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Generalized Linear Quaternion Complementary
Filter for Attitude Estimation from Multi-Sensor
Observations: An Optimization Approach
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Abstract—Focusing on generalized sensor combinations, this Index Terms—Sensor Fusion, Attitude Estimation, Comple-
paper deals with attitude estimation problem using a linear mentary Filter, Quaternion Optimization, Robotics
complementary Iter. The quaternion observation model is
obtained via a gradient descent algorithm (GDA). An additive

measurement model is then established according to derived I. INTRODUCTION

results. The lter is named as the generalized complementary . .

lter (GCF) where the observation model is simpli ed to its limit HE development of consumer electronics brings a world-
as a linear one that is quite different from previous-reported wide mania in cellphones, smart wearables, interactive

brute-force computation results. Moreover, we prove that devices and etc. [1], [2], [3]. Such electronic products indeed
representative derivative-based optimization algorithms are improve the quality of our living. As a matter of fact, each

essentially equivalent to each other. Derivations are given to . . .
establish the state model based on the quaternion kinematic product is a mixture of many recent technological advances.

equation. The proposed algorithm is validated under several Among all these techniques, the sensor fusion is of importance
experimental conditions involving free-living environment, harsh  since it gives state estimation of the body's motion from
external eld disturbances and aerial ight test aided by robotic  multi-sensor observations [4], [5], [6]. Attitude estimation, as
vision. Using the specially designed experimental devices, datapart of the overall sensor fusion module, plays a big role

acquisition and algorithm computations are performed to give . - - . .
comparisons on accuracy, robustness, time-consumption and in detecting object's attitude and further produces signals for

etc. with representative methods. The results show that not only 9ait analysis, gravity sensing and etc [7], [8]. The attitude
the proposed lter can give fast, accurate and stable estimates estimation techniques will provide key bases for later robotic
in terms of various sensor combinations, but it also produces estimation and navigation [9].
robust attitude estimation in the presence of harsh situations Not only consumer electronics, but many other professional
e.g. irregular magnetic distortion. applications also have a high demand on attitude estimation
Note to Practitioners—Multi-sensor ~attitude ~estimation [10], [11]. For instance, one satellite needs to be stablized
is a crucial technique in robotic devices. Many existing methods on the orbit and to achieve this, the attitude estimator should
focus on the orientation fusion of speci ¢ sensor combinations. In give accurate estimates for the control task [12]. Moreover,
this paper we make the problem more abstract. The results given g,ch applications can also be operated under harsh external

in this paper are very general and can signi cantly decrease - . . . .
the space consumption and computation burden without losing conditions i.e. strong vibration, sudden external acceleration,

the original estimation accuracy. Such performance will be of irregular magnetic distortion and etc. [13], [14], which makes
bene t to robotic platforms requiring exible and easy-to-tune  the attitude estimation more challenging [15], [16], [17]. In en-
attitude estimation in the future. gineering practice, a navigation system should have suf cient

redundant computation resources to ensure the robustness of
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2) Although many techniques have been developed to ded) With nding in this paper, previous derivative-based
with non-linearities e.g. the extended Kalman Iter (EKF) optimization methods for attitude estimation are proven
[24], the unscented Kalman Iter (UKF) [25] and etc. to be equivalent to each other.

[26], they will signi cantly increase the CompL’tat'onalExperiments on robotic platforms are designed and carried out

burdgn._ . , which verify the proposed lter's effectiveness and advantages
3) In principle, a 3-order KF can obtain good attitude estl:, pared with representative methods

mates [27]. For engineering requirements, some KF-base his paper has the following arrangement of contents:

