I. S. Pretorius, Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking, Yeast, vol.16, pp.675-729, 2000.

M. Ciani, F. Comitini, I. Mannazzu, and P. Domizio, Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking, FEMS Yeast Res, vol.10, pp.123-133, 2010.

M. Sadoudi, R. Tourdot-maréchal, S. Rousseaux, D. Steyer, J. J. Gallardo-chacón et al., Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts, Food Microbiol, vol.32, pp.243-253, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00782673

P. Taillandier, Q. P. Lai, A. Julien-ortiz, and C. Brandam, Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: influence of inoculation and nitrogen content, World J Microbiol Biotechnol, vol.30, pp.1959-1967, 2014.
DOI : 10.1007/s11274-014-1618-z

URL : https://hal.archives-ouvertes.fr/hal-01890432

A. Contreras, C. Curtin, and C. Varela, Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation, