S. Veesler and F. Puel, Crystallization of Pharmaceutical Crystals, Handbook of Crystal Growth, pp.915-964, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01273239

N. Candoni, R. Grossier, Z. Hammadi, R. Morin, and S. Veesler, Practical Physics Behind Growing Crystals of Biological Macromolecules Protein & Peptide Letters, vol.19, pp.714-738, 2012.

D. Mangin, F. Puel, and S. Veesler, Polymorphism in Processes of Crystallization in Solution: A Practical Review, Organic Process Research & Development, vol.13, pp.1241-53, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00440718

D. Kashchiev, Nucleation : basic theory with applications, vol.529, 2000.

G. O. Vekilov and P. G. , Are nucleation kinetics of protein crystals similar to those of liquid droplets?, J. Am. Chem. Soc, vol.122, pp.156-63, 2000.

Z. Hammadi, R. Grossier, S. Zhang, A. Ikni, and N. Candoni, Localizing and inducing primary nucleation, Faraday Discussions, vol.179, pp.489-501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01171394

S. Jiang and J. H. Horst, Crystal Nucleation Rates from Probability Distributions of Induction Times, Crystal Growth & Design, vol.11, pp.256-61, 2011.

M. Sva?rd, F. L. Nordstro?m, T. Jasnobulka, and Å. C. Rasmuson, Thermodynamics and Nucleation Kinetics of m-Aminobenzoic Acid Polymorphs, vol.10, pp.195-204, 2009.

L. Li, D. Mustafi, Q. Fu, V. Tereshko, and D. L. Chen, Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins, Proceedings of the National Academy of Sciences, vol.103, pp.19243-19291, 2006.

J. Shim, C. G. Link, D. R. Thorsen, T. Fraden, and S. , Using Microfluidics to Decouple Nucleation and Growth of Protein, Crystal Growth & Design, vol.7, pp.2192-94, 2007.

T. M. Squires and S. R. Quake, Microfluidics: Fluid physics at the nanoliter scale, Reviews of Modern Physics, vol.77, p.977, 2005.

R. D. Dombrowski, J. D. Litster, N. J. Wagner, and Y. He, Crystallization of alpha-lactose monohydrate in a drop-based microfluidic crystallizer, Chemical Engineering Science, vol.62, pp.4802-4812, 2007.

C. L. Hansen, E. Skordalakes, J. M. Berger, and S. R. Quake, A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion, Proceedings of the National Academy of Sciences, vol.99, pp.16531-16567, 2002.

S. L. Perry, S. Guha, A. S. Pawate, A. Bhaskarla, and V. Agarwal, A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction, Lab on a Chip, vol.13, pp.3183-87, 2013.

K. Dhouib, C. K. Malek, W. Pfleging, B. Gauthier-manuel, and R. Duffait, Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis, Lab on a Chip, vol.9, pp.1412-1433, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00442910

F. Otálora, J. A. Gavira, J. D. Ng, and J. M. García-ruiz, Counterdiffusion methods applied to protein crystallization, Progress in Biophysics and Molecular Biology, vol.101, pp.26-37, 2009.

L. Li and R. F. Ismagilov, Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip, Annu Rev Biophys, vol.39, pp.139-58, 2010.

B. Zheng, C. J. Gerdts, and R. F. Ismagilov, Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization, Current Opinion in Structural Biology, vol.15, pp.548-55, 2005.

L. Li, D. Mustafi, Q. Fu, V. Tereshko, and D. L. Chen, Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins, Proc Natl Acad Sci U S A, vol.103, pp.19243-19251, 2006.

C. J. Gerdts, M. Elliott, S. Lovell, M. B. Mixon, and A. J. Napuli, The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS), Acta Crystallographica Section D, vol.64, pp.1116-1138, 2008.

