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Abstract—Focusing on generalized sensor combinations, this
paper deals with attitude estimation problem using a linear
complementary �lter. The quaternion observation model is
obtained via a gradient descent algorithm (GDA). An additive
measurement model is then established according to derived
results. The �lter is named as the generalized complementary
�lter (GCF) where the observation model is simpli�ed to its limit
as a linear one that is quite different from previous-reported
brute-force computation results. Moreover, we prove that
representative derivative-based optimization algorithms are
essentially equivalent to each other. Derivations are given to
establish the state model based on the quaternion kinematic
equation. The proposed algorithm is validated under several
experimental conditions involving free-living environment, harsh
external �eld disturbances and aerial �ight test aided by robotic
vision. Using the specially designed experimental devices, data
acquisition and algorithm computations are performed to give
comparisons on accuracy, robustness, time-consumption and
etc. with representative methods. The results show that not only
the proposed �lter can give fast, accurate and stable estimates
in terms of various sensor combinations, but it also produces
robust attitude estimation in the presence of harsh situations
e.g. irregular magnetic distortion.

Note to Practitioners—Multi-sensor attitude estimation
is a crucial technique in robotic devices. Many existing methods
focus on the orientation fusion of speci�c sensor combinations. In
this paper we make the problem more abstract. The results given
in this paper are very general and can signi�cantly decrease
the space consumption and computation burden without losing
the original estimation accuracy. Such performance will be of
bene�t to robotic platforms requiring �exible and easy-to-tune
attitude estimation in the future.
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I. I NTRODUCTION

T HE development of consumer electronics brings a world-
wide mania in cellphones, smart wearables, interactive

devices and etc. [1], [2], [3]. Such electronic products indeed
improve the quality of our living. As a matter of fact, each
product is a mixture of many recent technological advances.
Among all these techniques, the sensor fusion is of importance
since it gives state estimation of the body's motion from
multi-sensor observations [4], [5], [6]. Attitude estimation, as
part of the overall sensor fusion module, plays a big role
in detecting object's attitude and further produces signals for
gait analysis, gravity sensing and etc [7], [8]. The attitude
estimation techniques will provide key bases for later robotic
estimation and navigation [9].

Not only consumer electronics, but many other professional
applications also have a high demand on attitude estimation
[10], [11]. For instance, one satellite needs to be stablized
on the orbit and to achieve this, the attitude estimator should
give accurate estimates for the control task [12]. Moreover,
such applications can also be operated under harsh external
conditions i.e. strong vibration, sudden external acceleration,
irregular magnetic distortion and etc. [13], [14], which makes
the attitude estimation more challenging [15], [16], [17]. In en-
gineering practice, a navigation system should have suf�cient
redundant computation resources to ensure the robustness of
the system when emergence happens [18]. For example, an
unmanned aerial vehicle (UAV) system needs to act quickly
for failsafe when some incidents take place such as motor
failure, GPS outage, main controller failure [19], [20]. This
in a degree requires the navigation part to be computationally
cheap.

In fact Kalman �lter (KF) [21] is an optimal �ltering ap-
proach in the sense of minimum mean squared error (MMSE).
Although other �ltering approaches e.g.H1 �lter [22] have
been widely spread, KF still remains its de�nite coverage
in industrial applications. The attitude estimation can be ef-
�ciently achieved via KF-related algorithms [23]. However,
conventional KF methods still have some drawbacks:

1) Classical KF requires the state and observation models to
be linear. Besides, the noise sources for the two models
should be white Gaussian and uncorrelated.
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2) Although many techniques have been developed to deal
with non-linearities e.g. the extended Kalman �lter (EKF)
[24], the unscented Kalman �lter (UKF) [25] and etc.
[26], they will signi�cantly increase the computational
burden.

3) In principle, a 3-order KF can obtain good attitude esti-
mates [27]. For engineering requirements, some KF-based
attitude estimators are designed to accommodate high-
dimension observation models [15], [28], which makes
the �ltering time-costly.

