis (see Tab. I).

<table>
<thead>
<tr>
<th>Species</th>
<th>Sample ID</th>
<th>Sequence ID</th>
<th>BIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schismatogobius amplavinculus</td>
<td>Panay4</td>
<td>BIF0A01-17</td>
<td>BOLD:ADB0451</td>
</tr>
<tr>
<td>Schismatogobius arscottoli</td>
<td>12193</td>
<td>BIF0A07-17</td>
<td>BOLD:ADG0499</td>
</tr>
<tr>
<td>Schismatogobius brayensis</td>
<td>BIF0185</td>
<td>BIF0B16-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0186</td>
<td>BIF0B16-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0187</td>
<td>BIF0B16-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0188</td>
<td>BIF0B16-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0234</td>
<td>BIF0B20-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0235</td>
<td>BIF0B20-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0236</td>
<td>BIF0B21-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0237</td>
<td>BIF0B21-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0400</td>
<td>BIF0B37-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0401</td>
<td>BIF0B37-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0402</td>
<td>BIF0B37-13</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0637</td>
<td>BIFD1198-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0638</td>
<td>BIFD1199-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0639</td>
<td>BIFD1200-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0640</td>
<td>BIFD1201-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0641</td>
<td>BIFD1202-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0693</td>
<td>BIFD1254-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02366</td>
<td>BIFD1296-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02367</td>
<td>BIFD1297-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02368</td>
<td>BIFD1298-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02369</td>
<td>BIFD1299-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02370</td>
<td>BIFD1300-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02372</td>
<td>BIFD1301-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02434</td>
<td>BIFD1994-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02436</td>
<td>BIFD1996-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02438</td>
<td>BIFD1998-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02545</td>
<td>BIFD2105-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02546</td>
<td>BIFD2106-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF02547</td>
<td>BIFD2107-14</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>BIF0311</td>
<td>BIFD4430-16</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>6948</td>
<td>BIFF0002-17</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius bruynisi</td>
<td>12164</td>
<td>BIFF0003-17</td>
<td>BOLD:ACP9882</td>
</tr>
<tr>
<td>Schismatogobius brussoni</td>
<td>F5086b</td>
<td>BIF4206-16</td>
<td>BOLD:ADF3589</td>
</tr>
<tr>
<td>Schismatogobius brussoni</td>
<td>F5290</td>
<td>BIF4409-16</td>
<td>BOLD:ADF3589</td>
</tr>
<tr>
<td>Schismatogobius brussoni</td>
<td>F5348</td>
<td>BIF4467-16</td>
<td>BOLD:ADF3589</td>
</tr>
<tr>
<td>Schismatogobius brussoni</td>
<td>F5349</td>
<td>BIF4468-16</td>
<td>BOLD:ADF3589</td>
</tr>
<tr>
<td>Schismatogobius brussoni</td>
<td>F5412</td>
<td>BIF4531-16</td>
<td>BOLD:ADF3589</td>
</tr>
<tr>
<td>Schismatogobius insignus</td>
<td>F3783</td>
<td>BIFD2903-16</td>
<td>BOLD:ADF3590</td>
</tr>
<tr>
<td>Schismatogobius insignus</td>
<td>12196</td>
<td>BIFF0005-17</td>
<td>BOLD:ADF3590</td>
</tr>
<tr>
<td>Schismatogobius insignus</td>
<td>12197</td>
<td>BIFF0006-17</td>
<td>BOLD:ADF3590</td>
</tr>
<tr>
<td>Schismatogobius marmoratus</td>
<td>Panay Phil</td>
<td>BIF0A08-17</td>
<td>BOLD:ADG7314</td>
</tr>
<tr>
<td>Schismatogobius marmoratus</td>
<td>BIF0632</td>
<td>BIFD5151-16</td>
<td>BOLD:ADF3588</td>
</tr>
<tr>
<td>Schismatogobius marmoratus</td>
<td>BIF0633</td>
<td>BIFD5152-16</td>
<td>BOLD:ADF3588</td>
</tr>
<tr>
<td>Schismatogobius marmoratus</td>
<td>BIF0634</td>
<td>BIFD5153-16</td>
<td>BOLD:ADF3588</td>
</tr>
<tr>
<td>Schismatogobius marmoratus</td>
<td>BIF0635</td>
<td>BIFD5154-16</td>
<td>BOLD:ADF3588</td>
</tr>
<tr>
<td>Schismatogobius marmoratus</td>
<td>BIF0636</td>
<td>BIFD5155-16</td>
<td>BOLD:ADF3588</td>
</tr>
</tbody>
</table>
Table I. Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sample ID</th>
<th>Sequence ID</th>
<th>BIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schismatogobius risdawatiae</td>
<td>BIF6038</td>
<td>BIFD5157-16</td>
<td>BOLD:ADF3588</td>
</tr>
<tr>
<td>Schismatogobius risdawatiae</td>
<td>BIF6039</td>
<td>BIFD5158-16</td>
<td>BOLD:ADF3588</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF1444</td>
<td>BIFD1005-14</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF1445</td>
<td>BIFD1006-14</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF1497</td>
<td>BIFD1058-14</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF2548</td>
<td>BIFD2108-14</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF2549</td>
<td>BIFD2109-14</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF2550</td>
<td>BIFD2110-14</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF2835</td>
<td>BIFD2395-14</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF2836</td>
<td>BIFD2396-14</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF4170</td>
<td>BIFD3290-16</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>BIF5089</td>
<td>BIFD4210-16</td>
<td>BOLD:ACP9881</td>
</tr>
<tr>
<td>Schismatogobius saurii</td>
<td>Panay2</td>
<td>BIFFA004-17</td>
<td>BOLD:ACP9881</td>
</tr>
</tbody>
</table>

Schismatogobius amplivinctus: 1 specimen; MNHN 2016-0300, Panay Island 4, Philippines.

