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Abstract

Structured prediction provides a general framework to deal with supervised prob-
lems where the outputs have semantically rich structure. While classical approaches
consider finite, albeit potentially huge, output spaces, in this paper we discuss how
structured prediction can be extended to a continuous scenario. Specifically, we study
a structured prediction approach to manifold valued regression. We characterize a
class of problems for which the considered approach is statistically consistent and
study how geometric optimization can be used to compute the corresponding esti-
mator. Promising experimental results on both simulated and real data complete our
study.

1 Introduction

Regression and classification are probably the most classical machine learning problems
and correspond to estimating a function with scalar and binary values, respectively. In
practice, it is often interesting to estimate functions with more structured outputs. When
the output space can be assumed to be a vector space, many ideas from regression can be
extended, think for example to multivariate [14] or functional regression [23]. However,
a lack of a natural vector structure is a feature of many practically interesting problem:s,
such as ranking [11], quantile estimation [19] or graph prediction [28]. In this latter case,
the outputs are typically provided only with some distance or similarity function that can
be used to design appropriate loss function. Knowledge of the loss is sufficient to ana-
lyze an abstract empirical risk minimization approach within the framework of statistical
learning theory, but deriving approaches that are at the same time statistically sound and
computationally feasible is a key challenge. While ad-hoc solutions are available for many
specific problems [7,9, 18, 27], structured prediction [5] provides a unifying framework
where a variety of problems can be tackled as special cases.
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Classically, structured prediction considers problems with finite, albeit potentially huge,
output spaces. In this paper, we study how these ideas can be applied to non-discrete out-
put spaces. In particular, we consider the case where the output space is a Riemannian
manifold, that is the problem of manifold structured prediction (also called manifold val-
ued regression [32]). While also in this case ad-hoc methods are available [33], in this
paper we adopt and study a structured prediction approach starting from a framework
proposed in [8]. Within this framework, it is possible to derive a statistically sound, and
yet computationally feasible, structured prediction approach, as long as the loss function
satisfies a suitable structural assumption. Moreover we can guarantee that the computed
prediction is always an element of the manifold.

Our main technical contribution is a characterization of loss functions for manifold
structured prediction satisfying such a structural assumption. In particular, we consider
the case where the Riemannian metric is chosen as a loss function. As a byproduct of
these results, we derive a manifold structured learning algorithm that is universally con-
sistent and corresponding finite sample bounds. From a computational point of view, the
proposed algorithm requires solving a linear system (at training time) and a minimization
problem over the output manifold (at test time). To tackle this latter problem, we inves-
tigate the application of geometric optimization methods, and in particular Riemannian
gradient descent [1]. We consider both numerical simulations and benchmark datasets
reporting promising performances. The rest of the paper is organized as follows. In Sec-
tion 2, we define the problem and explain the proposed algorithm. In Section 3 we state
and prove the theoretical results of this work. In Section 4 we explain how to compute the
proposed algorithm and we show the performance of our method on synthetic and real
data.

2 Structured Prediction for Manifold Valued Regression

The goal of supervised learning is to find a functional relation between an input space X’
and an output space ) given a finite set of observations. Traditionally, the output space
is either a linear space (e.g. J = RM) or a discrete set (e.g. J = {0, 1} in binary classi-
fication). In this paper, we consider the problem of manifold structured prediction [33],
in which output data lies on a manifold M C RY. In this context, statistical learning
corresponds to solving

argmin & (f) with  &(f) :J A(f(x),y) p(x,y) (1)
feX—Y XXy

where ) is a subset of the manifold M and p is an unknown distribution on X x ). Here,
A:Y x Y — Ris a loss function that measures prediction errors for points estimated on
the manifold. The minimization is meant over the set of all measurable functions from X
to ). The distribution is fixed but unknown and a learning algorithm seeks an estimator
f: X — Y that approximately solves Eq. (1), given a set of training points (xi,yi)i-;
sampled independently from p.

A concrete example of loss function that we will consider in this paper is A = d? the
squared geodesic distance d : J) x )) — R [20]. The geodesic distance is the natural metric



on a Riemannian manifold (it corresponds to the Euclidean distance when M = R¢) and
is a natural loss function in the context of manifold regression [12,15,17,32,33].

2.1 Manifold Valued Regression via Structured Prediction

In this paper we consider a structured prediction approach to manifold valued regression
following ideas in [8]. Given a training set (x;,yi){";, an estimator for problem Eq. (1) is
defined by

n
f(x) = argmin ) ou(x) A (y,yi) 2)
vey g
for any x € X. The coefficients «(x) = (x1(x),...,xn(x))T € R™ are obtained solving a

linear system for a problem akin to kernel ridge regression (see Sec. 2.2): given a positive
definite kernel k : X x X — R [4] over X, we have

a(x) = (e (x), .oy on(x)) T = (K+nAD 'Ky (3)

where K € R™" is the empirical kernel matrix with Ki; = k(xi,%;), and Ky € R™ the
vector whose i-th entry corresponds to (Ky); = k(x,x;). Here, A € R, is a regularization
parameter and I € R™*™ denotes identity matrix.

Computing the estimator in Eq. (2) can be divided into two steps. During a training
step the score function « : X — R" is learned, while during the prediction step, the output
f(x) € Y is estimated on a new test point x € X. This last step requires minimizing
the linear combination of distances A (y,y;) between a candidate y € ) and the training
outputs (y;)i*;, weighted by the corresponding scores ;(x). Next, we recall the derivation
of the above estimator following [8].