Complementary �lter (CF) approaches are popular alterna-
tives for low-cost platforms with need of attitude estimation
[29], [30], [31], [32]. Associated thoughts have been pro-
posed for many years [33]. Recent advances mainly focus
on the combination of magnetic, angular rate and gravity
(MARG) sensors i.e. the magnetometer, gyroscope and ac-
celerometer. Marins et al. uses the Gauss-Newton algorithm
(GNA) to obtain the quaternion solution to the accelerometer-
magnetometer attitude determination [34]. Another method
using the error cross product is studied by Euston et al.
and Mahony et al. [35], [36]. Madgwick et al. [37] give
another point of view where the gradient descent algorithm
(GDA) is adopted. In the similar way, Tian et al. proposed the
method based on improved Gauss-Newton algorithm (IGNA)
[38], [39] while Fourati et al. [40], [41] use the Levenberg-
Marquardt algorithm (LMA). After attitude determination
from vector observations, these methods jointly employ the
linear complementary �lter (LCF) as the attitude observer.

It can be seen that these advances mainly face the attitude
solution from the accelerometer-magnetometer combination.
In fact, this is a speci�c case of the Wahba's problem [42],
[43]. This leads to a new CF algorithm developed by Marantos
et al. [19] which uses the singular value decomposition (SVD,
[44], [45]) as Wahba's solution, which compensates for the
gyroscope's random drift. However, Wahba's problem will
have two solutions when there is only one vector observation
that makes the attitude solution ambiguous at the same time
[43], [46].

Above all methods generate ef�cient attitude estimation but
they have some joint or respective disadvantages:

1) They just focus on almost the same sensor combination
i.e. MARG sensors. Generalized sensor combinations
under optimal framework are not well studied.

2) For GDA, IGNA, LMA, brute-force use of the optimiza-
tion will make the algorithms computationally expensive
i.e. some mathematical internals should be investigated
further.

Inspired by above representative methods along with their
advantages and disadvantages, this paper deals with a novel
CF scheme whose main contributions are:

1) Using quaternion representation, the generalized attitude
estimation is solved using GDA. Various strapdown
sensors like accelerometer, magnetometer, camera, sun
sensor, nadir sensor and etc. can be ef�ciently fused. The
architecture is derived to be additive and linear which is
simple for implementation and fault detection.

2) With �nding in this paper, previous derivative-based
optimization methods for attitude estimation are proven
to be equivalent to each other.

Experiments on robotic platforms are designed and carried out
which verify the proposed �lter's effectiveness and advantages
compared with representative methods.

This paper has the following arrangement of contents:
Section II introduces the proposed problem formulation of the
generalized sensor fusion from vector observations. Section III
contains the proposed GDA method for attitude determination
from strapdown sensors. Section IV involves the proposed
complementary �lter design including the basic structure, ro-
bustness ensurance and some further discussions of mathemati-
cal properties. Hardware, experiments and results are presented
in Section V showing the effectiveness of the proposed �lter
with respect to reference device and representative methods.
Section VI gives the concluding remarks.

II. GENERALIZED SENSORFUSION

For a sensor combination on a rigid platform, its fusion
equation can be given by

8
>><

>>:

D b
1 = CD r

1
D b

2 = CD r
2

� � �
D b

n = CD r
n

(1)

whereD b
i =

�
D b

x;i ; D b
y;i ; D b

z;i

� >
denotes thei th vector obser-

vation in the body frameb while D r
i =

�
D r

x;i ; D r
y;i ; D r

z;i

� >

denotes thei th vector observation in the reference framer .
C stands for the direction cosine matrix (DCM). The above
equation can be converted to a least-square loss function

J (C ) =
nX

i =1


 CD r

i � D b
i


 2

(2)

with the aim of

arg min
CC > = C > C = I ;det( C )=+1

J (C ) (3)

whereI is the identity matrix with proper dimension andk�k
is the simpli�cation of Euclidean norm. A possible solution
for this problem using SVD is given in [44]. When the weights
of various sensors are concerned, the problem will be equal
to the Wahba's problem [42], such that

arg min
CC > = C > C = I ;det( C )=+1

nX

i =1

ai

 CD r

i � D b
i


 2

(4)

whereai denotes the positive weight of thei th sensor with the

property of
nP

i =1
ai = 1 . Wahba's solutions include a variety of

famous algorithms e.g. QUEST, FOAM and SVD [47], [48],
[45]. A recent fast solver FLAE maintains the same accuracy
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as developed in[49]. Now we study the fusion for a single
sensor. The sub-equation of (1) can be further given by

D b
i = CD r

i =
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0
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(5)

whereCij is the element ofC in thei -th row andj -th column
while C i denotes thei -th column ofC . Namely,D b

i is the
linear combination of the three columns of the DCM.