Schismatogobius insignis: 3 specimens; MNHN 2016-0301 (tags 12197 & 12196), Panay Island, Philippines; MZB (uncatalogued): BIF 3861, Lombok Utara, 29 Mar. 2015, Hubert et al. coll.

Schismatogobius marmoratus: 1 specimen; MNHN (uncatalogued), Panay Phil, Philippines.

Schismatogobius nsp1 Sumatra (S. risdawatiae nsp, this paper): 7 specimens; MZB 23800, holotype, Padang, Air Terjun Lubuk Hitam, West Sumatra, Indonesia, 1 May 2016, Hubert et al. coll. BIF 6032. MZB 23801, same data as holotype; BIF 6033, 6035, 6036, 6038. MNHN 2016-0309; same data as holotype; BIF 6034, 6039.

Schismatogobius nsp2 Sumatra (S. arscuttoli, this paper): 1 specimen; MNHN 2016-0306 (tag 12193), Sumatra, Indonesia, 2016, Negrini coll.

DNA extraction and amplification

Pectoral fin tissue was used to extract total genomic DNA from the 19 individuals using the Macherey & Nagel NucléoSpin® Tissue kits following the manufacturer’s instructions on an Eppendorf EpMotion 5075.

The DNA barcode fragment of the cytochrome oxidase I (COI) mitochondrial gene was amplified using primers FishF1-5’ ‘TCAACCAAACACAAAGACATTGCAAC3’ and FishR1-5’ ‘ACTTCAGGTGACCAGAATCGAAGA3’ (Ward et al., 2005). All PCRs were performed on Biometra thermocyclers in a 25 μl volume of 5% of DMSO, 5 μg of bovine serum albumin, 300 μM of each dNTP, 0.3 μM of Taq DNA polymerase from Qiagen. 2.5 μl of the corresponding buffer, and 1.7 μM of each of the two primers. After a 2-minute denaturation at 94°C, the PCR ran 50 cycles of 25 seconds at 94°C, 25 seconds at 52°C and 1 minute at 72°C, with a 3-minute terminal elongation. Purification and Sanger sequencing of PCR products were performed by Eurofins (http://www.eurofins.fr) using the same forward and reverse PCR primers. Chromatograms were assembled and edited using Geneious 8.1.5. All the sequences were aligned with MAFFT Alignment (implemented in Geneious). The percentage of identity between sequences was calculated on Geneious 8.1.5. The translation into amino acids was checked for the partial fragment of COI gene, using the vertebrate mitochondrial genetic code. After translation, one or two bases were discarded at the beginning and the end of the sequences and as a result all the sequences in the alignment started and ended with a codon. All the sequences have been deposited in the barcode of life data system (www.boldsystems.org; projects BIFB and BIFFA) as well as GenBank (accession numbers accessible through BOLD).
Phylogenetic relationships were inferred using the Maximum Likelihood (ML) algorithm as implemented in phym 3.0.1 (Guindon and Gascuel, 2003). The optimization of the ML tree topology was conducted using the BEST tree rearrangement option combining both Nearest-Neighbor Interchange (NNI) and Subtree Pruning and Regrafting (SPR). The best-fit ML substitution model was selected among 88 models according to the Bayesian Information Criterion (BIC) as implemented in jmodeltest 2.1.7 (Darriba et al., 2012). The statistical support of the tree topology was estimated through 2000 replicates of nonparametric bootstrapping (BP) as implemented in phym 3.0.1. Delineation of mitochondrial lineages with independent evolutionary dynamics was performed using the Refined Single Linkage (RESL) algorithm as implemented in BOLD and each cluster of sequence was assigned to a Barcode Index Number (BIN) in BOLD (Ratnasingham and Hebert, 2013).

Morphomeristics

Methods follow Keith et al. (2017). Measurements were taken with a dial calliper to the nearest tenth of a millimetre. All counts were taken from the right side. The size is given in standard length (SL). Abbreviation are as follow: P, Pectoral rays; D, Dorsal rays; A, Anal rays; PDL, Predorsal length (% SL); PAL, Preanal length (% SL); HL, Head length (% SL); JL, jaw length (% SL); CPL, Caudal peduncle length (% SL); Pect-L, Pectoral fin length (% SL); BDa, Body depth at anus (% SL); SDFL, Second dorsal fin length (% SL); AFL, Anal fin length (% SL); CFL, Caudal fin length (% SL); SL, Standard length (SL) (mm).

Teeth were always counted to the right of the symphysis, from the tooth closest to the symphysis to the posteriormost dentary or premaxillary tooth; outer row of teeth were counted in the upper jaw and inner row counted in the lower jaw.

Abbreviations used to represent cephalic sensory pores follow Akihito (1986) and sensory papilla rows as in Sanzo (1911). Most Schismatogobius have a cephalic sensory pore system of B, D, F, K, L, N and O, with pore D singular and all others paired, and with the oculoscapular canal absent between pores F and K. The sensory papillae are generally as described by Akihito et al. (1988) and Chen et al. (2001).

Abbreviations for institutions and collections cited follow the American Society of Ichthyologists and Herpetologists (http://www.asih.org/sites/default/files/documents/resources/symbolic_codes_for_Collections_v5.0_sabajperrez_2014.pdf).

Morphomeristic data are summarized in tables II to IV.

RESULTS

DNA Barcode analysis

A total of 652 base pairs were amplified for the COI gene. The most likely substitution model selected by jmodeltest was TrN + I. The ML tree (Fig. 1A) allowed delimiting eight species, each corresponding to a distinct mitochondrial lineage as evidenced by the RESL algorithm (Tab. I). (BOLD:ACP9881, BOLD:ADF3589, BOLD:ADF3588, BOLD:ACP9882, BOLD:ADF3590, BOLD:ADB0451, BOLD:ADG5049, BOLD:ADG7314). The TrN+I genetic distance among the 8 species examined here is high ranging from 0.10 to 0.58 and averaging 0.389. By contrast, the TrN+I genetic distance averaged 0.003 and ranged from 0 to 0.016 within species and showed no overlap with the distribution of genetic distance among species (Fig. 1B).