M. Ildefonso, N. Candoni, and S. Veesler, A Cheap, Easy Microfluidic Crystallization Device Ensuring Universal Solvent Compatibility, Organic Process Research and Development, vol.16, pp.556-60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00697535

M. Ildefonso, E. Revalor, P. Punniam, J. B. Salmon, N. Candoni et al., Nucleation and polymorphism explored via an easy-to-use microfluidic tool, Journal of Crystal Growth, vol.342, pp.9-12, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00697511

S. Zhang, N. Ferté, N. Candoni, and S. Veesler, Versatile Microfluidic Approach to Crystallization, Organic Process Research & Development, vol.19, pp.1837-1878, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01721059

N. Candoni, Z. Hammadi, R. Grossier, M. Ildefonso, R. Morin et al., Addressing the stochasticity of nucleation: Practical approaches, Advances in Organic Crystal Chemistry, vol.442, pp.368-73, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01803259

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, and R. H. Liu, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, vol.404, pp.588-90, 2000.

M. A. Unger, H. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, pp.113-129, 2000.

J. C. Mcdonald and G. M. Whitesides, Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices, Accounts of Chemical Research, vol.35, pp.491-99, 2002.

S. Zhang, C. Gerard, A. Ikni, G. Ferry, and L. M. Vuillard, Microfluidic platform for optimization of crystallization conditions, Journal of Crystal Growth, vol.472, pp.18-28, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01392627

C. Gerard, G. Ferry, L. M. Vuillard, J. A. Boutin, and N. Ferte, A Chemical Library to Screen Protein and Protein-Ligand Crystallization Using a Versatile Microfluidic Platform, Crystal Growth & Design, vol.18, pp.5130-5167, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01768463

M. Ildefonso, N. Candoni, and S. Veesler, Heterogeneous nucleation in droplet-based nucleation measurements, Crystal Growth & Design, vol.13, pp.2107-2117, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843742

C. Gerard, G. Ferry, L. M. Vuillard, J. A. Boutin, and L. Chavas, Crystallization via tubing microfluidics permits both in situ and ex situ X-ray diffraction, Acta Crystallographica Section F, vol.73, pp.574-78, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01493598

M. Ildefonso, N. Candoni, and S. Veesler, Using microfluidics for fast, accurate measurement of lysozyme nucleation kinetics, Cryst. Growth Des, vol.11, pp.1527-1557, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00603265

G. Peybernès, R. Grossier, A. Villard, F. Letellier, P. Lagaize et al., Microfluidics setup rapidly measures solubility directly from powder, 2018.

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab on a Chip, vol.6, pp.437-483, 2006.

J. H. Xu, S. W. Li, J. Tan, and G. S. Luo, Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping, Microfluidics and Nanofluidics, vol.5, pp.711-728, 2008.

G. F. Christopher, N. N. Noharuddin, J. A. Taylor, and S. L. Anna, Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Physical Review E, vol.78, p.36317, 2008.

H. Liu and Y. Zhang, Droplet formation in a T-shaped microfluidic junction, Journal of Applied Physics, vol.106, 2009.

A. Gupta and R. Kumar, Flow regime transition at high capillary numbers in a microfluidic Tjunction: Viscosity contrast and geometry effect, Physics of Fluids, vol.22, 1994.

T. Glawdel, C. Elbuken, and C. L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations, Physical Review E, vol.85, p.16322, 2012.

T. Glawdel, C. Elbuken, and C. L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime, II. Modeling. Physical Review E, vol.85, p.16323, 2012.

J. Wehking, M. Gabany, L. Chew, and R. Kumar, Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction, Microfluidics and Nanofluidics, pp.1-13, 2013.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Dynamic Pattern Formation in a VesicleGenerating Microfluidic Device, Physical Review Letters, vol.86, pp.4163-66, 2001.

V. Van-steijn, C. R. Kleijn, and M. T. Kreutzer, Predictive model for the size of bubbles and droplets created in microfluidic T-junctions, Lab on a Chip, vol.10, pp.2513-2531, 2010.

P. Garstecki, H. A. Stone, and G. M. Whitesides, Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions, Physical Review Letters, vol.94, p.164501, 2005.