When the DCM is represented by the quaternionq =
(q0; q1; q2; q3)> , the columns can be decomposed such as [49]
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Then (5) can be further given by

D b
i = D r

x; 1C1 + D r
y;i C2 + D r

z;i C3

= [ D r
x;i P1(q) + D r

y;i P2(q) + D r
z;i P3(q)]q

(9)

With this equation, we can extend the 1-dimensional equation
to (1). The fusion error function of thei th sensor is de�ned
by

f (q; i ) =
�
D r

x;i P1(q) + D r
y;i P2(q) + D r

z;i P3(q)
�

q � D b
i

(10)
Naturally, the error function for the whole sensor combination
can be given by the augmented form

f (q; f w; v; � � � ; ng) =

0

B
B
@

f (q; w)
f (q; v)

� � �
f (q; n)

1

C
C
A (11)

where f w; v; � � � ; ng denotes the set of the indexes of valid
sensors which has been sorted in ascending order. In terms of
the weights, the corresponding error function is de�ned by

f (q; f w; v; � � � ; ng; f aw ; av ; � � � ; an g) =

0

B
B
B
@

p
aw f (q; w)p
av f (q; v)

...p
an f (q; n)

1

C
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A

(12)
In this way the original problem in (4) can be shifted to

arg min
kqk=1

kF (q)k2 (13)

where for simplicity, we use

F (q) = f (q; f w; v; � � � ; ng; f aw ; av ; � � � ; an g) (14)

to represent the error function (12). Such problem can be
solved via optimization methods. Previously, we have shown
that the error function is convex with respect to quaternion
[50]. In the following section we are going to introduce a
gradient-descent algorithm.

III. PROPOSEDGDA METHOD

The Gradient Descent Algorithm (GDA) is known to be
an ef�cient method for optimization problems [37], [38]. It
requires the derivative information of the target function with
respect to the variables to be solved. In this case, the state of
the system is chosen as the quaternionq. The implementation
of the GDA can be given by

qy ;k = qy ;k � 1 � � k r F (qy ;k � 1); � k > 0 (15)

where� k is the step size of thekth iteration. The gradient of
the sub-error functionf (q; i ) can be computed by

r f (q; i ) = J >
i f (q; i ) (16)

where the Jacobian matrixJ i can be calculated by

J i =
@f (q; i )
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The details of@C 1
@q ; @C 2

@q ; @C 3
@q are given by
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ConsequentlyJ i can be written as

J i = 2[D r
x;i P1(q) + D r

y;i P2(q) + D r
z;i P3(q)] (19)

Then the overall gradient ofF (q) can be given by

r F (q) = J >
f w;v; ��� ;n gF (q) (20)
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where
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Thereby (20) can be further given by
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Letting (see Appendix)
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, the gradient arrives at
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The operator� (q) is de�ned by
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Theorem 1. The equation
8
><

>:

P >
1 (q)P1(q)q = q

P >
2 (q)P2(q)q = q

P >
3 (q)P3(q)q = q

(26)

always holds for arbitrary unit quaternion.

Proof. See the Appendix.

Lemma 1. With the derivation of Theorem 1, we have the
following equalities holding as well:

�
P >

j (q)Pk (q) + P >
k (q)P j (q)

�
q = 04� 1 (27)

where the indexesj; k = 1 ; 2; 3 and j 6= k.