2.2 Derivation of the Proposed Estimator

The derivation of the estimator f in Eq. (2) is based on the following key structural as-
sumption on the loss.

Definition 1 (Structure Encoding Loss Function (SELF)). Let ) be a compact set. A function
A Y x Y — Ris a Structure Encoding Loss Function if there exist a separable Hilbert space
H, a continuous feature map \ : Y — H and a continuous linear operator V : H — H such
that for all y,y’' € Y

Aly,y") = Wy), Vib(y))n. 4

Intuitively, the SELF definition requires a loss function to be “bi-linearizable” over the
space . This is similar, but more general, than requiring the loss to be a kernel since it
allows also to consider distances (which are not positive definite) or even non-symmetric
loss functions. As observed in [8], a wide range of loss functions often used in machine
learning are SELF. In Sec. 3 we study how the above assumption applies to manifold
structured loss functions, including the squared geodesic distance.



We first recall how the estimator Eq. (2) can be obtained assuming A to be SELF. We
begin by rewriting the expected risk in Eq. (1) as

£(F) = L <¢(f(x)),v Lw(y) dp(y|x)> dolx) s

H
where we have conditioned p(y,x) = p(ylx)px(x) and used the linearity of the integral

and the inner product. Therefore, any function f* : X — ) minimizing the above func-
tional must satisfy the following condition

£*(x) = argmin ((y), Vg*(x)),,  where 9*(x)=J Dy dolyl)  (6)
yey Yy

where we have introduced the function g* : X — H that maps each point x € X to the
conditional expectation of \(y) given x. However we cannot compute explicitly g*, but
noting that it minimizes the expected least squares error

J I(y) — 9 dp(x,y) %

suggests that a least squares estimator can be considered. We first illustrate this idea for
X =R% and # = R. In this case we can consider a ridge regression estimator

. — : — 1
gx)=W'x  with W = argmin — || XW — {(Y)|2 + A|W|2 (8)
WeRdxk Tt

where X = (x1,...,x2)" € R™% and p(Y) = (W(y1),...,¥(yn))" € R™¥ are the ma-
trices whose i-th row correspond respectively to the training sample x; € X and the
(mapped) training output \(y;) € H. We have denoted || - | the squared Frobenius norm
of a matrix, namely the sum of all its squared entries. The ridge regression solution can
be obtained in closed form as W = (X" X 4+ nAI)"'XT(Y). For any x € X we have

n

g(x) = v TXXTX+nAD) x =0(Y) Talx) = D ot(x)(ys) 9)

i=1

where we have introduced the coefficients «(x) = X(X"X+nAI)~'x € R™. By substituting
g to g* in Eq. (6) we have

f(x) = argmin <11)(y), \4 (Z Oéi(XN)(yi)> > =argmin ) o4(x) A (Y, ) (10
i1

yem yem e
where we have used the linearity of the sum and the inner product to move the coefficients
«; outside of the inner product. Since the loss is SELF, we then obtain (\p(y), Vib(yi)) =
A(y,yi) for any y; in the training set. This recovers the estimator f introduced in Eq. (2),
as desired.

We end noting how the above idea can be extended. First, we can consider X’ to be
asetand k: X x X — R a positive definite kernel. Then g can be computed by kernel
ridge regression (see e.g. [30]) to obtain the scores a(x) = (K + nAI)~'K,, see Eq. (3).
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Second, the above discussion applies if H is infinite dimensional. Indeed, thanks to the
SELF assumption, f does not depend on explicit knowledge of the space # but only on the
loss function.

We next discuss the main results of the paper, showing that a large class of loss func-
tions for manifold structured prediction are SELF. This will allow us to prove consistency
and learning rates for the manifold structured estimator considered in this work.

3 Characterization of SELF Function on Manifolds

In this section we provide sufficient conditions for a wide class of functions on manifolds
to satisfy the definition of SELF. A key example will be the case of the squared geodesic
distance. To this end we will make the following assumptions on the manifold M and the
output space ) C M where the learning problem takes place.

Assumption 1. M is a complete d-dimensional smooth connected Riemannian manifold,
without boundary, with Ricci curvature bounded below and positive injectivity radius.

The assumption above imposes basic regularity conditions on the output manifold. In
particular we require the manifold to be locally diffeomorphic to R¢ and that the tangent
space of M at any p € M varies smoothly with respect to p. This assumption avoids
pathological manifolds and is satisfied for instance by any smooth compact manifold (e.g.
the sphere, torus, etc.) [20]. Other notable examples are the statistical manifold (without
boundary) [3] any open bounded sub-manifold of the cone of positive definite matrices,
which is often studied in geometric optimization settings [1]. This assumption will be
instrumental to guarantee the existence of a space of functions H on M rich enough to
contain the squared geodesic distance.

Assumption 2. ) is a compact geodesically convex subset of the manifold M.

A subset ) of a manifold is geodesically convex if for any two points in ) there exists one
and only one minimizing geodesic curve connecting them. The effect of Asm. 2 is twofold.
On one hand it guarantees a generalized notion of convexity for the space ) on which we
will solve the optimization problem in Eq. (2). On the other hand it avoids the geodesic
distance to have singularities on )’ (which is key to our main result below). For a detailed
introduction to most definitions and results reviewed in this section we refer the interested
reader to standard references for differential and Riemannian geometry (see e.g. [20]).
We are ready to prove the main result of this work.

Theorem 1 (Smooth Functions are SELF). Let M satisfy Asm. 1 and Y C M satisfy Asm. 2.
Then, any smooth function h: Y x )) — R is SELF on ).

Sketch of the proof (Thm. 1). The complete proof of Thm. 1 is reported in Appendix A. The
proof hinges around the following key steps:

Step 1 If there exists an RKHS H on M, then any h € 1 ® H is SELF. Let H be a
reproducing kernel Hilbert space (RKHS) [4] of functions on M with associated bounded
kernel k : M x M — R. Let H ® H denote the RKHS of functions h : M x M — R with



associated kernel k such that k((y,z), (y/,z')) = k(y,y’)k(z,z') for any y,y’,z,z' € M.
Let, h: M x M — R be such that h € H®H. Recall that # ® H is isometric to the space of
Hilbert-Schmidt operators from H to itself. Let V}, :  — H be the operator corresponding
to h via such isometry. We show that the SELF definition is satisfied with V = V;, and
P(y) = k(y,-) € H for any y € M. In particular, we have ||V| < ||V|lus = ||h|nen, with
|IV||us denoting the Hilbert-Schmidt norm of V.

Step 2: Under Asm. 2, C°(M) ® C(M) “contains” C*() x V). If Y is compact and
geodesically convex, then it is diffeomorphic to a compact set of R%. By using this fact,
we prove that any function in C*() x ), the space of smooth functions on ) x ), ad-
mits an extension in C°(M x M) the space of smooth functions on M x M vanishing
at infinity (this is well defined since M is diffeomorphic to RY thanks to ??), and that
CPM x M) =CP (M) ®CP(M).

Step 3: Under Asm. 1, there exists an RKHS on M containing C2°(M). Under Asm. 1,
the Sobolev space H = HZ(M) of square integrable functions with smoothness s is an
RKHS for any s > d/2 (see [16] for a definition of Sobolev spaces on Riemannian mani-
folds).

The proof proceeds as follows: from Step 1, we see that to guarantee h to be SELF it
is sufficient to prove the existence of an RKHS # such that h € H ® H. The rest of
the proof is therefore devoted to showing that for smooth functions this is satisfied for
H = HZ(M). Since h is smooth, by Step 2 we have that under Asm. 2, there exists a
h € C®(M) ® CX(M) whose restriction h|yy to ) x ) corresponds to h. Now, denote
by H2(M) the Sobolev space of squared integrable functions on M with smoothness index
s > 0. By construction, (see [16]) for any s > 0, we have C°(M)|y C H%(M)bh namely
for any function. In particular, h € C®(M) ® CX(M) C HI(M) ® HZ(M). Finally,
Step 3 guarantees that under Asm. 1, % = HZ(M) with s > d/2 is an RKHS, showing that
h € H ® H as desired. O

Interestingly, Thm. 1 shows that the SELF estimator proposed in Eq. (2) can tackle any
manifold valued learning problem in the form of Eq. (1) with smooth loss function. In the
following we study the specific case of the squared geodesic distance.

Theorem 2 (d? is SELF). Let M satisfy Asm. 1 and Y C M satisfy Asm. 2. Then, the
squared geodesic distance A\ = d* : M x M — R is smooth on ). Therefore /\ is SELF on ).

The proof of the result above is reported in the supplementary material. The main techni-
cal aspect is to show that regularity provided by Asm. 2 guarantees the squared geodesic
distance to be smooth. The fact that A is SELF is then an immediate corollary of Thm. 1.

3.1 Statistical Properties of Manifold Structured Prediction

In this section, we characterize the generalization properties of the manifold structured
estimator Eq. (2) in light of Thm. 1 and Thm. 2.



Theorem 3 (Universal Consistency). Let M satisfy Asm. 1 and ) C M satisfy Asm. 2. Let
X be a compact set and k : X x X — R be a bounded continuous universal kernel® For any
n € N and any distribution p on X x ) let Fn : X — Y be the manifold structured estimator
in Eq. (2) for a learning problem with smooth loss function A\, with (xi,yi)I* ; training points
independently sampled from p and A, =n~"/*. Then

lim &(f,) = £(f*) with probability 1. (11)

n—oo
The result above follows from Thm. 4 in [8] combined with our result in Thm. 1. It
guarantees that the algorithm considered in this work finds a consistent estimator for the
manifold structured problem, when the loss function is smooth (thus also in the case of
the squared geodesic distance). As it is standard in statistical learning theory, we can im-
pose regularity conditions on the learning problem, in order to derive also generalization
bounds for f. In particular, if we denote by F the RKHS associated to the kernel k, we will
require g* to belong to the same space H ® F where the estimator g introduced in Eq. (9)
is learned. In the simplified case discussed in Sec. 2.2, with linear kernel on X = R¢ and
H = R* finite dimensional, we have F = R9 and this assumption corresponds to require
the existence of a matrix W] € R**¢ = H ® F, such that g*(x) = W, x for any x € X. In
the general case, the space H ® F extends to the notion of reproducing kernel Hilbert space
for vector-valued functions (see e.g. [2,21]) but the same intuition applies.

Theorem 4 (Generalization Bounds). Let M satisfy Asm. 1 and Y C M satisfy Asm. 2. Let
H = HI(M) withs > d/2and k: X x X — R be a bounded continuous reproducing kernel
with associated RKHS F. For any n € N, let f,, denote the manifold structured estimator in
Eq. (2) for a learning problem with smooth loss /A : Y x Y — R and A, = n~"2. If the
conditional mean g* belongs to H ® F, then

E(fn) —E(f) <caqTini (12)

holds with probability not less than 1 — 8e™" for any T > 0, with ca = || A ||uen and q a
constant not depending on n, T or the loss /.

The generalization bound of Thm. 4 is obtained by adapting Thm. 5 of [8] to our results
in Thm. 1 as detailed in the supplementary material. To our knowledge these are the
first results characterizing in such generality the generalization properties of an estimator
for manifold structured learning with generic smooth loss function. We conclude with a
remark on a key quantity in the bound of Thm. 4.

Remark 1 (The constant cn). We comment on the role played in the learning rate by ca,
the norm of the loss function /\ seen an element of the Hilbert space H ® H. Indeed, from the
discussion of Thm. 1 we have seen that any smooth function on ) is SELF and belongs to the
set H ® H with H = HZ(M), the Sobolev space of squared integrable functions for s > d/2.
Following this interpretation, we see that the bound in Thm. 4 can improve significantly
(in terms of the constants) depending on the regularity of the loss function: smoother loss
functions will result in “simpler” learning problems and vice-versa. In particular, when A

IThis is standard assumption for universal consistency (see [34]). An example of continuous universal
kernel on X = R is the Gaussian k(x,x’) = exp(—||x — x'||*/o), for ¢ > 0.
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Positive definite matrix manifold (PT'_ Sphere (Sq_1)

n 1 1 n
Fy) 21 ail| log(Y~2Z;Y72) || >~ o arccos ((zi,y))?
i= {5
n
VmF(y) 2 Z1 Y2 log(Y%Z;‘Y% )Yz 45 gy — 1)%&3]%
1= 1y
Ry (V) Yz exp(Y~2vY~2)Y2 o

Table 1: Structured loss, gradient of the structured loss and retraction for PT*, and Sq_1. Z; € P,
and z; € Sq_1 are the training set points. I € R4*¢ is the identity matrix.

corresponds to the squared geodesic distance, the more “regular” is the manifold M, the
learning problem will be. A refined quantitative characterization of ca in terms of the Ricci
curvature and the injective radius of the manifold is left to future work.

4 Manifold Structured Prediction Algorithm and Experiments

In this section we recall geometric optimization algorithms that can be adopted to perform
the estimation of f on a novel test point x. We then evaluate the performance of the
proposed method in practice, reporting numerical results on simulated and real data.

4.1 Optimization on Manifolds

We begin discussing the computational aspects related to evaluating the manifold struc-
tured estimator. In particular, we discuss how to address the optimization problem in
Eq. (2) in specific settings. Given a test point x € X, this process consists in solving a
minimization over ), namely

minF(y) (13)
yey
where F(y) corresponds to the linear combination of A(y,y;) weighted by the scores o (x)
computed according to Eq. (3). If ) is a linear manifold or a subset of M = R, this prob-
lem can be solved by means of gradient-based minimization algorithms, such as Gradient
Descent (GD):

Yir1 = Yt — Nt VF(Yi) 14

for a step size ny € R. This algorithm can be extended to Riemannian gradient descent
(RGD) [39] on manifolds, as

Y1 = Expy, MV F(ye)) (15)

Where V \F is the gradient defined with respect to the Riemannian metric (see [1])
and Expy : TyM — M denotes the exponential map on y € ), mapping a vector from the
tangent space Ty M to the associated point on the manifold according to the Riemannian
metric [20]. For completeness, the algorithm is recalled in Appendix E. For this family of
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Squared loss App loss
Dim KRLS SP KRLS SP

5 0.724+0.08  0.894+0.08 111+64  0.94+0.06
10 0.81+£0.03  0.924+0.05 44483  1.24+0.06
15 0.83+0.03 0.91+0.06  56+10  1.25+0.05
20 0.85+0.02  0.914+0.03 59412 1.33+0.03
25 0.87+0.01  0.9140.02 72+9 1.44+0.03
30 0.88+0.01  0.914+0.02 67+7.2  1.55+0.03

Table 2: Simulation experiment: average squared loss (First two columns) and App (Last two
columns) error of the proposed structured prediction (SP) approach and the KRLS baseline on
learning the inverse of a PD matrix for increasing matrix dimension.

gradient-based algorithms it is possible to substitute the exponential map with a retraction
Ry: TyM — M, which is a first order approximation to the exponential map. Retractions
are often faster to compute and still offer convergence guarantees [1]. In the following
experiments we will use both retractions and exponential maps. We mention that the step
size 1 can be found with a line search over the validation set, for more see [1].

Tab. 1 reports gradients and retraction maps for the geodesic distance of two problems
of interest considered in this work: positive definite manifold and the sphere. See Secs. 4.2
and 4.3 for more details on the related manifolds.

We point out that using optimization algorithms that comply with the geometry of
the manifold, such as RGD, guarantees that the computed value is an element of the
manifold. This is in contrast with algorithms that compute a solution in a linear space
that contains M and then need to project the computed solution onto M. We next discuss
empirical evaluations of the proposed manifold structured estimator on both synthetic and
real datasets.