aFtltude_ estimators are designed to accommpdate h'gﬁéction Il introduces the proposed problem formulation of the
dlmen3|_on o_bservatmn models [15], [28], which makeaeneralized sensor fusion from vector observations. Section I
the ltering time-costly. contains the proposed GDA method for attitude determination
Complementary lter (CF) approaches are popular alternffom strapdown sensors. Section IV involves the proposed
tives for low-cost platforms with need of attitude estimatiogomplementary Iter design including the basic structure, ro-
[29], [30], [31], [32]. Associated thoughts have been prddustness ensurance and some further discussions of mathemati-
posed for many years [33]. Recent advances mainly foctl properties. Hardware, experiments and results are presented
on the combination of magnetic, angular rate and gravitg Section V showing the effectiveness of the proposed lter
(MARG) sensors i.e. the magnetometer, gyroscope and #dth respect to reference device and representative methods.
celerometer. Marins et al. uses the Gauss-Newton algoritt#rction VI gives the concluding remarks.
(GNA) to obtain the quaternion solution to the accelerometer-
magnetometer attitude determination [34]. Another method
using the error cross product is studied by Euston et al. [I. GENERALIZED SENSORFUSION
and Mahony et al. [35], [36]. Madgwick et al. [37] give
another point of view where the gradient descent algorithm For a sensor combination on a rigid platform, its fusion
(GDA) is adopted. In the similar way, Tian et al. proposed theguation can be given by

method based on improved Gauss-Newton algorithm (IGNA) 38

[38], [39] while Fourati et al. [40], [41] use the Levenberg- 3 D?=CD}

Marquardt algorithm (LMA). After attitude determination DY= CD} 1)
from vector observations, these methods jointly employ the 2

linear complementary Iter (LCF) as the attitude observer. " DP=CD]

It can be seen that these advances mainly face the attitude
solution from the accelerometer-magnetometer combinatiq,ohereDib = D&, ;D)t;,i ;Db > denotes théth vector obser-
In fact, _th|s is a specic case of _the Wahba's problem [421\'/ation in the body framé while D = 1Dl DL
[43]. This Ieagis to anew C'.: algorithm developed bylMarant notes thath vector observation in the reference frame
et al. [19] which uses the singular value decomposition (SV stands for the direction cosine matrix (DCM). The above

[44], 45]) Ias Wahba's .SOIUUO”’ which comp|ensates for t.h guation can be converted to a least-square loss function
gyroscope's random drift. However, Wahba's problem wil

have two solutions when there is only one vector observation

>

that makes the attitude solution ambiguous at the same time J(C)= CD/{ Dib (2)
[43], [46]. i=1
Above all methods generate ef cient attitude estimation but ]
they have some joint or respective disadvantages: with the aim of
1) They just focus on almost the same sensor combination arg min J(C) ©)
i.e. MARG sensors. Generalized sensor combinations CC> =C>C =1;det(C)=+1

under optimal framework are not well studied.

2) For GDA, IGNA, LMA, brute-force use of the optimiza-wherel is the identity matrix with proper dimension akd
tion will make the algorithms computationally expensivés the simpli cation of Euclidean norm. A possible solution
i.e. some mathematical internals should be investigatéat this problem using SVD is given in [44]. When the weights
further. of various sensors are concerned, the problem will be equal

Inspired by above representative methods along with th(te?r the Wahba's problem [42], such that

advantages and disadvantages, this paper deals with a novel 0

CF scheme whose main contributions are: argmin a CDj Dib 2 (4)
. . . . . C>=C>C=1;det(C)=+1 i=1
1) Using quaternion representation, the generalized attitude

estimation is solved using GDA. Various strapdowtyherea denotes the positive weight of thth sensor with the
sensors like accelerometer, magnetometer, camera, sun .

sensor, nadir sensor and etc. can be ef ciently fused. TREPPE'Y O _
architecture is derived to be additive and linear which famous algorithms e.g. QUEST, FOAM and SVD [47], [48],

simple for implementation and fault detection. [45]. A recent fast solver FLAE maintains the same accuracy

a; = 1. Wahba's solutions include a variety of



as developed in[49]. Now we study the fusion for a singleherefw;v;

sensor. The sub-equation of (1) can be further given by

10 1
Cll C12 C13 Dx;i
DP=CD!=@Cy Cp CZSA@D{/:i A
C C C D
0 1 31 C?Z 3%_ 6'
C 13

Ca1 Ca
D;;i Cl + D{l;i C2 + D;;i C3

Css

whereC; is the element o€ in thei-th row andj -th column
while C; denotes tha-th column ofC. Namely,DiID is the
linear combination of the three columns of the DCM.

1
11 12
D;;i @ Ca A+ D;;i @ Co A+ D;;i @ Cas A

(®)

When the DCM is represented by the quaternipn=

(%; th; ; B)”, the columns can be decomposed such as [49]

0 1
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0 17 4
® & & &
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® & ® O o
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® ® & ®
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Cy;= @ 2q2q3+2q)q1
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0 qo
© & ® @ ql
=@ q o Cls Q2 %OQ = P3(q)q
® & g

Then (5) can be further given by
DP=D},Ci+ DJ;Cp+ D};Cs
=[D5; P1(q) + Dy, P2(q) + D3, P3(q)lq

With this equation, we can extend the 1-dimensional equation @C> _
to (1). The fusion error function of thegh sensor is de ned

by

(®)

9)

f(a;i)= Dy;Pi(a)+ DJ;P2(q)+ Di;P3s(q) g DY

can be given by the augmented form

f(q W)

ng= B T@v §

f(a;n)

f(a;fw;v;

(10)
Naturally, the error function for the whole sensor comblnatloe

;ng denotes the set of the indexes of valid
sensors which has been sorted in ascending order. In terms of
the weights, the corresponding error function is de ned by

awf (a; W)
Pat (q v)
f(aq;fw;v; ;ngfay;a,; ;anQ) =
P ant (q, n)
12)
In this way the original problem in (4) can be shifted to
arg min kF (q)k? (13)
kgk=1
where for simplicity, we use
F(a)=f(a;fw;v;  ;ngfas;a;  jang)  (14)

to represent the error function (12). Such problem can be
solved via optimization methods. Previously, we have shown
that the error function is convex with respect to quaternion
[50]. In the following section we are going to introduce a

gradient-descent algorithm.

Ill. PROPOSEDGDA METHOD

The Gradient Descent Algorithm (GDA) is known to be
an ef cient method for optimization problems [37], [38]. It
requires the derivative information of the target function with
respect to the variables to be solved. In this case, the state of
the system is chosen as the quaterrgoiThe implementation
of the GDA can be given by

kl F(dyx 1); «>0 (15)

where | is the step size of thkth iteration. The gradient of
the sub-error functior (qg;i) can be computed by

Oy:k = Qyk 1

rf(g;i)=J7f(a;i) (16)
where the Jacobian matrik can be calculated by
@ (g;i) _ @ @ @
Ji = a - DL, @1 + DJ; @2 D, @3 (17)
The details of@@l; @é]?; %3 are given bly
@, 2p 201 2 205
@=@ 2 2 2 29 A =2Py(q)
2 28 20 201
26 20 2 29
@ 299 29 29 293 A =2P,(q) (18)
@ 24 2 2 2%
@ 2 23 20 201
G - @ 200 29 2 29 A =2Ps3(q)
20 2 20 203
onsequenthd; can be written as
Ji = 2[Dy; P1(q) + Dy, P2(q) + D7 Ps(a)] (19)
(11) Then the overall gradient df (q) can be given by
r F(q) = ‘Jf>w;v; ngF(q) (20)



where 0 p__ 1
awJdw
Pad. £
wa;v; ing = (21)
Pandn
Thereby (20) can be further given by
r F(q): Jf>w;v; ;ngF(q) 0 pi 1
pawf (a;w)
- PaonPaay Paep B OATEV G
Pant (a;n)
X N _
= adi f(q;i)
i2f wyv; ing
(22)
Letting (see Appendix)
P/ (9DP=M; DP g
P;(qDP=M, D q (23)
P;(9)DP=Mj3 DP q
, the gradient arrives at
r F(a)
X 1 > > b
= ai[EJi ()Jdi(a)g I (4)Dy]
i2f w;v; ng 2 L 3 (24)
> r b
_ > ai4ZJi (@Ji(@) Dxi M1(Dy) g
i2f wv; ng D{/;i M 2(Dib) D;;i M 3(D Ib)
The operator (q) is de ned by
2 3
1> r b
(C]) - a 4 Z‘]I (q)‘]l(Q) Dx;l M 1(DI) 5 (25)
i2f wy; ng D)r/;i M Z(D |b) D;;i M 3(D lb)
Theorem 1. The eguation
2 P{(q)Pi(a)a=q
> P7(@)P,y(a)a=q (26)