Morphomeristics

Specimen examination led to our recognising eight species. Four of them have been already described: S. marmoratus (Peters, 1868) described from Samar Island and found in other Philippines islands; S. insignus (Herre, 1927), described from Negros, Philippines and found in Panay (Philippines) and Lombok (Indonesia); S. ampluvinculus Chen, Fang & Shao, 1995, described from Ceram, Indonesia, but now also known from PNG, Solomon Islands (Keith et al., 2017) and Java, Bali, Lombok, Sumatra and Ambon (fig. 4 and this paper). Four are new to science and their descriptions are given herein.

Schismatogobius saurii, n. sp. Keith, Lord, Hadiaty & Hubert

(Figs 1-4; Tabs I-III)

Material examined. – Thirteen specimens from Indonesia and Philippines with a size range of 27.2-40 mm SL.

Holotype. – MZB 23794, male (36.1 mm SL); West Bali, Kab Buleleng, Tukad Banyurars, Indonesia, 18 Apr. 2014, coll. Hubert, Keith, Busson, Sauri, Hadiaty; BIF 2549.

Paratypes. – UF 162773, 1 female, 2 males (28-33.5 mm SL); Lampung Barat, Wai Ngarip, Sumatra, Indonesia, 25 Oct. 2005, coll. Page et al. UF 190868, 1 male (27.2 mm SL); Way Canguup at research station, Bukit Barisan Selatan National Park, Sumatra, Indonesia, 22 Oct. 2005, coll. Page et al. MZB 23795, 1 female (40 mm SL); same data as holotype; BIF 2547. MZB 23796, 1 male, 2 females (29.3-36.7 mm SL); West Bali, Kab Kelungkung, Tukad Uda, Indonesia, 22 Apr. 2014, coll. Hubert, Keith, Busson, Sauri, Hadiaty; BIF 2835 to 2837. MZB 23797, 1 female (35 mm SL); Lampung Barat, Wai Ngarip, Sumatra, Indonesia, 22 May 2015, coll. Hubert, Busson, Darhuddin et al., BIF 4172.
Figure 1. – A: Most likely ML tree inferred using the TrN+I model (-lnL = 2888.77, I = 0.655, f(A) = 0.23025, f(C) = 0.31193, f(G) = 0.17856, f(T) = 0.2926, AC = AT = CG = GT = 1.0; AG = 13.12; CT = 6.72). BP are given above each branches. B: Distribution of TrN+I genetic distance within and among species.
Description

A large *Schismatogobius* (average adult size > 35 mm SL). Body naked, slender, almost circular in cross-section. Head rounded, snout rather pointed. Mouth oblique, lower lip more prominent. Jaw lengths in males much greater than in females; jaw length 65.4-71% of HL in males and 34.8-42.8% of HL in females. Lower jaw reaching vertical of 1/2 of the eye in female and exceeding (for more than eye diameter) a vertical of posterior margin of eye in male. Eyes high on head, close together with interorbital width about less to half eye diameter. Anterior nostril short and tube-like.

Dorsal fins VI-I,9, membrane in first dorsal fin posterior to spine 6 connected to base of spine of second dorsal fin. D1 with all spines about equal in length. Anal fin I,9, origin directly opposite to second dorsal fin origin. Caudal fin with 12 branched rays, posterior margin rounded. Pectoral fins oblong with posterior margin rounded and 14(4)-15(9) rays (Tab. II), ventralmost ray unbranched. Pelvic fins always I,5, with both fins joined together for their entire length between fifth rays to form a strong cup-like disc and a well developed frenum between spines, fins not extending beyond anus. Morphomeric data given in table III.

Tongue bilobed. Teeth in upper jaw (19-30) usually in two rows, teeth conical and slightly recurved. Teeth in lower jaw (4-15) usually in two rows anteriorly and single row laterally, all teeth conical with outer row teeth only slightly enlarged and somewhat recurved.

Cephalic sensory pore system always with pores B, D, F, K, L, N and O, pore D singular with all other pores paired;
oculoscapular canal absent between pores F and K. Anterior interorbital extension of anterior oculoscapular canal with double terminal pores B slightly posterior to posterior nostril. D pore at rear of interorbital. Posterior extension of anterior oculoscapular canal terminating laterally on each side of head at pore F, just behind posterior edge of eye. Posterior oculoscapular canal with 2 terminal pores, K and L; preopercular canal with 2 pores, N and O. Cutaneous sensory papillae not well developed and inconspicuous in several specimens due to preservation.
Sexual dimorphism fairly well developed with male having jaws longer than females and a different colour pattern on ventral surface of head. Urogenital papilla broadly rounded in females and slightly pointed in males.

Colour in preservation

Usually four vertical black bands in dorsal view; first band below first dorsal fin, second and third bands below second dorsal fin and fourth band at hypural crease. Lateral body colour markings variable with individual patterns of marbled brown to grey to black. Head dusky grey. Ventral surface of head in male whitish and slightly pigmented on the mentum or entirely brownish. Ventral surface of head in female whitish with a blackish or brownish mentum (Fig. 2A). First dorsal fin with two horizontal rows of black spots. Second dorsal fin mostly cream with three horizontal rows of black spots. Caudal fin black and white, with black spot at centre of hypural crease and two white spots posteriorly. Anal fin mostly cream. Pectoral fins banded with 4-7 rows of dark spots; small dark blotch present dorsoposteriorly.

Colour in life (Fig. 3)

Habitat

Schismatogobius saurii has been collected in freshwater streams with moderate to fast flow in shallow areas of gravel and boulders (depth 0.4-0.6 m), usually at low altitude (< 10 m), and sometimes with *S. bruynisi*.