Following Lemma 1, we have

1
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i (q)J i (q)q = q (28)

Then the operator is simpli�ed from a nonlinear multiplicative
function with time complexity ofO(n2) to a linear one with
complexity ofO(n):

� (q)

=
X

i 2f w;v; ��� ;n g

ai

"
I � D r

x;i M 1(D b
i )

� D r
y;i M 2(D b

i ) � D r
z;i M 3(D b

i )

#
(29)

The GDA measurement update equation �nally arrives at

qy ;k = qy ;k � 1 � 2� k � (qy ;k � 1)qy ;k � 1 (30)

where subscripty denotes the observation model source.
This simpli�cation converts the original4 � 3n-by-3n � 1
matrix multiplicationJ >

f w;v; ��� ;n gF (q) to an additive sum of
4 � 4 matrices, which decreases the space complexity of the
algorithm.

IV. COMPLEMENTARY FILTER

A. Filter Design

A linear complementary �lter can be written as the follow-
ing observer [51]

�
x̂ k = �^x k � 1 + L (yk � ŷk )

ŷk = H x̂ k
(31)

wherek denotes thekth time epoch,x denotes the state vector,
y denotes the measurement vector.� ; H are transition matrix
and measurement matrix respectively.L is the feedback gain
matrix. p̂k stands for the estimation of thep at epochk.
The feedback gain matrixL is empirically diagonal but may
degenerates to a constant for convenience of implementation
and gain-determination when

L = � I (32)

where � denotes a constant [38]. If the state vector is the
quaternionq in our case, the linear observer can be further
designed as

�
q̂k = �^qk � 1 + L (qy ;k � q̂y ;k )

q̂y ;k = H q̂k
(33)

where
H = I (34)

Using the angular rate! = ( ! x ; ! y ; ! z )> , this equation
generally leads to the following quaternion kinematic equation,
such that [52]

dq
dt

=
1
2

[
 � ] q (35)

where[
 � ] de�nes the skew symmetric matrix of angular rate
in Hamilton space
 = (0 ; ! x ; ! y ; ! z )>

[
 � ] =

0

B
B
@

0 � ! x � ! y � ! z

! x 0 ! z � ! y

! y � ! z 0 ! x

! z ! y � ! x 0

1

C
C
A (36)

Hence we approximately have [53]

� � I +
� t
2

[
 � ] (37)

where� t denotes the time span. Expanding the state process
equation, (33) can be further given by

q̂k = �^qk � 1 + L (qy ;k � q̂y ;k )
) (I + L ) q̂k = q!;k + Lq y ;k

) q̂k = ( I + L ) � 1 (q!;k + Lq y ;k )
) q̂k = ( I + L ) � 1q!;k + ( I + L ) � 1Lq y ;k

) q̂k = ( I + L ) � 1q!;k +
�
L � 1 + I

� � 1
qy ;k

(38)
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where 8
<

:

qy ;k = [ I � 2� k � (q̂k � 1)]q̂k � 1

q!;k =
�

I +
� t
2

[
 � ]
�

q̂k � 1
(39)

Let the complementary gainG =
�
L � 1 + I

� � 1
, (38) can be

given by

q̂k = ( I + L ) � 1q!;k +
�
L � 1 + I

� � 1
qy ;k

= ( I � G) q!;k + Gqy ;k

=
�

G [I � 2� k � (q̂k � 1)]
+ ( I � G)

�
I + � t

2 [
 � ]
�

�
q̂k � 1

=
�

I +
� t
2

(I � G) [
 � ] � 2� k G� (q̂k � 1)
�

q̂k � 1

(40)

B. Robustness Ensurance

As described before, the measurement from vector obser-
vations compensates for the gyro bias. However, when highly
dynamic conditions take place, the performance of the �lter
will be signi�cantly affected. For instance, in previous works,
when exposed to large external acceleration or magnetic
distortion, the �lter is in�uenced at the same time. In this
paper, we invest a new way for norm veri�cation to reject
sensor outliers and thus make the proposed algorithm more
robust.

The Euclidean norm information can be obtained during
data acquisition of thei th sensor, such that

Norm i =

 D b

i


 =

q
(D b

x;i )
2

+ ( D b
y;i )

2
+ ( D b

z;i )
2

(41)

Before the �ltering process, we should have some priori
knowledge of the adopted sensor. For any sensor, when it
is operated with smooth motion under environments with
stable external �eld e.g. gravity �eld, earth-magnetic �eld,
the norm of the output should be around a certain constant.
We call this constant the standard normSTDNorm i . When
the motion becomes drastic, the norm of the sensor output
will have relatively big deviation from the standard norm. In
this circumstance, the sensor is no longer trustworthy and
associated item in� (q̂k � 1) should be deleted. Hence the
weights in (24) should be revised in this case as

~ai =
�

ai ; jNorm i � STDNorm i j < � i

0; jNorm i � STDNorm i j � � i
(42)

and � i denotes a threshold for detecting drastic modes [15].
Finally, the whole �ltering process including data acquisition
and state update is given in Algorithm 1.