4.2 Synthetic Experiments: Learning Positive Definite Matrices

We consider the problem of learning a function f : R — ) = PT',, where P, denotes the
cone of positive definite (PD) m x m matrices. Note that PT', is a manifold with squared
geodesic distance App between any two PD matrices Z,Y € PT',_ defined as

App(Z,Y) = ||log(Y2Z Y"2)|2 (16)

where, for any M € PT', we have that M? and log(M) correspond to the matrices with
same eigenvectors of M but with respectively the square root and logarithm of the eigen-
values of M. In Table 1 we show the computation of the structured loss, the gradient of the
structured loss and the exponential map of the PD matrix manifold. We refer the reader
to [6,22] for a more detailed introduction on the manifold of positive definite matrices.
For the experiments reported in the following we compared the performance of the
manifold structured estimator minimizing the loss App and a Kernel Regularized Least
Squares classifier (KRLS) baseline (see Appendix F), both trained using the Gaussian ker-
nel k(x,x’) = exp(—||x — x/||?/20%). The matrices predicted by the KRLS estimator are
projected on the PD manifold by setting to a small positive constant (1e — 12) the negative



Structured estimator Original image Ridge regression

A Deg.

KRLS 269454
MR [33] 22+t6
SP (ours) 18.8+3.9

Figure 1: (Left) Fingerprints reconstruction: Average absolute error (in degrees) for the manifold
structured estimator (SP), the manifold regression (MR) approach in [33] and the KRLS baseline.
(Right) Fingerprint reconstruction of a single image where the structured predictor achieves 15.7
of average error while KRLS 25.3.

eigenvalues. For the manifold structured estimator, the optimization problem at Eq. (2)
was performed with the Riemannian Gradient Descent (RGD) algorithm [1]. We refer
to [39] regarding the implementation of the RGD in the case of the geodesic distance on
the PD cone.

Learning the Inverse of a Positive Definite Matrix. We consider the problem of learning
the function f : PT', — P™, such that f(X) = X! for any X € PT',. Input matrices are
generated as X; = UZU' € PT, with U a random orthonormal matrix sampled from the
Haar distribution [10] and S € PI', a diagonal matrix with entries randomly sampled
from the uniform distribution on [0, 10]. We generated datasets of increasing dimension
m from 5 to 50, each with 1000 points for training, 100 for validation and 100 for testing.
The kernel bandwidth ¢ was chosen and the regularization parameter A were selected
by cross-validation respectively in the ranges 0.1 to 1000 and 10~° to 1 (logarithmically
spaced).

Tab. 2 reports the performance of the manifold structured estimator (SP) and the
KRLS baseline with respect to both the App loss and the least squares loss (normalized
with respect to the number of dimensions). Note that the KRLS estimator target is to
minimize the least squares (Frobenius) loss and is not designed to capture the geometry
of the PD cone. We notice that the proposed approach significantly outperforms the KRLS
baseline with respect to the App loss. This is expected: App penalizes especially matrices
with very different eigenvalues and our method cannot predict matrices with non-positive
eigenvalues, as opposed to KRLS which computes a linear solution in R% and then projects
it onto the manifold. However the two methods perform comparably with respect to the
squared loss. This is consistent with the fact that our estimator is aware of the natural
structure of the output space and uses it profitably during learning.

4.3 Fingerprint Reconstruction

We consider the fingerprint reconstruction application in [33] in the context of manifold
regression. Given a partial image of a fingerprint, the goal is to reconstruct the contour

10



KRLS SP (Ours)

Emotions 0.63 0.73
CAL500 0.92 0.92
Scene 0.62 0.73

Table 3: Area under the curve (AUC) on multilabel benchmark datasets [36] for KRLS and SP.

lines in output. Each fingerprint image is interpreted as a separate structured prediction
problem where training input points correspond to the 2D position x € R? of valid contour
lines and the output is the local orientation of the contour line, interpreted as a point on
the circumference S;. The space S; is a manifold with squared geodesic distance Ag,
between two points z,y € S; corresponding to

ZXS1(Z)U) ::arccos((z,y>)2 (17)

where arccos is the inverse cosine function. In Table 1 we show the computation of the
structured loss, the gradient of the structured loss and the chosen retraction for the sphere
manifold. We compared the performance of the manifold structured estimator proposed
in this paper with the manifold regression approach in [33] on the FVC fingerprint verifi-
cation challenge dataset?. The dataset consists of 48 fingerprint pictures, each with ~ 1400
points for training, ~ 1000 points for validation and the rest (~ 25000) for test.

Fig. 1 reports the average absolute error (in degrees) between the true contour ori-
entation and the one estimated by our structured prediction approach (SP), the manifold
regression (MR) in [33] and the KRLS baseline. Our method outperforms the MR com-
petitor by a significant margin. As expected, the KRLS baseline is not able to capture
the geometry of the output space and has a significantly larger error of the two other
approaches. This is also observed on the qualitative plot in Fig. 1 (Left) where the predic-
tions of our SP approach and the KRLS baseline are compared with the ground truth on a
single fingerprint. Output orientations are reported for each pixel with a color depending
on their orientation (from 0 to 7t). While the KRLS predictions are quite inconsistent, it
can be noticed that our estimator is very accurate and even “smoother” than the ground
truth.