Etymology

The new species is named *saurii* in dedication to Sopian Sauri from LIPI, who helped us to collect freshwater fishes all around Indonesia.

Affinities

S. saurii differs from the other species sequenced and present in the area by displaying reciprocal monophyly from its closest relatives and high TrN+I genetic distances to its relatives at COI gene (0.257 to its closest relative *S. risdawatiae*), and from these species, except *S. bruynisi* and
S. saurii n. sp., in having 14-15 pectoral rays. It differs from *S. bruynisi* in having pectoral fins banded with rows of dark spots *versus* pectoral fins with a large dorsal black band, a smaller jaw length in female (9-10.5% vs 11.1-12.6% SL), a smaller jaw length/head length ratio in female (34.8-42.8% vs 42.5-47.5%) (Tabs III, IV), and a different colour pattern of ventral surface of head and frenum in female (Fig. 2A). It differs from *S. bussoni* n. sp. in having pectoral fins banded with rows of dark spots *versus* pectoral fins with a large dorsal black band (Fig. 2A), a larger size (average adult size more than 35 mm SL vs < 24 mm SL), a greater jaw length in male (17.7-20.5% vs 13.4-14.7% SL), and a greater jaw length/head length ratio in male (65.4-71% vs 47.6-57.6%) (Tab. III).

Distribution

S. saurii is known from Sumatra, Java, Bali, Lombok, Ambon and Panay (Fig. 4).

Schismatogobius bussoni, n. sp. Keith, Hubert, Limmon & Daruuddin
(Figs 1-2; 4-5; Tabs I-III)

Material examined. – Eleven specimens from Moluccas with a size range of 16-24.3 mm SL.

Holotype. – MZB 23798, male (22 mm SL); Ambon, Wai Kalaui, Moluccas, 3 Apr. 2016, coll. Hubert, Keith, Busson, Daruuddin et al.; BIF 5547.

Paratypes. – MZB 23799, 1 male, 4 females (17.4-24.3 mm SL); Ceram Tengah, Wai Tuni, Moluccas, 29 Mar. 2016, coll. Hubert et al.; BIF 5349 to 5353. MNHN 2016-0305, 1 female, 4 males (16-24.2 mm SL); Ceram Tengah, Wai Tuni, Moluccas, 29 Mar. 2016, coll. Hubert et al.; tags 12162, 12167, 12168, 12169, 12173.

Diagnosis

Usually 15 pectoral rays; pectoral fins with a large oval transverse dorsal black band. First dorsal fin membrane posterior to spine 6 not connected to base of spine of second dorsal fin. Ventral surface of head in male, and sometimes frenum, blackish. Ventral surface of head in female whitish, slightly pigmented with dark dots around the mouth and usually with a blackish ring around mentum. A single mitochondrial lineage (BOLD: ADF3589).

Description

A small sized *Schismatogobius* (average adult size < 25 mm SL). Body naked, slender, almost circular in cross-section. Head rounded, snout rather pointed. Mouth oblique, lower lip more prominent. Jaw lengths in male much greater than in female; jaw length 47.6-57.6% of HL in males and 31.7-39.7% of HL in females. Lower jaw reaching vertical...
of 1/3 of the eye in female and exceeding (for 1/4 to 1/3 of eye diameter) a vertical of posterior margin of eye in male. Eyes high on head, close together with interorbital width about equal to 1/3 eye diameter. Anterior nostril short and tubelike.

Dorsal fins VI-I,9, membrane in first dorsal fin posterior to spine 6 not connected to base of spine of second dorsal fin. D1 with all spines about equal in length. Anal fin I,9, origin directly opposite second dorsal fin origin. Caudal fin with 11-12 branched rays, posterior margin rounded. Pectoral fins oblong with posterior margin pointed and 14(1)-15(9) rays (Tab. II), ventralmost ray unbranched. Pelvic fins always I,5, oblong with posterior margin pointed and 14(1)-15(9) rays, posterior margin rounded. Pectoral fins directly opposite second dorsal fin origin. Caudal fin with double terminal pores, K and lobed frenum between spines, fins not extending beyond anus. Morphomeristic data given in table III.

Tongue bilobed. Teeth in upper jaw (20-25) in two rows, teeth conical and slightly recurved. Teeth in lower jaw (6-14) in two rows anteriorly and single row laterally, all teeth conical with outer row teeth only slightly enlarged and somewhat recurved.

Cephalic sensory pore system always with pores B, D, F, K, L, N and O, pore D singular with all other pores paired; oculoculapar canal absent between pores F and K. Anterior interorbital extension of anterior oculocapalar canal with double terminal pores B slightly posterior to posterior nostril. D pore at rear of interorbital. Posterior extension of anterior oculocapalar canal terminating laterally on each side of head at pore F, just behind posterior edge of eye. Posterior oculocapalar canal with 2 terminal pores, K and L; preopercular canal with 2 pores, N and O. Cutaneous sensory papillae not well developed and inconspicuous due to preservation.

Sexual dimorphism fairly well developed with male having jaws longer than female and a different colour pattern on ventral surface of head. Urogenital papilla oval in female and slightly pointed in male.

Colour in preservation

Usually four vertical black bands in dorsal view; first band below first dorsal fin, second and third bands below second dorsal fin and fourth band at hypural crease. These lateral black body markings alternate with 3 vertical white to grey stripes. Head dusky grey. Ventral surface of head in male, and sometimes frenum, blackish. Ventral surface of head in female whitish, slightly pigmented with dark dots around the mouth and usually with a blackish ring around mentum (Fig. 2A).

First dorsal fin with large horizontal black band. Second dorsal fin mostly cream with rows of black spots on rays. Caudal fin black and white, with black spot at centre of hypural crease and two white spots posteriorly. Anal fin mostly cream. Pectoral fins with a large oval transverse dorsal black band; a dark blotch present dorsoposteriorly.