P3 (9)Ps(a)g= g
always holds for arbitrary unit quaternion.

Proof. See the Appendix.

Lemma 1. With the derivation of Theorem 1, we have the

following equalities holding as well:

Py ()P (a) + P (q)Pj(q) 9= 04 1 (27)
where the indexegk =1;2;3andj 6 k.
Following Lemma 1, we have
1.,
277 @Ji(@a=q (28)

Then the operator is simpli ed from a nonlinear multiplicativ

function with time complexity ofO(n?) to a linear one with
complexity of O(n):

(a) "
X |

#

Dy M1(DY) (29)

DyiM2(Df) Di;Ms(D?)

i2f wyv; ing

e

The GDA measurement update equation nally arrives at

2 k (Qy;k l)qy;k 1 (30)

where subscripty denotes the observation model source.
This simpli cation converts the originad  3n-by-3n 1
matrix multiplicationJ .. .,,F(q) to an additive sum of
4 4 matrices, which decreases the space complexity of the

algorithm.

Oy:k = Qyk 1

IV. COMPLEMENTARY FILTER
A. Filter Design

A linear complementary Iter can be written as the follow-
ing observer [51]

R = Xk 1+ L(yx
P = H Ry

wherek denotes th&th time epochx denotes the state vector,

y denotes the measurement vectorH are transition matrix
and measurement matrix respectivdlyis the feedback gain
matrix. Px stands for the estimation of the at epochk.

The feedback gain matrik is empirically diagonal but may
degenerates to a constant for convenience of implementation
and gain-determination when

29 (31)

L= | (32)

where denotes a constant [38]. If the state vector is the
guaterniong in our case, the linear observer can be further
designed as

G = "k 1+ L(dyx Gyx)

33
Qy;k = H & (33)
where
H =1 (34)
Using the angular raté = (!4;!y;! 2)”, this equation

generally leads to the following quaternion kinematic equation,

such that [52]
dg _ }[

dt = 2
where[ ] de nes the skew symmetric matrix of angular rate
in Hamilton space =(0;!;!y;!;)”

lq (39)

0
0 Iy Iy I,
_B'x 0 1 y §
[ ]‘%!y L, 01, (36)
L, 1y ly O
Hence we approximately have [53]
t
| + > 1 37)

where t denotes the time span. Expanding the state process
equation, (33) can be further given by

G = "ok 1+ L(Qyx Gyi)

) (I +L)& = qux + Lay«

) @& =(1+L) "(ax +Layx)

) G =(1+L) "qu +(I +L) "Layx

) Ge=(1+L) Yqu + L 141 ‘g

(38)



where 8 Algorithm 1 Generalized complementary lIter using strap-

<Ok =[1 2k (& )6 1 down vector observations via GDA (GCF).
_ t (39) Initialize:
Que = 1+ 7[ 1 &1 Time epochk =0