4.4 Multilabel Classification on the Statistical Manifold

We evaluated our algorithm on multilabel prediction problems. In this context the output
is an m-dimensional histogram, i.e. a discrete probability distribution over m points. We
consider as manifold the space of probability distributions over m points, that is the m-
dimensional simplex A™ endowed with the Fisher information metric [3]. We will consider
Y = AT where we require yy,...,ym > €, for € > 0. In the experiment we considered € =
le—5. The geodesic induced by the Fisher metric is, d(y,y’) = arccos (3 " \/yiy{) [26].
This geodesic comes from applying the map 7: A™ — Sy, 1, 7(y) = (YT, -+ /Yms1) O
the points {y;}I* ; € A™. This results in points that belong to the intersection of the positive
quadrant RT', and the sphere S;;,_1. We can therefore use the geodetic distance on the

*http://bias.csr.unibo.it/fvc2004
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Sphere and gradient and retraction map described in Tab. 1. We test our approach on
some of the benchmark multilabel datasets described in [36] and we compare the results
with the KRLS baseline. We cross-validate A and o taking values, respectively, from the
intervals [Te—6,1e— 1] and [0.1, 10]. We compute the area under curve (AUC) [31] metric
to evaluate the quality of the predictions, results are shown in Table 3.

5 Conclusions

In this paper we studied a structured prediction approach for manifold valued learning
problems. In particular we characterized a wide class of loss functions (including the
geodesic distance) for which we proved the considered algorithm to be statistically consis-
tent, additionally providing finite sample bounds under standard regularity assumptions.
Our experiments show promising results on synthetic and real data using two common
manifolds: the positive definite matrices cone and the sphere. With the latter we consid-
ered applications on fingerprint reconstruction and multi-labeling. The proposed method
leads to some open questions. From a statistical point of view it is of interest how in-
variants of the manifold explicitly affect the learning rates, see Remark 1. From a more
computational perspective, even if experimentally our algorithm achieves good results we
did not investigate convergence guarantees in terms of optimization.
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Appendix

The appendix of this work is organized in the following sections:

A SELF property for smooth functions defined on manifolds (Thm. 1).

B Proof of SELF property for squared geodesic distances (Thm. 2).

C Generalization bounds for the structured estimator with squared geodesic loss
(Thm. 4).

D Basic definitions and concepts for Riemannian manifolds.

E Riemannian gradient descent algorithm.

F A note on KRLS for the experiments in Sec. 4.2 on PD matrices.

A Proof of Thm. 1

We prove here intermediate results that will be key to prove Thm. 1. We refer to [20]
for basic definitions on manifolds and to [4] for an introduction on reproducing kernel
Hilbert spaces (RKHS).

Notation and Definitions. We recall here basic notations and definition that will be
used in the following. Given a smooth manifold M, for any open subset U C M we
denote by C>°(U) the set of smooth functions on U and with C2°(U) the set of compactly
supported smooth functions on U, namely functions such that the closure of their support is
a compact set. For a compact subset N C M we denote by C2°(N) the set of all functions
h : N — R that admit an extension h € C®(M) such that hly = h and its support is
contained in N, namely it vanishes on the border of N. Finally, for any subset N of M we
denote C*°(N) the set of all functions that admit a smooth extension in C*(M).

In the following, a central role will be played by tensor product of topological vector
spaces [35]. In particular, for a Hilbert space H, we will denote H ® H the closure of
the tensor product between A and itself with respect to the canonical norm such that
Ih ®h|lgen = [[hllxlh ||l for any hyh’ € H. Moreover, to given a compact set N C RY,
we recall that C°(N)&®,C(N) denotes the completion of the topological tensor product
between C2°(N) and itself with respect to the projective topology (see [35] Def. 43.2 and
43.5). In the following, for simplicity, we will denote this space with C2°(N)® C2°(N) with
some abuse of notation. Finally, for any subset )V C M and space F of functions from M
to R we denote by F|y the space of functions from ) to R that admit an extension in F.
In particular not that C*®(Y) = C®(M)|y.

A.1 Auxiliary Results

We are ready to prove the auxiliary results.
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Lemma 5. Let M be a topological space, Y C M be a compact subset and H a reproducing
kernel Hilbert space of functions on M with kernel K : M x M — R such that there exists
k > 0 for which k(y,y) < k% for any y € ). Then, for any h € H ® H, its restriction to
Y x Y, h = hlyyy is SELF.

Proof. Denote Ky = k(y,-) € H for every y € M. Then the space H ® H is an RKHS
with reproducing kernel K : (M x M) x (M x M) — R such that K((y,z), (y’,z')) =
K(y,y')K(z,z') for any y,y’,z,z’ € M (see e.g. [4]). In particular R(y’z) = Ky ® K. Let
now h : M x M — R be a function in # ® H. In particular, there exist a V € H @ H
such that (V,Ky ® Kz)y,09, = h(y,z) for any y,z € Y (reproducing property). Note that
H ® H is isometric to the space of Hilbert-Schmidt operators from H to itself, with inner
product corresponding to (A, B); o, = (A,B)yg = Tr(A*B) for any A,B € H ® H, with
A* denoting the conjugate of A* € H ® H. Therefore, for any y,z € ) we have

}_1|37><)7(U>Z) = ]'_1(1.%2) =V Ky ® Kz)’,q@q.[ = Tr(v*Ky ®@K;) = <KZ)V*KU>’H . (18)

Since Ky is bounded in #, for y € Y and the operator norm of V is bounded by its Hilbert-
Schmidt norm, namely ||V|| < ||V|/us, we can conclude that h = hly.y is indeed SELF. [

Lemma 6. Let M satisfy Asm. 1. Then there exists a reproducing kernel Hilbert space of
functions H on M, with bounded kernel, such that C°(M) C H.

Proof. Let H2(M) denote the Sobolev space on M of squared integrable functions with
smoothness s > 0 (see [16] for the definition of Sobolev spaces on Riemannian mani-
folds). By construction (see page 47 of [16]), C2°(M) C H2(M) for any s > 0. To prove
this Lemma, we will show that H2(M) is an RKHS for any s > d/2. The proof is organized
in two steps.