Colour in life (Fig. 5)

Male: usually four vertical black bands in dorsal view; these bands and upper parts of body mottling of various colours. First band below first dorsal fin, second and third bands below second dorsal fin and fourth band at hypural crease, so the two middle bands are very close to each other. Black bands and upper part of body has mottling of various colours. Colour of body between each band whitish to rose. Head and cheeks mottled with closely spaced spots and marking, and an overall shade of orange-brown. Belly whitish to greyish. First dorsal fin with large horizontal black band. Second dorsal fin with rows of black spots on rays. Caudal fin mainly black with two median white spots dorsally and ventrally. Pectoral fin translucent with a large black spot at the base dorsally. Caudal and pectoral fins translucent. Inside of mouth bright orange. Female: usually four vertical black bands in dorsal view; first band below first dorsal fin, second and third bands below second dorsal fin and fourth band at hypural crease, so the two middle bands are very close to each other. Colour of body between each band mottled with black and dusky markings. Belly greyish to yellow. Caudal fin mainly black with two median white spots dorsally and ventrally. Pectoral fins translucent with a large black spot at the base dorsally. Caudal and pectoral fins translucent. Inside of mouth grey.

Table IV. – Morphometrics of the known Schismatogobius species of the studied area. Morphometrics are given as percentages of standard length, except JL/HL.

<table>
<thead>
<tr>
<th></th>
<th>S. bruynisi</th>
<th>S. ampluvinculus</th>
<th>S. marmoratus</th>
<th>S. insignus</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>(14)-15</td>
<td>15-16</td>
<td>16</td>
<td>(16)-17</td>
</tr>
<tr>
<td>D</td>
<td>VI,9</td>
<td>VI,9</td>
<td>VI,9</td>
<td>VI,9</td>
</tr>
<tr>
<td>A</td>
<td>I9</td>
<td>I9</td>
<td>I9</td>
<td>I8-9</td>
</tr>
<tr>
<td>PDL</td>
<td>35.6-42</td>
<td>34.6-41.7</td>
<td>36.2-38.3</td>
<td>37.9-43.2</td>
</tr>
<tr>
<td>PAL</td>
<td>55.8-64.6</td>
<td>57.7-65.2</td>
<td>62-65</td>
<td>57.6-66</td>
</tr>
<tr>
<td>HL male</td>
<td>26-32</td>
<td>25.4-30.7</td>
<td>31.3</td>
<td>28.8-34.3</td>
</tr>
<tr>
<td>JL male</td>
<td>17.5-21.7</td>
<td>12.8-16.7</td>
<td>19.4</td>
<td>16.6-23</td>
</tr>
<tr>
<td>JL/HL male</td>
<td>57.9-69.2</td>
<td>48.9-54.8</td>
<td>61.9</td>
<td>57.6-69.4</td>
</tr>
<tr>
<td>HL female</td>
<td>25-27.9</td>
<td>27.1-28.5</td>
<td>27.2-29.1</td>
<td>27.3-30.8</td>
</tr>
<tr>
<td>JL female</td>
<td>11.1-12.6</td>
<td>8.3-9.6</td>
<td>10.7-13.1</td>
<td>12.2-15.1</td>
</tr>
<tr>
<td>JL/HL female</td>
<td>42.5-47.5</td>
<td>31.4-34.2</td>
<td>38-44.2</td>
<td>42.7-49</td>
</tr>
<tr>
<td>CPD</td>
<td>6.8-8.8</td>
<td>6.1-8.3</td>
<td>8.4-10</td>
<td>7.1-8.9</td>
</tr>
<tr>
<td>Pect L</td>
<td>20.2-26.7</td>
<td>16.4-22.8</td>
<td>20.7-23.9</td>
<td>21.8-27.7</td>
</tr>
<tr>
<td>BDa</td>
<td>13.5-18.4</td>
<td>9-12.8</td>
<td>15.5-17.7</td>
<td>14.8-17.7</td>
</tr>
<tr>
<td>SDFL</td>
<td>30.6-37.9</td>
<td>24.2-33.6</td>
<td>30.1-35.2</td>
<td>32.2-41.2</td>
</tr>
<tr>
<td>AFL</td>
<td>29.7-32.6</td>
<td>22.2-29.9</td>
<td>25.8-29.3</td>
<td>25.5-32.3</td>
</tr>
<tr>
<td>CFL</td>
<td>19.5-28.3</td>
<td>19.3-22.6</td>
<td>20-22</td>
<td>21.8-28.5</td>
</tr>
</tbody>
</table>

204 Cybium 2017, 41(2)
Habitat

Schismatogobius bussoni has been collected in freshwater streams with moderate to fast flow in shallow areas of rocks and gravel (depth 0.3-0.4 m), just above tidal influence, and sometimes with *S. braynisi* and *S. saurii*.

Etymology

The new species is named *bussoni* in dedication to Frédéric Busson from MNHN, for all his work to improve our knowledge on Indonesian freshwater fishes.

Affinities

S. bussoni differs from the other species sequenced and present in the area studied displaying reciprocal monophyly from its closest relatives and high TrN+I genetic distances to its relatives at COI gene (0.125 to its closest relative *S. risdawatiae*), and from these species, except *S. braynisi* and *S. saurii* n. sp., in having usually 15 pectoral rays. It differs from *S. braynisi* in having a smaller jaw length in male (13.4-16.4% vs 17.5-21.7% SL) and female (7.8-10.9% vs 11.1-12.6% SL), a smaller jaw length/head length ratio in male (47.6-57.6% vs. 57.9-69.2%) and female (31.7-39.7% vs 42.5-47.5%) (Tabs III, IV), and a different colour pattern of ventral surface of head, pelvic disk and frenum in female (Fig. 2). It differs from *saurii* n. sp. in having pectoral fins with a dorsal black band versus pectoral fins banded with rows of dark spots, a smaller size (average adult size < 25 mm SL vs > 35 mm SL), a smaller jaw length in male (13.4-16.4% vs 17.7-20.5% SL), a smaller jaw length/head length ratio in male (47.6-57.6% vs 65.4-71.7%) (Tab. III), and a different colour pattern of ventral surface of head, pelvic disk and frenum in female (Fig. 2A).