Initial stateqx=0 = Qinit
Let the complementary gai = L 1+ | 1, (38) can be Complementary gaiG

given by Step length « = o
_ 1 1 1 Sorted valid sensors' indexes;v; ;n
Qk —(I + I—) q!;k + L + 1 qy;k Weightsaw;av; Can
=(I G)ax + Gayx Standard norm list STDNorm;ji = w;v;  ;ng
Gl 2k (& 1) 4 (40) Threshold listf w; v; ; nQ
+(1 G) I+ 5 1] ko1 Output: €.
t while no stop commands receivelb
= |+7(| G)[ 1 2«kG (& 1) G 1 1) k=k+1
2) Input:
B. Robustness Ensurance a) Valid normalized strapdown sensor observations:
As described before, th f b Dy:Dy: 3Dy
\s described before, the measurement from vector obser- b) Normalized reference vector®,;D"; ;D'
vations compensates for the gyro bias. However, when highly ; —ave oy
. " c) Angular rate inffad=s): I =(!y;!y;!;)
dynamic conditions take place, the performance of the lter : o~
. L . . . d) If gyroscope is not valid: G = |
will be signi cantly affected. For instance, in previous works, Calcul N - pb
when exposed to large external acceleration or magnetig) alculate norm$lorm; = i

4) Deduce outlier rejection:
a;jNorm; STDNorm;j<
0;jNorm; STDNormij i

distortion, the Iter is in uenced at the same time. In this
paper, we invest a new way for norm veri cation to reject & =
sensor outliers and thus make the proposed algorithm more

robust. 5) Normalization:D P = kg—':k
The Euclidean norm information can be obtained during6) Calculate: '
data acquisition of thde(;h sensor, such that y 2 | DI, MDY 3
Norm; = DP = (DE,)2+(DE)2+(D%)°  (41) e(8 1) = ad D M.0DDS
. L i2f wyv;  ing r b
Before the ltering process, we should have some priori o DziM (D7)
knowledge of the adopted sensor. For any sensor, when it) Perfogm time update: 9
is operated with smooth motion under environments with <+ *t(l &) ] ~
stable external eld e.g. gravity eld, earth-magnetic eld, O = | 2 R T
the norm of the output should be around a certain constant. ' 2 «GE(a 1)

We call this constant the standard no8iT DNorm;. When  8) Normalization:Gy = kgtk
the motion becomes drastic, the norm of the sensor outRig while

will have relatively big deviation from the standard norm. In
this circumstance, the sensor is no longer trustworthy and

associated item in (¢ 1) should be deleted. Hence thedifferent sensor [54]. When the robust ensurance step is

weights in (24) should be revised in this case as applied, the standard norm list can be given according to
the regular ranges of the sensors' norms. The thresholds is

ai;_JNormi STDNorm i< (42) chosen empirically in terms of the smoothness of the lter
O;jNorm;  STDNorm; i i.e. it decides how many ‘'unusual' sensor observations with
and ; denotes a threshold for detecting drastic modes [13Jnusual norms are neglected.

Finally, the whole ltering process including data acquisition

& =

and state update is given in Algorithm 1. D. Initial Alignment
The initial alignment problem is in fact the attitude determi-
C. Determination of Parameters nation from strapdown vector observations in the initial stage.

There are some parameters to be determined before the I:[rehre following scheme is depicted for initial alignment with

begins. The initial quaterniony,; is the initial state of the Otir proposed fter.
attitude estimator and it can be obtained using initial alignment Qinitk = Cinitk 1 (Qinitk  1)Tinitk 1
from strapdown sensors [28]. The complementary g&in whileKGinitk 1 Ginitk 2K >
IS comm.o.nly set as an dla_lgonal matrix wh'ose Comloonenrtmswhich k=1;2 and is the threshold indicating the
are empirically adjusted using the estimator's response. St : .

R i - . relative accuracy. More speci cally, in steady state, we have
determination of step lengthg is very similar. The weights

can be determined using the initial standard deviations of (Qinit )init = O (44)

(43)



Expanding it, it is obtained that the initial quaternion belongshich is fully relevant to the original quaternion errqg

to the following eigenvalue problem gk 1 according to invertible priori matrix multiplication, we
° X DyiM1 DP + 1 nally obtain
%) D)r/;i M 5 Dib +g Qinit = Cinit (45) g @1+ ok G 1)
i2f wv; ing D;;i M 3 Dib Jf>w;v; ;ngf (G 1:fwiv: - ng) (51)