C. Determination of Parameters

There are some parameters to be determined before the �lter
begins. The initial quaternionqinit is the initial state of the
attitude estimator and it can be obtained using initial alignment
from strapdown sensors [28]. The complementary gainG
is commonly set as an diagonal matrix whose components
are empirically adjusted using the estimator's response. The
determination of step length� 0 is very similar. The weights
can be determined using the initial standard deviations of

Algorithm 1 Generalized complementary �lter using strap-
down vector observations via GDA (GCF).
Initialize:
Time epochk = 0
Initial stateqk=0 = qinit

Complementary gainG
Step length� k = � 0

Sorted valid sensors' indexesw; v; � � � ; n
Weightsaw ; av ; � � � ; an

Standard norm listf STDNorm i ji = w; v; � � � ; ng
Threshold listf � w ; � v ; � � � ; � n g
Output: q̂k .
while no stop commands receiveddo

1) k = k + 1
2) Input:

a) Valid normalized strapdown sensor observations:
D b

w ; D b
v ; � � � ; D b

n
b) Normalized reference vectors:D r

w ; D r
v ; � � � ; D r

n
c) Angular rate in (rad=s): ! = ( ! x ; ! y ; ! z )>

d) If gyroscope is not valid: G = I
3) Calculate normsNorm i =


 D b

i




4) Deduce outlier rejection:

~ai =
�

ai ; jNorm i � ST DNorm i j < � i

0; jNorm i � ST DNorm i j � � i

5) Normalization:D b
i = D b

i

kD b
i k

6) Calculate:

e� (q̂k � 1) =
X

i 2f w;v; ��� ;n g

~ai

2

6
4

I � D r
x;i M 1(D b

i )

� D r
y;i M 2(D b

i )

� D r
z;i M 3(D b

i )

3

7
5

7) Perform time update:

q̂k =

8
<

:
I +

� t
2

(I � G) [
 � ]

� 2� k G e� (q̂k � 1)

9
=

;
q̂k � 1

8) Normalization:q̂k = q̂k
kq̂k k

end while

different sensor [54]. When the robust ensurance step is
applied, the standard norm list can be given according to
the regular ranges of the sensors' norms. The thresholds is
chosen empirically in terms of the smoothness of the �lter
i.e. it decides how many 'unusual' sensor observations with
unusual norms are neglected.

D. Initial Alignment

The initial alignment problem is in fact the attitude determi-
nation from strapdown vector observations in the initial stage.
The following scheme is depicted for initial alignment with
our proposed �lter.

qinit;k = qinit;k � 1 � � (qinit;k � 1)qinit;k � 1

while kqinit;k � 1 � qinit;k � 2k > �
(43)

in which k = 1 ; 2; � � � and � is the threshold indicating the
relative accuracy. More speci�cally, in steady state, we have

� (qinit )qinit = 0 (44)
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Expanding it, it is obtained that the initial quaternion belongs
to the following eigenvalue problem

0

B
@

X

i 2f w;v; ��� ;n g

D r
x;i M 1

�
D b

i

�
+

D r
y;i M 2

�
D b

i

�
+

D r
z;i M 3

�
D b

i

�

1

C
A qinit = qinit (45)

The optimal solution is the eigenvector associated with the
eigenvalue that is closest to 1, which can be solved with our
recent method FLAE [49].