Distribution

S. bussoni is known only from Moluccas (Ceram and Ambon) (Fig. 4).

Schismatogobius risdawatiae, n. sp. Keith, Darhuddin, Sukmono & Hubert

(Figs 1-2; 4; 6; Tabs I-III)

Material examined. – Nine specimens from Sumatra with a size range of 25.1-30.2 mm SL.

Holotype. – MZB 23800, male (27 mm SL); Padang, Air Terjun Lubuk Hitam, West Sumatra, Indonesia, 1 May 2016, coll. Hubert et al.; BIF 6032.

Paratypes. – MZB 23801, 5 females (25.1-26.8 mm SL); same data as holotype; BIF 6033, 6035 to 6038. MNHN 2016-0309, 1 male, 1 female (27-30.2 mm SL); same data as holotype; BIF 6034, 6039. MNHN 2016-0621, 1 female (23.5 mm SL); Sumatra, 2016, coll. Negrini; tag 12944.

Diagnosis

Usually 16 pectoral rays; pectoral fins with a broad dorsal black band. Membrane in first dorsal fin posterior to spine 6 partly connected to base of spine of second dorsal fin in male and not in female. Ventral surface of head in male brownish, frenum slightly pigmented. Ventral surface of head in female whitish with a blackish border and a white mentum; frenum and pelvic disk whitish. A single mitochondrial lineage (BOLD:ADF3588).

Description

A medium sized *Schismatogobius* (average adult size 27 mm SL). Body naked, slender, almost circular in cross-section. Head rounded, snout rather pointed. Mouth oblique, lower lip more prominent. Jaw lengths in male much greater than in females; 55.6-63.1% in male (in HL), 27.4-33% in females. Lower jaw reaching a vertical of 1/3 to 1/2 in female and exceeding (for 1/4 of eye diameter) a vertical of posterior part of the eye in male. Eyes high on head, close together with interorbital width about a quarter to one third of the eye diameter. Anterior nostril short and tube-like.

Dorsal fins VI-I,9, membrane of first dorsal fin posterior to spine 6 partly connected to base of spine of second dorsal fin in male and not in female. D1 with all spines about equal in length. Anal fin I,9, origin directly opposite to second dorsal fin origin. Caudal fin with 11-12 branched rays, posterior margin rounded. Pectoral fins oblong with posterior margin pointed and 15(2)-16(7) rays (Tab. II), ventralmost ray unbranched. Pelvic fins always I,5, with both fins joined together their entire length between rays 5, forming strong cup-like disc; a well developed frenum between spines slightly lobed; fin not extending beyond anus. Morphometrics data given in table III.

Tongue bilobed. Teeth in upper jaw (11-22) usually in two or three rows, teeth conical and slightly recurved. Teeth in lower jaw (6-14) in one or two rows of teeth anteriorly and single row laterally, all teeth conical with outer row teeth only slightly enlarged and somewhat recurved.

Cephalic sensory pore system generally with pores B, D and F; pore D singular with other pores paired. Anterior interorbital extension of anterior oculoscapular canal with double terminal pores B slightly posterior to posterior nostril. D pore at rear of interorbital. Posterior extension of anterior oculoscapular canal terminating laterally on each side of head at pore F, just behind posterior edge of eye. Many specimens lacking the preopercular canal and associated pores N and O, while some individuals also lack the posterior section of the oculoscapular canal and its associated pores K and L.

Cutaneous sensory papillae not well developed but similar to pattern described by Akihito et al. (1988).

Sexual dimorphism fairly well developed with male having jaws longer than female. Urogenital papilla broadly rounded in females and slightly triangular in male.
Colour in preservation

Usually three vertical black bands in dorsal view; first band below first dorsal fin, second below second dorsal fin and third one at hypural crease. These lateral black body markings alternate with 3 vertical white to grey stripes. Head dusky grey. Ventral surface of head in male brownish, frenum slightly pigmented. Ventral surface of head in female whitish with a blackish border and a white mentum; frenum and pelvic disk whitish (Fig. 2B). First dorsal fin with two horizontal black bands. Second dorsal fin mostly cream with horizontal rows of black spots. Caudal fin black and white, with black spot at centre of hypural crease and two white spots posteriorly. Anal fin mostly cream. Pectoral fins with a large dorsal and distal black band; a dark blotch present dorsoposteriorly.

Colour in life (Fig. 6)

Male: Usually three vertical black bands in dorsal view; first band below first dorsal fin, second below second dorsal fin and third one at hypural crease. Body red-orange between the black bands; shades of bright electric blue at the border of the black bands. Head and cheeks mottled with brown and orange spots and markings. First dorsal fin translucent at the base, with a superposition of a longitudinal black band and a distal longitudinal orange band. Second dorsal fin translucent with a series of black spots on each ray. Caudal fin
black with two median white spots dorsally and ventrally. Pectoral fins orange at the base; median black spot on the dorsal half of the fin, splitting into three vertical bands ventrally; distal margin translucent. Inside of the mouth bright orange. Female: Usually three vertical black bands in dorsal view; first band below first dorsal fin, second below second dorsal fin and third one at hypural crease. Body red between the black bands; shades of bright electric blue at the border of the black bands. Head and nape mottled with brown and orange spots and markings. Cheeks blackish. First and second dorsal fins translucent with black spots along the rays. Caudal fin black with two median white spots dorsally and ventrally. Pectoral fins brownish at the base; median black spot on the dorsal half of the fin, splitting into two vertical bands ventrally; distal margin translucent. Caudal and pectoral fins translucent. Belly brownish-beige. Ventral surface of head dusky grey. Inside of mouth grey.