The optimal solution is the eigenvector associated with the other words, the LMA obtains the same optimization

eigenvalue that is closest to 1, which can be solved with OHsults in steady state with GDA. This shows that GDA is
recent method FLAE [49]. suf cient for optimization update and LMA-based method like
[40] would only produce advance in smoothness. Besides,

E. Further Identities and Equivalences notice that LMA is in fact an improved algorithm based on

Remarkl. Recalling (30), we may rewrite it as Gauss-Newton algorithm (GNA). This shows that related GNA
Oyk = Qyk 1 82 k (Qyx 1)0yk 1 o methods Iike_[38] are equivalent to the proposed GDA as \_/veII.
> DL, M (DD 32 As the mentioned GNA, LMA and GDA are representatives
_ X 2 . b g‘ of derivative-based optimization, the equivalence connections
=G 2 ad+DyM2(DNS, i 1 g0 established |
i2f wyv; ng +D;;iM3(Dib) ’
X Dia M (D) V. H E R
. HARDWARE, EXPERIMENTS AND RESULTS
=1 2 )0gyx 1+2 « aiﬁ"'D;;iMz(Dib)gq ,
i2f wy;  ing +D5;M3(DP) A. Sensors
46)

If we treat the step size as a complimentary gain, then.Employed sensors in this section are a 3-axis
icroelectromachnical-system (MEMS) accelerometer, a

observation model actually leads to a Itered quaternion. Th ) )
shows that the GDA is not only an optimization solver, b -axis MEMS gyroscope, a 3-axis MEMS_magnetQmete_r a_nd
monocular camera. Each sensor has its sensing principle

a smoother as well. Such identity makes the obtained attitude

estimates more smooth than that directly derived from Wahb%gd .mathemat|cal model. Here, we simply introduce the
solutions. etails of these sensors.

A 3-axis accelerometer measures the object's specic
Theorem 2. Derivative-based optimization methods includindorce. Its output in the object's body frame can be expressed
GDA, GNA and LMA for optimal attitude determination frompy AP = (ay;a,;a,)>. A 3-axis gyroscope gives the
vector observations are essentially equivalent to each otheangular rate data of the object and its output is given by
= (!x;!y;!2)”. The magnetometer measures the Earth's

|
Proof. The Gauss-Newton algorithm (GNA) is a classical . .
g ( ) eomagnetic eld and its output &l ® = (my;my;m,)”.

optimization problem but it may fail when the Jacobian matri¥
is singular. Consequently, some other algorithms e.g. the
Levenberg-Marquadt algorithm (LMA) are designed to ove
come this drawback. The searching equation can be writt
as

> . USB
Ok = Ok 1 Jfwyv: ngdfww: ngt | Debugger
‘]f>w;v; ngf (g 1:fwiv; ng)
(47)
Then we have ’ AHRS with MEMS
> _ % ¢ Gyroscope,
‘]fw;v; n g‘]fw;v; ng + Ok = A ¢ > Accelerometer,
‘Jf>w;v; ngdtwy: mg T | Ok 1 (48) / p T Magnetometer
Jf>W;V; ;ngf (gk 1;fw;v; ;ng)
Note that
‘](f)>W;v; n ngW;v; ng + 1qk 1
X
=@ + ad>JA g 1 (49)
i2f wyv;  ing e Y
=1+ )k 1

Fig. 1: Designed hardware platform. The platform consists
of integrated AHRS, a monocular camera, a battery, an USB
+ 1 (g o 1) (50) debugger and an embedded computer.