Step 1: HZ(M) is continuously embedded in C(M). By Asm. 1, we can apply Thm. 3.4
in [16] (see also Thm. 2.7 [16] for compact manifolds), which guarantees the existence of
a constant C > 0 (see last lines of the proofs for its explicit definition) such that

sup [f(y)l < ClIfll22m))
yemM

for any y € M and f € HZ(M).

Step 2: Constructing 7 from H2(M). Prop. 2.1 of [16] proves that there exists an inner
product, that we denote by (-, -);,, whose associated norm is equivalent to || - [l};2(r¢) and
such that the space # = (H2(M), (-, -),,) is a Hilbert space.

Now, for any y € M denote by e, : # — R, the linear functional corresponding to the
evaluation, that is e, (f) = f(y). Now by Step 1, we have that the linear functional e, is
uniformly bounded and so continuous, indeed,

ley(DI =1f(Y)l < C|Iflln, VfeH.

So by the Riesz representation theorem e, € H and so H is a reproducing kernel Hilbert
space, with kernel k(y,y’) = (ey, e,),,, (see [4], page 343, for more details). Note finally
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that the kernel is bounded since

leyllnw = sup [(ey,f); [= sup ley(f)] <C,
[If]l# <1 [I]l# <1
and therefore k(y,y’) < |leyl|n|ley |n < C%. O

In the following, let A C {f : U — S}and B C {g : V — S}, with U, V,S topological
spaces. We denote A = B if there exists an invertible map q : U — V, such that B = Aoq™!
and A=Bog.

Lemma 7 (see also [24,25]). Let U be a geodesically convex open subset of a d-dimensional
complete Riemannian manifold M without border; then there exists a smooth map q : U —
R4 with smooth inverse, such that

C®(U) = C*®(RY), and  CX(U) = CX(RY)

moreover for any compact set )) C U there exists a compact set R C RY such that R = q()
and the map s, that is the restriction of q to Y — R, guarantees

C*)=C®R), and CZ(V)=CE(R)

Proof. By Lemma 9, there exists a point p € U such that d(p,-) admits all directional
derivatives in all points q € U (it is, in fact in C*°(U)). We are therefore in the hypotheses
of Thm. 2 in [38], from which we conclude that there exists a smooth diffeomorphism
between U and R¢ (with smooth inverse). Denoting by q the diffeomorphism between U
and R, for any function f € C>(U), we have foq™" € C®(R%), so C®(U)oq~' € C*®(RY)
and for any function g € C*(R¢) we have goq € C*®(U), so C*(R%)oq C C*®(U). Finally
we recall that if A C B, then A op C B o p for any set A, B and any map p applicable to
A, B. Then
C®(U) =C*(U)oq 'oqC C®RY)oqC C¥(U)

and so C*°(N) = C*(R¢). The same reasoning holds C°(U) = CX(RY).

Analogously, the smooth diffeomorphism q maps compact subsets of U to compact
subsets of RY. Denote by R € R¢ the compact subset that is q()’), the image of Y C U

a compact subset of U, then s is the restriction of q to J) — R. By the same reasoning as
above, we have that C*()) = C®°(R) via s. O

Lemma 8. Let U be a open geodesically convex subset of a complete Riemannian d-dimensional
manifold M and Y a compact subset of U, then there exists a compact subset N C U such
that ) belongs to the interior of N and

CPY xY) C(CE(N) @ CE(N))lysxy-
Moreover, C*(Y) C C(N)|y.

Proof. We first consider the real case U = M = R% with Euclidean metric. By Cor. 2.19
in [20], for any open subset V C RY we have that any f € C*())) admits an extension
f € C*(RY) such that fly = f and suppf ¢ C°(V). Then, since ) is bounded (compact
in a complete space), there exists a bounded open set V containing ). Let N = V the
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closure of V. N is a compact set as well and contains ) in its interior. In particular,
since for any f € C>°()) the extension f has support contained in V c N, this shows that
C*®(Y) € C°(N). Analogously we have C®() x V) C CX(N x N).

Now, by Thm. 51.6 (a) in [35], we have that

CEMN) @ C°(N) = CZ°(N x N). (19

which concludes the proof in the real setting. The proof generalizes trivially to the case
where U is an open geodesically convex subset of a complete Riemannian manifold thanks
to the isomorphisms between spaces of smooth functions provided by Lemma 7. O]

A.2 Proof of Thm. 1

For the following results we need to introduce the concept of cut locus. For any y € M,
denote by Cut(y) € M the cut locus of y the closure of the set of points z € M that are
connected to y by more than one minimal geodesic (see [13,29]). For any y € ) we have
y € M\ Cut(y), see e.g. Lemma 4.4 in [29].

Finally we refine Asm. 2 to avoid pathological cases. Indeed a geodesically convex set
can still have conjugate points on the boundary. To avoid this situation we restate Asm. 2
as follows

Assumption 2’ M is an open geodesically convex subset of the manifold M and Y is a com-
pact subset of M.

Proof of Thm. 1. By Asm. 2, let M be an open geodesically convex subset of M such that
Y Cc M C M. Apply Lemma 8 and let N C M be a compact set such that ) is contained
in the interior of N, namely

C=(Y) € CE(N)ly € CE(M)ly € Hly. (20)
Then, by applying again Lemma 8 we have
CP(Y xY) C(CEMN) @ CEN)lyxy € (H @ H)lyxy- (21D

i Therefore we conc}ude that for any h € C*°()), there exists h: M x M — R with
h € H® H and h = h|yxy. Finally we apply Lemma 5 to h, which guarantees h to be
SELF. ]

B Proof of Thm. 2

We prove a preliminary result.