Habitat

Schismatogobius risdawatiae has been collected in freshwater streams with moderate to fast flow in shallow areas of gravel and boulders, just above the tidal influence at elevation ranging from 16 to 45 m.

Etymology

The new species is named risdawatiae in dedication to Ms Renny Risdawati from Padang University, who helped us to collect freshwater fishes in Padang, Sumatra.

Affinities

S. risdawatiae differs from the other species sequenced and present in the area studied by displaying reciprocal monophyly from its closest relatives and high TrN+I genetic distances to its relatives at COI gene (0.125 to its closest relative S. bussoni), and from these species, except S. amplavinculus, in having 15-16 pectoral rays. It differs from S. amplavinculus in having a greater jaw length in male (17.8-19.8% vs 12.8-16.7% SL), a greater jaw length/head length ratio in male (55.6-63.1% vs 48.9-54.8%), a greater body depth length at anus (14.1-17.2% vs 9-12.8% SL) (Tabs III, IV), and a different colour pattern of the ventral surface of head, pelvic disk and frenum in female (Fig. 2B).

Distribution

S. risdawatiae is known from Sumatra (Fig. 4).

Schismatogobius arscuttoli, n. sp. Keith, Lord & Hubert
(Figs 1-2; 4; 7; Tabs I-III)

Material examined. – Ten specimens from Sumatra with a size range of 26.7-32.7 mm SL.

Holotype. – MNHN 2016-0306, male (28.5 mm SL); Sumatra, Indonesia, 2016, coll. Negrini.

Paratypes. – MZB 23802, 1 female (30.3 mm SL); Lampung Barat, Way Pamerihan, Sumatra, Indonesia, 24 Oct. 2005, coll. Page et al. UF 162774, 2 females (26.7-28.4 mm SL); Lampung County, Way Ngarip, Sumatra, Indonesia,

Diagnosis

Usually 16 pectoral rays; pectoral fins banded with rows of dark spots. Membrane in first dorsal fin posterior to spine 6 connected to base of spine of second dorsal fin. Ventral surface of head in male whitish with a blackish border, black mentum and isthmus; frenum slightly pigmented. Ventral surface of head in female whitish with a blackish border, sometimes with a white mentum; frenum and pelvic disk generally whitish. A single mitochondrial lineage provided in Table 2 (BOLD: ADG5049).

Description

A medium sized *Schismatogobius* (average adult size 28 mm SL). Body naked, slender, almost circular in cross-section. Head rounded, snout rather pointed. Mouth oblique, lower lip more prominent. Jaw lengths in male much greater than in females; 56.6-69.6% in male (in HL), 36.5-41.8% in females. Lower jaw reaching a vertical of 1/2 in female and exceeding (for 1/3 to 1/2 of eye diameter) a vertical of posterior part of the eye in male. Eyes high on head, close together with interorbital width about one third of the eye diameter. Anterior nostril short and tube-like.

Dorsal fins VI-I,9, membrane of first dorsal fin posterior to spine 6 connected to base of spine of second dorsal fin. D1 with all spines about equal in length. Anal fin I,9, origin directly opposite to second dorsal fin origin. Caudal fin usually with 11 branched rays, posterior margin rounded. Pectoral fins oblong with posterior margin rounded and usually 16 rays (Tab. II), 3 specimens with 16 rays on one pectoral fin and 17 on the other; ventralmost ray unbranched. Pelvic fins always I,5, with both fins joined together their entire length between rays 5, forming strong cup-like disc; a well developed frenum between spines, fin not extending beyond anus. Morphomeristics data given in Table III.

Tongue bilobed. Teeth in upper jaw (22-25) usually in two or three rows, teeth conical and slightly recurved. Teeth in lower jaw (9-15) in two rows of teeth anteriorly and single row laterally, all teeth conical with outer row teeth only slightly enlarged and somewhat recurved.

Cephalic sensory pore system always with pores B, D, F, K, L, N and O, pore D singular with all other pores paired; oculoscapular canal absent between pores F and K. Anterior interorbital extension of anterior oculoscapular canal with double terminal pores B slightly posterior to posterior nostril. D pore at rear of interorbital. Posterior extension of anterior oculoscapular canal terminating laterally on each side of head at pore F, just behind posterior edge of eye. Posterior oculoscapular canal with 2 terminal pores, K and L; preopercular canal with 2 pores, N and O. Cutaneous sensory papillae not well developed but similar to pattern described by Akihito et al. (1988).

Sexual dimorphism fairly well developed with male having jaws longer than female. Urogenital papilla broadly rounded in females and slightly triangular in male.

Colour in preservation (Fig. 7A)

Usually four vertical black bands in dorsal view; first band below first dorsal fin, second and third bands below second dorsal fin and fourth band at hypural crease. These lateral body black markings alternate with 3 vertical brown stripes. Head dusky grey. Ventral surface of head in male whitish with a blackish border, black mentum and isthmus; frenum slightly pigmented. Ventral surface of head in female whitish with a blackish border, sometimes with a white mentum; frenum and pelvic disk whitish (Fig. 2C).

First dorsal fin with two horizontal black bands. Second dorsal fin mostly cream with horizontal rows of black spots. Caudal fin black and white, with black spot at centre of hypural crease and two white spots posteriorly. Anal fin mostly cream. Pectoral fins banded with rows of dark spots; no dark blotch present dorsoposteriorly.

Colour in life (Fig. 7B)

Female (no live male observed): Usually four vertical black bands in dorsal view; first band below first dorsal fin, second and third bands below second dorsal fin and fourth band at hypural crease. Colour of body between black bands rather grey; pink between the two posterior bands. Entire dorsal part of the body, from nape to hypural base, punctuated with bright electric blue spots. Lower half of body marbled with black, white and pinkish markings. Belly and ventral surface of head dusky. First and second dorsal fins with a few black spots evenly distributed on each ray. Pectoral fins banded with rows of dark spots; no dark blotch present dorsoposteriorly. Caudal fin translucent, with a black hypural base and two median vertical rows of black spots. Inside of mouth grey.