E. Further Identities and Equivalences

Remark1. Recalling (30), we may rewrite it as

qy ;k = qy ;k � 1 � 2� k � (qy ;k � 1)qy ;k � 1

= qy ;k � 1 � 2� k

8
><

>:
I �

X

i 2f w;v; ��� ;n g

ai

2

6
4

D r
x;i M 1(D b

i )

+ D r
y;i M 2(D b

i )

+ D r
z;i M 3(D b

i )

3

7
5

9
>=

>;
qy ;k � 1

= (1 � 2� k )qy ;k � 1 + 2 � k

X

i 2f w;v; ��� ;n g

ai

2

6
4

D r
x;i M 1(D b

i )

+ D r
y;i M 2(D b

i )

+ D r
z;i M 3(D b

i )

3

7
5q

(46)
If we treat the step size as a complimentary gain, then
observation model actually leads to a �ltered quaternion. This
shows that the GDA is not only an optimization solver, but
a smoother as well. Such identity makes the obtained attitude
estimates more smooth than that directly derived from Wahba's
solutions.

Theorem 2. Derivative-based optimization methods including
GDA, GNA and LMA for optimal attitude determination from
vector observations are essentially equivalent to each other.

Proof. The Gauss-Newton algorithm (GNA) is a classical
optimization problem but it may fail when the Jacobian matrix
is singular. Consequently, some other algorithms e.g. the
Levenberg-Marquadt algorithm (LMA) are designed to over-
come this drawback. The searching equation can be written
as

qk = qk � 1 �
�

J >
f w;v; ��� n gJ f w;v; ��� n g + � I

� � 1

J >
f w;v; ��� n gf (qk � 1; f w; v; � � � ng)

(47)
Then we have

�
J >

f w;v; ��� ;n gJ f w;v; ��� ;n g + � I
�

qk =
�

J >
f w;v; ��� ;n gJ f w;v; ��� ;n g + � I

�
qk � 1�

J >
f w;v; ��� ;n gf (qk � 1; f w; v; � � � ; ng)

(48)

Note that
�

J >
f w;v; ��� ;n gJ f w;v; ��� ;n g + � I

�
qk � 1

=

0

@� I +
X

i 2f w;v; ��� ;n g

ai J >
i J i

1

A qk � 1

= (1 + � )qk � 1

(49)

De�ning the quaternion error as

� q =
�

J >
f w;v; ��� ;n gJ f w;v; ��� ;n g + � I

�
(qk � qk � 1) (50)

which is fully relevant to the original quaternion errorqk �
qk � 1 according to invertible priori matrix multiplication, we
�nally obtain

� q � (1 + � )(qk � qk � 1)�

J >
f w;v; ��� ;n gf (qk � 1; f w; v; � � � ; ng)

(51)

In other words, the LMA obtains the same optimization
results in steady state with GDA. This shows that GDA is
suf�cient for optimization update and LMA-based method like
[40] would only produce advance in smoothness. Besides,
notice that LMA is in fact an improved algorithm based on
Gauss-Newton algorithm (GNA). This shows that related GNA
methods like [38] are equivalent to the proposed GDA as well.
As the mentioned GNA, LMA and GDA are representatives
of derivative-based optimization, the equivalence connections
are established.

V. HARDWARE, EXPERIMENTS AND RESULTS

A. Sensors

Employed sensors in this section are a 3-axis
microelectromachnical-system (MEMS) accelerometer, a
3-axis MEMS gyroscope, a 3-axis MEMS magnetometer and
a monocular camera. Each sensor has its sensing principle
and mathematical model. Here, we simply introduce the
details of these sensors.

A 3-axis accelerometer measures the object's speci�c
force. Its output in the object's body frame can be expressed
by A b = ( ax ; ay ; az )> . A 3-axis gyroscope gives the
angular rate data of the object and its output is given by
! = ( ! x ; ! y ; ! z )> . The magnetometer measures the Earth's
geomagnetic �eld and its output isM b = ( mx ; my ; mz )> .

