G. V. Lauder and E. G. Drucker, Forces, fishes and fluids: Hydrodynamics mechanisms of aquatic locomotion, Physiology, vol.17, pp.235-240, 2002.

M. Gharib, E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri, Optimal vortex formation as an index of cardiac health, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.6305-6308, 2006.

Y. Bouremel, On the circulation, strain, dynamics and scalar mixing in vortical flows, 2010.

Y. Bouremel and A. Ducci, Scalar mixing and strain dynamics methodologies for PIV/LIF measurements of vortex ring flows, Phys. Fluids, vol.29, p.13602, 2017.

S. Benteboula, Résolution deséquationsdes´deséquations de Navier-StokesàStokes`Stokesà faible nombre de Mach: ApplicationàApplication`Applicationà l'´ etude de l'anneau de vorticitévorticité`vorticitéà masse volumique variable, 2006.

D. An, A. Warning, K. G. Yancey, C. T. Chang, V. R. Kern et al., Mass production of shaped particles through vortex ring freezing, Nat. Commun, vol.7, p.12401, 2016.
DOI : 10.1038/ncomms12401

URL : https://www.nature.com/articles/ncomms12401.pdf

T. Maxworthy, The structure and stability of vortex, J. Fluid Mech, vol.51, pp.15-32, 1972.

B. N. Didden, On the formation of vortex rings: Rolling-up and production of circulation, Z. Angew. Math. Phys. ZAMP, vol.30, pp.101-116, 1979.

A. Dazin, P. Dupont, and M. Stanislas, Experimental characterization of the instability of the vortex rings. Part I: Linear phase, Exp. Fluids, vol.40, pp.383-399, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00291224

A. Dazin, P. Dupont, and M. Stanislas, Experimental characterization of the instability of the vortex rings. Part II: Non-linear phase, Exp. Fluids, vol.41, pp.401-413, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00291224

H. Helmholtz, ¨ Uber integral der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen, J. Reine Angew. Math, vol.1858, pp.25-55

L. Kelvin, The translatory velocity of a circular vortex ring, Philos. Mag, vol.33, pp.511-512, 1867.

J. J. Thomson, A Treatise on the Motion of Vortex Rings, 1883.

G. I. Taylor, Formation of a vortex ring by giving an impulse to a circular disc and then dissolving it away, J. Appl. Phys, vol.24, pp.104-105, 1953.

T. Maxworthy, The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid, J. Fluid Mech, vol.40, pp.453-479, 1970.

M. H. Baird, T. Wairegi, and H. J. Loo, Velocity and momentum of vortex rings in relation to formation parameters, Can. J. Chem. Eng, vol.55, pp.19-26, 1977.

A. Glezer, The formation of vortex rings, Phys. Fluids A, vol.31, pp.3532-3542, 1988.

K. Shariff and A. Leonard, Vortex rings, Annu. Rev. Fluid Mech, vol.24, pp.235-279, 1992.

J. J. Allen and B. Auvity, Interaction of a vortex ring with a piston vortex, J. Fluid Mech, vol.465, pp.353-378, 2002.

I. S. Sullivan, J. J. Niemela, R. E. Hershberger, D. Bolster, and R. J. Donnelly, Dynamics of thin vortex rings, J. Fluid Mech, vol.609, pp.319-347, 2008.

R. H. Hernandez and T. Reyes, Symmetrical collision of multiple vortex rings, Phys. Fluids, vol.29, p.103604, 2017.

M. Gharib, E. Rambod, and K. Sharif, A universal time scale for vortex ring formation, J. Fluid Mech, vol.360, pp.121-140, 1998.

S. E. Widnall, D. Bliss, and C. Y. Tsai, The instability of short waves on a vortex ring, J. Fluid Mech, vol.66, pp.35-47, 1974.

P. G. Saffman, The number of waves on unstable vortex rings, J. Fluid Mech, vol.84, pp.625-639, 1978.

S. E. Widnall and C. Y. Tsai, The instability of the thin vortex ring of constant vorticity, Philos. Trans. R. Soc., A, vol.287, pp.273-305, 1977.

P. G. Saffman, Dynamics of vorticity, J. Fluid Mech, vol.106, pp.49-58, 1981.

V. V. Meleshko, A. A. Gourjii, and T. S. Krasnopolskaya, Vortex rings: History and state of the art, J. Math. Sci, vol.187, issue.6, pp.772-808, 2012.

O. Velasco-fuentes, Early observations and experiments on ring vortices, Eur. J. Mech. B: Fluids, vol.43, pp.166-171, 2014.

C. Palacios-morales and R. Zenit, The formation of vortex rings in shearthinning liquids, J. Non-Newtonian Fluid Mech, vol.194, pp.1-13, 2013.

P. M. Coelho and F. T. Pinho, Vortex shedding in cylinder flow of shearthinning fluids: I. Identification and demarcation of flow regimes, J. NonNewtonian Fluid Mech, vol.110, pp.143-176, 2003.

A. Chandra and R. P. Chhabra, Influence of power-law index on transitional Reynolds numbers for flow over a semi-circular cylinder, Appl. Math. Modell, vol.35, pp.5766-5785, 2011.

M. K. Rao, A. K. Sahu, and R. P. Chhabra, Effect of confinement on powerlaw fluid flow past a circular cylinder, Polym. Eng. Sci, vol.51, pp.2044-2065, 2011.

A. K. Sahu, R. P. Chhabra, and V. Eswaran, Two-dimensional unsteady laminar flow of a power law fluid across a square cylinder, J. Non-Newtonian Fluid Mech, vol.160, pp.157-167, 2009.

A. K. Sahu, R. P. Chhabra, and V. Eswaran, Two-dimensional laminar flow of a power-law fluid across a confined square cylinder, J. Non-Newtonian Fluid Mech, vol.165, pp.752-763, 2010.

S. Mishra and K. Jayaraman, Asymmetric flows in planar symmetric channels with large expansion ratio, Int. J. Numer. Methods Fluids, vol.38, pp.945-962, 2002.

S. Dhinakaran, M. S. Oliveira, F. T. Pinho, and L. A. Alves, Steady flow of power-law fluids in a 1:3 planar sudden expansion, J. Non-Newtonian Fluid Mech, vol.198, pp.48-58, 2013.

N. Zhen, R. A. Handler, Q. Zhang, and C. Oeth, Evolution of a hairpin vortex in a shear-thinning fluid governed by a power-law model, Phys. Fluids, vol.25, p.101703, 2013.

K. Yasuda, R. C. Armstrong, and R. E. Cohen, Shear flow properties of concentrated solutions of linear and star branched polystyrenes, Rheol. Acta, vol.20, pp.163-178, 1981.

P. R. De-souza and . Mendes, Dimensionless non-Newtonian fluid mechanics, J. Non-Newtonian Fluid Mech, vol.147, pp.109-116, 2007.

S. Shahsavari and G. H. Mckinley, Mobility of power-law and Carreau fluids through fibrous media, Phys. Rev. E, vol.92, p.63012, 2015.

R. I. Tanner, Engineering Rheology, 1988.

C. Palacios-morales and R. Zenit, Vortex ring formation for low Re numbers, Acta Mech, vol.224, pp.383-397, 2013.

S. Maurel, Etude par imagerie laser de la génération et de la rupture d'unécoulement un´unécoulement tourbillonnaire compressé. Situation modèle pour la validation de simulations aux grandeséchellesgrandes´grandeséchelles dans les moteurs, INP, 2000.