De ning the quaternion error as

— >
a= ‘]fw;v; ;ng‘]fW;v; ng



Camera has been widely used with the development of con- the North-East-Down frame which can be referenced
sumer electronics . Using a camera, we can capture numbers from the geomagnetic model according to local geodetic
of images and videos. In fact, motion can be extracted from location.

a recorded video stream since continuous pictures correspor) The second experiment involves a gyroscope, an ac-
to changes of attitude and translation. To achieve this task, celerometer, a magnetometer and a monocular camera in
characteristics of pictures are necessary. There are many a hovering ight, where the vector pairs are
feature extraction methods including scale-invariant feature b T 8 T
transform (SIFT) [55], gradient location-orientation histogram D1=(aay:a,) 1=(0:0:1)
(GLOH) [56], speeded-up robust features (SURF) [57] and Dg = (mx;my;mz)T D} =(mN;O;mD)T
etc. Extracted features from two neiboughring images are in b—(n . n. .-n.\T r R U |
a degree similar. This provides an approach to determine D3 = (Px1iPyiziPeia) S Da= PorPraiPa
the attitude and the translation vector with respect to the : '
! T
§ DE — Px:n 23 % D

oo

previous acquired image. Since the correlation of the 3D

features are easily disturbed by noises, the random sample _ Pon 23
consensus (RANSAC) algorithm [58] can be used for rejecting - Pyin 2:Pzn 2 - Pyn 2:Pzn 2
outliers according to probabilistic functions. Using the nal (53)

valid features' correspondence, the relative attitude can be in which py;;py:i;p,; are normalized coordinates of
obtained from (3) via the SVD method by Arun et al. [44].  the i-th transformed feature points in the body frame.
If the vision eld is wide enough and the motion is relatively — pf ;pj,;p}; are normalizedi-th transformed feature
moderate, the attitude of the object can be directly obtained points reference obtained in initial image capture of the
using the difference between the current and initial images. ground.

With vector pair con gurations shown above, we can easily
B. Hardware Con guration fuse them with the procedure provided in Algorithm 1.

To verify the effectiveness of the proposed lIter, an experi-
mental platform is designed (see Fig. 1). The system integrafes Case 1: AHRS with MARG Sensors
a commercial attitude and heading reference system (AHRS)The accelerometer and magnetometer are introduced, adding
which is composed of magnetic, angular rate and gravity compensation of pitch, roll and yaw angles from gravity-
(MARG) sensors. The AHRS can give high precision referencgld and magnetic- led sensing data. The MARG sensors are
attitude angles along with raw sensor outputs and has begitibrated for initial biases and misalignment. To ensure good
widely veri ed for its high reliability in navigation tasks suchresults, the operating temperature of the sensors is stablized
as UAV, land vehicles and robots. The reference attitude angis45 C using a controlled thermal resistance. Constant iron
from the AHRS is chosen as the ground truth. A camera dsd soft magnetic distortion to the magnetometer are also
attached rmly to the installed AHRS to maintain relativelycompensated for before all the experiments [60]. To verify
identical attitude determination. It should be noted that thRe performance of the proposed GCF, representative meth-
design of the camera is motivated by PX4FLOW [59] but hasds like Wahba's Complementary Filter (WCF) by Marantos
been modi ed for broader vision eld and higher image resoet al. [19], Algebraic-QUaternion-Algorithm-based quaternion
lution. In fact there is a micro controller on the camera boawialman Iter (AQUA g-KF) by Valenti et al. [23], Levenberg-
making the calculations faster. The navigation computer fgarquadt-Algorithm Complementary Observer (LMA-CO) by
formed by an STM32F4-based board with multiple interfaceBourati et al. [40] are used for comparisons. The parameters
To achieve wireless and highly reliable data transmission, afdifferent Iters are tuned as follows
Xbee Pro S3B telemetry is installed on board. 1) WCF: The parameters am, = 0:9;wy, = 0:8,¢2 =

In the following sub-sections, we are going to carry out ¢l =0:7,¢3 = ¢ =0:3,c§ = 8500;c] = 5500 as
several experiments with the above sensors in order to evaluate gescribed in [19].
the performances of accuracy, robustness, time consumptiony AQUA g-KF: The variance matrices are
of the proposed algorithm compared with representative meth- ayro = diag(0:0013 0:0013 0:0013)
ods: acc = diag(0:01; 0:01; 0:02)