Fig. 1: Designed hardware platform. The platform consists
of integrated AHRS, a monocular camera, a battery, an USB
debugger and an embedded computer.
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Camera has been widely used with the development of con-
sumer electronics . Using a camera, we can capture numbers
of images and videos. In fact, motion can be extracted from
a recorded video stream since continuous pictures correspond
to changes of attitude and translation. To achieve this task,
characteristics of pictures are necessary. There are many
feature extraction methods including scale-invariant feature
transform (SIFT) [55], gradient location-orientation histogram
(GLOH) [56], speeded-up robust features (SURF) [57] and
etc. Extracted features from two neiboughring images are in
a degree similar. This provides an approach to determine
the attitude and the translation vector with respect to the
previous acquired image. Since the correlation of the 3D
features are easily disturbed by noises, the random sample
consensus (RANSAC) algorithm [58] can be used for rejecting
outliers according to probabilistic functions. Using the �nal
valid features' correspondence, the relative attitude can be
obtained from (3) via the SVD method by Arun et al. [44].
If the vision �eld is wide enough and the motion is relatively
moderate, the attitude of the object can be directly obtained
using the difference between the current and initial images.

B. Hardware Con�guration

To verify the effectiveness of the proposed �lter, an experi-
mental platform is designed (see Fig. 1). The system integrates
a commercial attitude and heading reference system (AHRS)
which is composed of magnetic, angular rate and gravity
(MARG) sensors. The AHRS can give high precision reference
attitude angles along with raw sensor outputs and has been
widely veri�ed for its high reliability in navigation tasks such
as UAV, land vehicles and robots. The reference attitude angles
from the AHRS is chosen as the ground truth. A camera is
attached �rmly to the installed AHRS to maintain relatively
identical attitude determination. It should be noted that the
design of the camera is motivated by PX4FLOW [59] but has
been modi�ed for broader vision �eld and higher image reso-
lution. In fact there is a micro controller on the camera board
making the calculations faster. The navigation computer is
formed by an STM32F4-based board with multiple interfaces.
To achieve wireless and highly reliable data transmission, an
Xbee Pro S3B telemetry is installed on board.

In the following sub-sections, we are going to carry out
several experiments with the above sensors in order to evaluate
the performances of accuracy, robustness, time consumption.
of the proposed algorithm compared with representative meth-
ods:

1) The �rst one integrates a gyroscope, an accelerometer
and a magnetometer together which generates a typical
full-attitude AHRS. In such combination, the vector pairs
are

(
D b

1 = ( ax; ay ; az )T

D b
2 = ( mx; my ; mz )T ;

(
D r

1 = (0 ; 0; 1)T

D r
2 = ( mN ; 0; mD )T (52)

whereax ; ay ; az and mx ; my ; mz are normalized vector
measurements in the body frameb from the accelerom-
eter and magnetometer respeceively.mN and mD are
reference vector components of the magnetometer in

the North-East-Down frame which can be referenced
from the geomagnetic model according to local geodetic
location.

2) The second experiment involves a gyroscope, an ac-
celerometer, a magnetometer and a monocular camera in
a hovering �ight, where the vector pairs are
8
>>>>>>>>>>><

>>>>>>>>>>>:

D b
1 = ( ax ; ay ; az )T

D b
2 = ( mx ; my ; mz )T

D b
3 = ( px; 1; py; 1; pz;1)T

...

D b
n =

 
px;n � 2;

py;n � 2; pz;n � 2

! T

;

8
>>>>>>>>>>><

>>>>>>>>>>>:

D r
1 = (0 ; 0; 1)T

D r
2 = ( mN; 0; mD )T

D r
3 =

�
pr

x; 1; pr
y; 1; pr

z;1

� T

...

D r
n =

 
pr

x;n � 2;

pr
y;n � 2; pr

z;n � 2

! T

(53)
in which px;i ; py;i ; pz;i are normalized coordinates of
the i -th transformed feature points in the body frame.
pr

x;i ; pr
y;i ; pr

z;i are normalizedi -th transformed feature
points reference obtained in initial image capture of the
ground.

With vector pair con�gurations shown above, we can easily
fuse them with the procedure provided in Algorithm 1.