J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers, Langmuir, vol.19, pp.9127-9160, 2003.

C. Zhao and A. Middelberg, Two-phase microfluidic flows, Chemical Engineering Science, vol.66, pp.1394-411, 2011.
DOI : 10.1016/j.ces.2010.08.038

N. Chen, J. Wu, H. Jiang, and L. Dong, CFD Simulation of Droplet Formation in a Wide-Type Microfluidic T-Junction, Journal of Dispersion Science and Technology, vol.33, pp.1635-1676, 2011.

S. Zhang, C. Guivier-curien, S. Veesler, and N. Candoni, Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics, Chemical Engineering Science, vol.138, pp.128-167, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01278233

H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Applied Physics Letters, vol.83, pp.4664-66, 2003.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord et al., A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening, Lab on a Chip, vol.10, pp.2433-2475, 2010.

C. N. Baroud, F. Gallaire, and R. Dangla, Dynamics of microfluidic droplets, Lab on a Chip, vol.10, pp.2032-2077, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01020657

N. E. Chayen, S. Stewart, P. D. Maeder, D. L. Blow, and D. M. , An automated system for microbatch protein crystallization and screening, Journal of Applied Crystallography, vol.23, pp.297-302, 1990.

N. Candoni, Z. Hammadi, R. Grossier, M. Ildefonso, and E. Revalor, Nanotechnologies dedicated to nucleation control, Int. J. Nanotechnol, vol.9, pp.439-59, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00696846

D. D. Dunuwila and K. A. Berglund, ATR FTIR spectroscopy for in situ measurement of supersaturation, Journal of Crystal Growth, vol.179, pp.185-93, 1997.

F. Lewiner, J. P. Klein, F. Puel, and G. Févotte, On-line ATR FTIR measurement of supersaturation during solution crystallization processes. Calibration and applications on three solute/solvent systems, Chem. Engineering Science, vol.56, pp.2069-84, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01270722

A. M. Schwartz and K. A. Berglund, The use of Raman spectroscopy for in situ monitoring of lysozyme concentration during crystallization in a hanging drop, J. Crystal Growth, vol.203, pp.599-603, 1999.

P. Laval, N. Lisai, J. B. Salmon, and M. Joanicot, A microfluidic device based on droplet storage for screening solubility diagrams, Lab on a Chip, vol.7, pp.829-863, 2007.

J. Leng and J. B. Salmon, Microfluidic crystallization, Lab on a Chip, vol.9, pp.24-34, 2009.

P. Bustamante, S. Romero, A. Peña, B. Escalera, and A. Reillo, Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide, and nalidixic acid in dioxane-water, Journal of Pharmaceutical Sciences, vol.87, pp.1590-96, 1998.

H. Hojjati and S. Rohani, Measurement and Prediction of Solubility of Paracetamol in Water?Isopropanol Solution. Part 1. Measurement and Data Analysis, Organic Process Research & Development, vol.10, pp.1101-1110, 2006.

R. A. Granberg and Å. C. Rasmuson, Solubility of Paracetamol in Pure Solvents, Journal of Chemical & Engineering Data, vol.44, pp.1391-95, 1999.

T. Nagai and S. Prakongpan, Solubility of Acetaminophen in Cosolvents, CHEMICAL & PHARMACEUTICAL BULLETIN, vol.32, pp.340-383, 1984.

B. Romero-s and . Reillo-a, Thermodynamics of Paracetamol in Amphiprotic and Amphiprotic-aprotic Solvent Mixtures. Pharmaceutical Sciences, vol.1, pp.505-512, 1995.

A. Jouyban, H. Chan, N. Chew, M. Khoubnasabjafari, and J. Acree, Solubility Prediction of Paracetamol in Binary and Ternary Solvent Mixtures Using Jouyban&ndash, 2006.

