Interactive Tangrami: Rapid Prototyping with Modular, Paper-folded Electronics
Michael Wessely, Nadiya Morenko, Jürgen Steimle, Michael Schmitz

► To cite this version:

HAL Id: hal-01959161
https://hal.archives-ouvertes.fr/hal-01959161
Submitted on 18 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Interactive Tangrami: Rapid Prototyping with modular paper-folded electronics

Michael Wessely1 Nadiya Morenko2 Juergen Steimle3 Michael Schmitz2
1INRIA, Univ Paris-Sud, CNRS, Universite Paris-Saclay F-91400 Orsay, France
michael.wessely@inria.fr
2Academy of Fine Arts Saar D-66117 Saarbrücken, Germany
\{n.morenko, m.schmitz\}@xmlab.org
3Saarland University Saarland Informatics Campus, D-66123 Saarbrücken, Germany
juergen.steimle@cs.uni-saarland.de

ABSTRACT
Prototyping interactive objects with personal fabrication tools like 3D printers requires the maker to create subsequent design artifacts from scratch which produces unnecessary waste and does not allow to reuse functional components. We present Interactive Tangrami, paper-folded and reusable building blocks (Tangramis) that can contain various sensor input and visual output capabilities. We propose a digital design toolkit that lets the user plan the shape and functionality of a design piece. The software manages the communication to the physical artifact and streams the interaction data via the Open Sound protocol (OSC) to an application prototyping system (e.g. MaxMSP). The building blocks are fabricated digitally with a rapid and inexpensive ink-jet printing method. Our systems allows to prototype physical user interfaces within minutes and without knowledge of the underlying technologies. We demo its usefulness with two application examples.

FABRICATION OF INTERACTIVE TANGRAMIS
We will present the paper folding technique for tangramis and proceed to propose functional circuit patterns that can be embedded inside tangramis to add interactivity.

Tangrami
Tangrami folding is an established art practice and is based on simple construction blocks with pouches and plugs that can be attached into each to connect them. A description of the folding technique can be found at [6].

Embedding Interaction
We propose a set of circuit patterns for tangramis that can embed various input sensing and visual output methods. Currently, our system supports touch sensing, embedding of electrical components (e.g. LEDs) and actuated tangramis. An overview can be seen in figure 1.

For printing the conductive patterns we use an Epson ET-2550 ink-jet printer and Mitsubishi’s conductive silver ink (NBSIJ). The actuated tangrami gets taped with a shape-memory polymer (polyethelene) that expands when heated above 90°C. While the underlying paper keeps its shape under higher temperatures, the tape bends the tangrami while expanding by up to 90°. We covered the heating structure of the tangrami with Workzone PE Tape and removed one layer of paper on the back side for less resistance while bending.
2 pole wire Capacitive touch sensor LEDs and other electrical components paper actuation

Figure 1. Ink-jet printable circuit patterns for Tangrami. 2-Pole wires transport signals through the object to capacitive touch tangramis, tangramis that can contain electrical components and tangramis that can be actuated with shape-memory polymer. Each side of a tangrami can be electrically isolated or connected.

Connecting Tangramis
Connections are formed by plugging a tangrami into another one. We found that a tangrami can be rotated up to 45° before a shortcut appears. We designed the silver traces to be large especially at the folds in order to increase their robustness and better connection between two tangramis.

We recommend for permanent installations of a tangrami object to use conductive tape between two segments. Gluing tangramis together once the artist is finished with her object is a common practice among professionals.

Figure 2. Digital Interface for planing a tangrami UI. The tool generates the circuit patterns and manages communication with the controller (Serial) and Application prototyping environments (e.g. MaxMSP) via OSC.

DESIGN TOOLKIT
We found through several design iterations with artists that placing and routing the functional components makes the fabrication of an interactive object difficult. Also, programming a mobile micro-controller and sending the interaction data to a computer required a trained expert. Thus, we developed a design toolkit that supports artists in creating an object with interactive tangramis and prototyping interactivity.

Figure 2 shows the design tool-kit. The artist can select from a library of functional tangramis and place them on the working area. Pin icons from a controller and a tangrami can be connected by drawing wires (green). The tool can connect and configure an Arduino Uno controller and stream the received interaction data via OSC protocol to the system. When the artist finished the planing phase, the toolkit generates all circuit patterns of the implemented tangramis and exports them as a pdf file for printing.

APPLICATION EXAMPLES
In the following we illustrate two application examples that show the usefulness of tangrami interfaces.

Figure 3. We implemented a tangrami dress (a) and a paper pet (b) with a replaceable head (c).

Demo 1 - Interactive Dress
We build a dress out of tangramis that contains a set of LEDs at the collar and a set of touch tangramis that can sense several body postures. Different body postures invoke an audio-visual response from the dress which helps the wearer in non-verbal communication. The piece has been exhibited at the Hager Award at the Academy of Fine Arts, Saarbrücken and the Saarland museum in Berlin, Germany.

Demo 2 - Paper Pet
We implemented a versatile paper pet out of 4 functional tangramis. The two head tangramis are customized with an individual texture. The cow head can sense being cuddled with internal touch sensors and responds with a moo-sound. The cow tangramis can be removed and replaced with a lion head that contains red LEDs as eyes. The LEDs can be turned on to leave ambient notifications in a room.

CONCLUSION
We presented Interactive Tangrami, modular paper-folded construction blocks that contain various input sensing and visual output capabilities. We proposed a design toolkit that supports artists in creating functional TUIs and demonstrate its usefulness with two application examples.

ACKNOWLEDGMENTS
We thank Theophanis Tsandilas for the valuable help. This work was supported by the European Research Council (ERC) grant 321135 CREATIV and European Union’s Horizon 2020 research and innovation program (grant agreement No 714797, StG Interactive Skin).
REFERENCES