C. Case 1: AHRS with MARG Sensors

The accelerometer and magnetometer are introduced, adding
a compensation of pitch, roll and yaw angles from gravity-
�eld and magnetic-�led sensing data. The MARG sensors are
calibrated for initial biases and misalignment. To ensure good
results, the operating temperature of the sensors is stablized
at 45� C using a controlled thermal resistance. Constant iron
and soft magnetic distortion to the magnetometer are also
compensated for before all the experiments [60]. To verify
the performance of the proposed GCF, representative meth-
ods like Wahba's Complementary Filter (WCF) by Marantos
et al. [19], Algebraic-QUaternion-Algorithm-based quaternion
Kalman �lter (AQUA q-KF) by Valenti et al. [23], Levenberg-
Marquadt-Algorithm Complementary Observer (LMA-CO) by
Fourati et al. [40] are used for comparisons. The parameters
of different �lters are tuned as follows

1) WCF: The parameters arewa = 0 :9; wm = 0 :8; ca
1 =

cm
1 = 0 :7; ca

2 = cm
2 = 0 :3; ca

3 = 8500; cm
3 = 5500 as

described in [19].
2) AQUA q-KF: The variance matrices are

� gyro = diag(0:0013; 0:0013; 0:0013)
� acc = diag(0:01; 0:01; 0:02)
� mag = diag(0:05; 0:05; 0:05)

3) LMA-CO: The gain is set to 0.1 and the positive number
for LMA is set to � = 0 :000001

4) Proposed GCF: The weights are set toaacc = 0 :7 and
amag = 0 :3 to enhance the accelerometer's effect while
the complementary gain is set toG = 0 :1I . The gain of
the proposed GCF is tuned to achieve relatively good at-
titude estimation results in the case of such experimental
conditions.

With the recorded data in previous experiment, the attitude
estimation errors are obtained and shown in Fig. 2. In this
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Fig. 2: Attitude estimation errors during a �at motion from
WCF, AQUA q-KF, LMA-CO and the proposed GCF. Ac-
celerometer and magnetometer are jointly utilized.

TABLE I: RMSEs of attitude angles

Algorithms Roll Pitch Yaw

WCF 4:5075� 2:7846� 3:5715�

AQUA q-KF 2:1736� 1:0264� 1:3266�

LMA-CO 1:6172� 1:0539� 1:7120�

Proposed GCF 1:6018� 1:0107� 1:0998�

evaluation, the norm veri�cation is not performed since the
motion is not drastic. As can be seen from the �gure, WCF is
the worst among all �lters. The estimation accuracy of AQUA
q-KF and LMA-CO is close to that of the proposed �lter. To
further verify the performances, we calculate the Root-Mean-
Squared Errors (RMSEs) of various algorithms with respect
to reference angles from high precision AHRS (see Table I).

We can see that for roll and pitch angles, the proposed GCF
reaches almost the same accuracy with LMA-CO while GCF
is the best for estimating attitude angles. This shows that the
proposed GCF is ef�cient for quasi-static attitude estimation.

As described before, the performance of the �lter is being
tested out when drastic conditions occur. The magnetometer
can be easily disturbed by iron or magnetic objects i.e. it is
sensitive to magnetic distortion. In the next experiment, the
designed hardware remains still on a table and is perturbed
by a moving magnet. Fig. 3 re�ects the raw data from the
magnetometer along with its norm. We can see that the
magnetic distortion is very large with the norm of up to
10 Gauss. Using the acquired data, attitude estimation errors
are calculated and shown in Fig. 4. The threshold for norm
veri�cation of magnetometer is set to� mag = 0 :2. We can
�nd out that the �lter without outlier rejection undergoes
very evident disturbances of yaw angles as magnetic distortion
happens. The proposed GCF is disturbed in this case, not only
for yaw but also for roll and pitch angles. However, GCF with

Fig. 3: 1: Raw data from magnetometer. 2: Norm of the
measured magnetic �eld. 3: Modes of the motion.

Fig. 4: Attitude errors from various sources in the presence of
magnetic distortion.

outlier rejection shows interesting behaviour since it is hardly
perturbed by the magnetic distortion. The third sub-�gure of
Fig. 3 shows that the �lter can detect the magnetic distortion
at a high level. Although most magnetometer's outputs are
being disturbed, there are still some trustworthy data. Using
these data, the �lter maintains stable with convergent yaw
estimation. The RMSEs are shown in Table II.

TABLE II: RMSEs of attitude angles when magnetic distortion
takes place

Algorithms Roll Pitch Yaw

GCF with outlier rejection 0:6637� 0:5525� 1:1507�

GCF without outlier rejection 5:7659� 4:0821� 99:4968�
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