, Acree Model. Chemical and Pharmaceutical Bulletin, vol.54, pp.428-459

J. A. Jiménez and F. Martínez, Thermodynamic Study of the Solubility of Acetaminophen in Propylene Glycol + Water Cosolvent Mixtures, Journal of the Brazilian Chemical Society, vol.17, pp.125-159, 2006.

T. Detoisien, M. Forite, P. Taulelle, J. Teston, and D. Colson, A Rapid Method for Screening Crystallization Conditions and Phases of an Active Pharmaceutical Ingredient, Organic Process Research & Development, vol.13, pp.1338-1380, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00440719

D. Kashchiev, D. Verdoes, and G. M. Van-rosmalen, Induction time and metastability limit in new phase formation, J. Crystal Growth, vol.110, pp.373-80, 1991.

E. Revalor, Z. Hammadi, J. P. Astier, R. Grossier, and E. Garcia, Usual and Unusual Crystallization from Solution, J. Crystal Growth, vol.312, pp.939-985, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00475837

W. Ostwald, Studien uber die bildung und umwandlund fester korper, Z. Phys. Chem, vol.22, pp.289-330, 1897.

A. and A. M. , Systematic studies on the crystallization of lysozyme, J. Crystal Growth, vol.90, pp.86-93, 1988.

L. Legrand, M. Ries-kautt, and M. Robert, Two polymorphs of lysozyme nitrate: temperature dependence of their solubility, Acta Crystallographica Section D, vol.58, pp.1564-67, 2002.

A. J. Veesler-s, Using temperature to crystallize proteins: a mini-review, Cryst. Growth Des, vol.8, pp.4215-4234, 2008.

A. Y. Lee, I. S. Lee, and A. S. Myerson, Factors Affecting the Polymorphic Outcome of Glycine Crystals Constrained on Patterned Substrates, Chemical Engineering & Technology, vol.29, pp.281-85, 2006.

P. Laval, C. Giroux, J. Leng, and J. Salmon, Microfluidic screening of potassium nitrate polymorphism, Journal of Crystal Growth, vol.310, pp.3121-3145, 2008.

D. Vivares, S. Veesler, J. P. Astier, and F. Bonneté, Polymorphism of Urate oxidase in PEG solutions, Crystal Growth & Design, vol.6, pp.287-92, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00016517

D. Tsekova, S. Dimitrova, and C. N. Nanev, Heterogeneous nucleation (and adhesion) of lysozyme crystals, Journal of Crystal Growth, vol.196, pp.226-259, 1999.

G. O. Vekilov and P. G. , Direct determination of the nucleation rates of protein crystals, J. Phys. Chem. B, vol.103, pp.10965-71, 1999.

S. Selimovic, Y. Jia, and S. Fraden, Measuring the Nucleation Rate of Lysozyme using Microfluidics, Crystal Growth & Design, vol.9, pp.1806-1816, 2009.

R. Grossier, A. Magnaldo, and S. Veesler, Ultra-fast crystallization due to Confinement, J. Crystal Growth, vol.312, pp.487-89, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00453710

R. Grossier and S. Veesler, Reaching one single and stable critical cluster through finite sized systems, Cryst. Growth Des, vol.9, pp.1917-1939, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00386957

J. Gibbs, Thermodynamics: Yale University Press 83. Chayen NE. 1996. A novel technique for containerless protein crystallization, Protein Engineering, vol.1, pp.927-956, 1948.

H. Song, D. L. Chen, and R. F. Ismagilov, Reactions in Droplets in Microfluidic Channels, Angewandte Chemie International Edition, vol.45, pp.7336-56, 2006.

H. Song, J. D. Tice, and R. F. Ismagilov, A Microfluidic System for Controlling Reaction Networks in Time, Angewandte Chemie International Edition, vol.42, pp.768-72, 2003.

S. L. Poe, M. A. Cummings, M. P. Haaf, and D. T. Mcquade, Solving the Clogging Problem: Precipitate-Forming Reactions in Flow, Angewandte Chemie International Edition, vol.45, pp.1544-1592, 2006.