Lemma 9. Let M be a Riemannian manifold and N be a geodesically convex subset of M.
Then,
d%[nxn € C®(N x N).
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Proof. For any y € M, denote Cut(y) C M the cut locus of y, that is the set of points in
z € M that are connected by more than one minimal geodesic curve with y (see [13,29]).
Let Cut(M) = Uy em{y} x Cut(y)) € M x M. Then, then the squared geodesic distance
is such that (see e.g. [37], page 336)

d? € C®(M x M\ Cut(M)).

Now note that by definition of geodesically convex subset N C M, for any two points in
N there exist one and only one minimizing geodesic curve connecting them. Therefore,
N x N N Cut(M) = () and consequently N x N C M x M \ Cut(M). We conclude that
the restriction of d2 on N x N is C* as required. O

Proof of Thm. 2. By Lemma 9, under Asm. 1 and Asm. 2, the squared geodesic distances
is smooth. The desired result is then obtained by applying Thm. 1. O

C Proof of Thm. 4

Proof. The theorem is proved by combining Thm. 1 with Thm. 5 in [8]. To characterize
the constant c, we need an extra step.

Under Asm. 1 and Asm. 2 and the smoothness of A, we can apply Thm. 1, which
characterizes A as SELF. According to the proof of Thm. 1 and in particular of Lemma 5,
for any y,z € ) we have

A(l.:bz) = <w(y))V¢(Z)>H (22)

where H = HZ(M) with s > d/2, {(y) = Ky () where K : M x M — R is the reproducing
kernel associated to H and V : H — H is the operator defined in Eq. (18). In particular, by
the isometry between the tensor space H ® H and the space of Hilbert-Schmidt operators
from H to H, we have

Vilas = I & [lemn- (23)

To conclude, since A is SELF, the following generalization bound in Thm. 5 from [8]

]

Ef)—EF) <|V|qP?n 7 (24)

holds with probability at least 1 — 8e™". Here, || V|| denotes the operator norm of ||V|| and
q is a constant depending only on ) and the distribution p (see end of proof of Lemma
18 for additional details). Finally, we recall, by the relation between the operator and
Hilbert-Schmidt norm, that ||V|| < [|V|lus = || & ||lxen = ca-

O

D Differential geometry definitions

A Riemannian manifold (M, g) of dimension n is a topological space M such that every
point y € M has a neighbourhood which is homeomorphic to an open set in Euclidean
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Figure 2: Pictorial representations of the exponential map.

space R™ and g is a collection of inner product defined in every tangent space T, M of every
point y € M. Intuitively, the tangent space T, .M is an approximation of a neighbourhood
of y € M that has a vector space structure. We will denote the inner product of u,v € TyM
as (u,v)y. Thanks the inner product structure in every tangent space of the manifold we
can compute gradients of functions f: M — R that we will denote with V rf: F,(M) —
T, M. Where F, (M) is the set of smooth real-valued functions defined on a neighbourhood
of y.

For any yo,y1 € M and v € Ty M there is a unique smooth geodesic curve y: [0, 1] — M
such that y(0) = yo, v(1) = y; and %V(O) = v, this curve locally minimizes the path
between yo and y;. Given the geodesic between yo and y; with derivative %V(O) =,
the exponential map Expy,: Ty,M — M maps vector v € Ty, M to y;. A retraction
Ry: TyM — M, is a first order approximation of the exponential map. Exponential maps
are retractions.

E Riemannian Gradient Descent

In this section we report fully the algorithm Riemannian Gradient Descent.

Algorithm 1 Riemannian gradient descent

Require: number of iterations T, step size n, initial point yo
1: fort=0,...,T—1do
n
20 ve=Vam X oilx) A (Ye,yi)
i=1
31 Yerr & Ry meve)
4: end for
5: return yr
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F Kernel Regularized Least Squares estimator for Positive defi-
nite matrices

We consider the case where we want to use KRLS estimators to predict a positive definite
matrix given a data set {x;,y;}{* ;. The KRLS estimator f: R4 — R is a function defined
as f(x) = Y I'; k(x,xi)w;, where k: R? x RY — R is a reproducing kernel and w =
[W1,...,wy] € R™ are constant weights computed by solving the problem:

N
1
min —  — Rw||? + Aljw]?
min s Y 16— Rl + A

R € R™ ™" s the kernel matrix whose elements are defined as (K)ij = k(xiy%;).
To predict a positive definite matrix y € P!", a KRLS estimator is learned for ev-

ery element of the flattened matrix vec(y) € RY?, Suppose j € {1,...,d?} is the in-
dex of the j-th component of vec(y) that we want to predict, then we want to learn
the estimator fU)(x) = Y I k(x, xi)w?). The corresponding problem has labels {ji) =
[vec(y1)j, - - -, vec(yq2);] and we solve for wi) = [w%l), ...,wY]. Indeed we compute d? es-
timator to predict vec(f) = [f()(x), ..., f(4")] and then recover y from its vectorized form.
Once the matrix is predicted we enforce it to be positive definite by performing a spectral
decomposition and setting the negative eigenvalues to a small positive constant.

In general, when doing structured predictions with KRLS approach, it is necessary to

project the outcome of the prediction on the desired manifold.
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