1) The rst one integrates a gyroscope, an accelerometer .., = diag(0:05; 0:05; 0:05)

and a magnetometer together which generates a typica) LMA-CO: The gain is set to 0.1 and the positive number
full-attitude AHRS. In such combination, the vector pairs  for LMA is set to = 0:000001

are 4) Proposed GCF: The weights are setatp. = 0:7 and
( D% = (acay;a,)’ ( 1=(0;01) amag = 0:3 to enhance the accelerometer's effect while
b ' _ T P o + (52) the complementary gain is set® = 0:11 . The gain of
D3 = (myx;my;m;) D2 =(mn;0;mp) the proposed GCF is tuned to achieve relatively good at-
whereay; ay;a, andm,;my;m, are normalized vector titude estimation results in the case of such experimental
measurements in the body frarbérom the accelerom- conditions.

eter and magnetometer respeceivetyy and mp are With the recorded data in previous experiment, the attitude
reference vector components of the magnetometer @stimation errors are obtained and shown in Fig. 2. In this
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Fig. 3: 1: Raw data from magnetometer. 2: Norm of the
measured magnetic eld. 3: Modes of the motion.
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Fig. 2: Attitude estimation errors during a at motion from
WCF, AQUA g-KF, LMA-CO and the proposed GCF. Ac-
celerometer and magnetometer are jointly utilized.

TABLE I: RMSEs of attitude angles

Error Roll (deg)
‘ o
T

Algorithms Roll Pitch Yaw 0 5 10 15 20 25 30
Time (s)
WCF 4:5075 2:7846 3:5715 20 GCF without Outlier Rejection ‘
AQUA g-KF 2:1736 1:0264 1:3266 GCF with Outlier Rejection |
LMA-CO 1:6172 1:0539 1:7120
Proposed GCF 1:6018 1:0107 1:0998

Error Pitch (deg)

evaluation, the norm veri cation is not performed since th
motion is not drastic. As can be seen from the gure, WCF ig
the worst among all lters. The estimation accuracy of AQUZS
g-KF and LMA-CO is close to that of the proposed lter. To>§,
further verify the performances, we calculate the Root-Meas ; ‘ ‘ .
Squared Errors (RMSESs) of various algorithms with respe 9 5 10 o i 20 29 50
to reference angles from high precision AHRS (see Table I). ) ) )

We can see that for roll and pitch angles, the proposed Gt 4 Attltl_Jde errors from various sources in the presence of
reaches almost the same accuracy with LMA-CO while GCRagnetic distortion.
is the best for estimating attitude angles. This shows that the
proposed GCF is ef cient for quasi-static attitude estimation.

As described before, the performance of the lter is beingjier rejection shows interesting behaviour since it is hardly
tested out when drastic conditions occur. The magnetomefRhyrhed by the magnetic distortion. The third sub- gure of
can be easily disturbed by iron or magnetic objects i.. it {§5 3 shows that the Iter can detect the magnetic distortion
sen_smve to magnetic dISFOI‘tIOU. In the next expe_rlment, the 5 high level. Although most magnetometer's outputs are
designed hardware remains still on a table and is perturbgd,, gisturbed, there are still some trustworthy data. Using
by a moving magnet. Fig. 3 re ects the raw data from thg,ese data, the Iter maintains stable with convergent yaw

magnetometer along with its norm. We can see that theiimation. The RMSEs are shown in Table L.
magnetic distortion is very large with the norm of up to

10 Gauss. Using the acquired data, attitude estimation errors ] o ]
are calculated and shown in Fig. 4. The threshold for norff*BLE Il: RMSESs of attitude angles when magnetic distortion
veri cation of magnetometer is set tOmag = 0:2. We can takes place

nd out that the Iter without outlier rejection undergoes

. : o . Algorithms Roll Pitch Yaw

very evident disturbances of yaw angles as magnetic distortion TR
happens. The proposed GCF is disturbed in this case, not only GCF with outlier rejection 0:6637  0:5525  1:1507
PP prop ! ¥3CF without outlier rejection 5:7659  4:0821  99:4968

for yaw but also for roll and pitch angles. However, GCF with






