B. Zheng, L. S. Roach, and R. F. Ismagilov, Screening of Protein Crystallization Conditions on a Microfluidic Chip Using Nanoliter-Size Droplets, Journal of the American Chemical Society, vol.125, pp.11170-71, 2003.

T. L. Blundell, H. Jhoti, and C. Abell, High-throughput crystallography for lead discovery in drug design, Nature Reviews Drug Discovery, vol.1, pp.45-54, 2002.

S. C. Mande and M. E. Sobhia, Structural characterization of protein-denaturant interactions: crystal structures of hen egg-white lysozyme in complex with DMSO and guanidinium chloride, Protein Engineering, Design and Selection, vol.13, pp.133-174, 2000.

M. Maeki, H. Yamaguchi, M. Tokeshi, and M. Miyazaki, Microfluidic Approaches for Protein Crystal Structure Analysis, Analytical Sciences, vol.32, pp.3-9, 2016.

K. Dhouib, K. Malek, C. Pfleging, W. Gauthier-manuel, B. Duffait et al., Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal Xray analysis, Lab on a Chip, vol.9, pp.1412-1433, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00442911

V. Stojanoff, J. Jakoncic, D. A. Oren, V. Nagarajan, N. Poulsen et al., From screen to structure with a harvestable microfluidic device, Acta Crystallographica Section F, vol.67, pp.971-75, 2011.

S. Guha, S. L. Perry, A. S. Pawate, and P. Kenis, Fabrication of X-ray compatible microfluidic platforms for protein crystallization, Sensors and Actuators B: Chemical, vol.174, pp.1-9, 2012.

F. Pinker, M. Brun, P. Morin, A. Deman, and J. Chateaux, ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature, Crystal Growth & Design, vol.13, pp.3333-3373, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01986191

D. S. Khvostichenko, J. M. Schieferstein, A. S. Pawate, P. D. Laible, and P. Kenis, X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination, Crystal Growth & Design, 2014.

E. M. Horstman, S. Goyal, A. Pawate, G. Lee, and G. Zhang, Roomtemperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction, Crystal Growth & Design, vol.97, p.601, 2015.

M. Maeki, A. S. Pawate, K. Yamashita, M. Kawamoto, and M. Tokeshi, A Method of Cryoprotection for Protein Crystallography by Using a Microfluidic Chip and Its Application for in Situ X-ray Diffraction Measurements, Analytical Chemistry, vol.87, pp.4194-200, 2015.

S. Sui and S. L. Perry, Microfluidics: From crystallization to serial time-resolved crystallography, Structural Dynamics, vol.4, p.32202, 2017.

M. K. Yadav, C. J. Gerdts, R. Sanishvili, W. W. Smith, and L. S. Roach, In situ data collection and structure refinement from microcapillary protein crystallization, Journal of Applied Crystallography, vol.38, pp.900-905, 2005.

M. Maeki, S. Yoshizuka, H. Yamaguchi, M. Kawamoto, and K. Yamashita, X-ray Diffraction of Protein Crystal Grown in a Nano-liter Scale Droplet in a Microchannel and Evaluation of Its Applicability, Analytical Sciences, vol.28, pp.65-65, 2012.

C. J. Gerdts, G. L. Stahl, A. Napuli, B. Staker, and J. Abendroth, Nanovolume optimization of protein crystal growth using the microcapillary protein crystallization system, Journal of Applied Crystallography, vol.43, pp.1078-83, 2010.

C. E. Foster, M. A. Bianchet, P. Talalay, Q. Zhao, and L. M. Amzel, Crystal Structure of Human Quinone Reductase Type 2, a Metalloflavoprotein, Biochemistry, vol.38, pp.9881-86, 1999.

R. Grossier, Z. Hammadi, R. Morin, and A. Magnaldo, Generating nanoliter to femtoliter microdroplets with ease, Applied Physics Letters, vol.98, pp.91916-91919, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00581232