Habitat

Schismatogobius arscuttoli has been collected in freshwater streams with moderate to fast flow in shallow areas of gravel.

Etymology

The name for the new species, as a noun in apposition,
is dedicated to Ars-Cuttoli Foundation who funded our research in Indonesia.

Affinities

S. arscuttoli differs from the other species sequenced and present in the area studied by displaying high TrN+I genetic distances to its relatives at COI gene (0.231 to its closest relative S. insignus), and from these species, except S. marmoratus and S. insignus in having 16-17 pectoral rays. It differs from these two species in having a smaller adult average size (< 28 mm SL vs > 33 mm SL). Moreover, it differs from S. marmoratus in having a greater head length in female (29-32.5% vs 27.2-29.1% SL), a smaller caudal peduncle depth (6.9-8.2% vs 8.4-10% SL) (Tabs III, IV), and a different colour pattern of ventral surface of head, pelvic disk and frenum in female (Fig. 2C). It differs from S. insig-

Distribution

S. arscuttoli is known from Sumatra (Fig. 4).

Key to species from Indonesian area

1a: Pectoral rays 14-15 or 15-16, fins with broad black blotch anteriorly 2
1b: Pectoral rays 14-15, fins banded, membrane in first dor-
sal fin posterior to spine 6 connected to base of spine in sec-
ond dorsal fin .. S. saurii
1c: Pectoral rays 16-17, fins banded ... 5
2a: Jaw length in male 12.8-16.7 % SL; jaw length in head
length in male 47.6-57.6 % 3
2b: Jaw length in male 17.5-21.7 % SL; jaw length in head
length in male 55.6-69.2 % 4
3a: Pectoral length 26.4-30.7 % SL; body depth at anus 11.4-
17.4 % SL .. S. bussoni
3b: Pectoral length 16.4-22.8 % SL; body depth at anus
9-12.8 % SL .. S. ampluvinculus
4a: Jaw length in female 11.1-12.6 % SL; jaw length in head
length in female 42.5-47.5 % S. bruyinsi
4b: Jaw length in female 8.4-9.7 % SL; jaw length in head
length in female 27.4-33 % S. risdawatiae
5a: Pectoral rays usually 16; jaw length in head length in
female 36.5-44.2 %; ventral surface of head in female usu-
ally whitish with a blackish border 6
5b: Pectoral rays usually 17; jaw length in head length in
female 42.7-49 %; ventral surface of head in female without
a blackish border ... S. insignus
6a: Head length in female 29-32.5 % SL, caudal peduncle
depth 6.9-8.2 %. Adult average size < 28 mm SL

S. arscuttoli
6b: Head length in female 27.2-29.1 % SL, caudal peduncle
depth 8.4-10 %. Adult average size > 33 mm SL

S. marmoratus
Comparative material

logenised), BIF 2544 to 2546, 3 spms, Tukad Banyuraras, West Bali, Indonesia, 18 Apr. 2014, coll. Hubert et al.

Schismatogobius marmoratus. ZMB 6756, holotype, Loquiló-
cun, Samar Island, Philippines, coll. F. Tagor. MNHN, uncata-

logenised, 2 spms.

Schismatogobius vanuatuensis. MNHN 2003-1557, holotype,

Schismatogobius fuliginatus. MNHN 2002-149 to MNHN 2002-151, 3 spms, Lemi River, New Caledonia, 1999, coll. Mar-

Schismatogobius ampluvinculus. ASIZP0072682, 1 spm, Tai-

Schismatogobius hoesei. AMS I.21272-011, holotype, 1 spm, South branch of Endeavour River, west of Cooktown, Queensland, Australia, 19 Sep. 1979, coll. Hoele; and all paratypes, see Keith et al. (2017).

Acknowledgements. – We would to thank the following for specimen loans: M. McGroutther (AMS), Lin Pui-Lei and K.T. Shao (ASISP), J. Ambruster and D. Wernke (AUM), Y. Ikeda (BLIH), D. Catania, D. Greenfield and M. Hoang (CAS), M. Hammer and G. Dally (NTM), Z. Gabsi and R. Causse (MNHN), R. Hadiaty and S. Sauri (MZN), J. Johnson (QM), R. de Ruiter (RMNH), S. Dorrow (SMF), RobRobins (UF), J. Williams and S. Raredon (USNM), M. Allen and G. Moore (WAM), P. Bartsch and J. Kapp (ZMB). We wish to thank Bambang Dwissusilo, Sumanta, Daisy Wowor and Ujung Nurhaman for their help during the field sampling. Part of the present study was funded by the MNHN (UMR 7208 BOREA), the ‘Institut de Recherche pour le Développement’ (UMR ISEM), the Indonesian Institute of Sciences (LIPI), the French Ichthyology Society (SFI) and the ‘Fondation de France’. This study has been approved by the Indonesian Ministry of Research & Technology (MENRISTEK) and field sampling has been conducted according to the research permits for Philippe Keber (16/EXT/SIP/FRP/E5/ 5/Dit.KI/III/2016), and the research permit for Nicolas Hubert (50/ EXT/SIP/FRP/E5/Dit.KI/IPX/2016). We wish to thank MENRIS- TEK staffs as well as Mohammad Irham, Rulyana Susanti, Gina Naandriona, Rosichon Ubadillah, Hari Sutrisno and Wijaksono (Research Center for Biology-LIPI) for the research permits and supporting letters. We would like to thank the ‘Service de systématique moléculaire’ of the MNHN (CNRS UMS 2700) for the laboratory access and the assistance provided. Finally, we thank for their help and comments, D. Hoeve (AMS), H. Larson (NTM), K. Maeda (University of Ryukyu), G. Marquet, and M. Negrini. This publication is ISEM 2017-088 SUD.

REFERENCES

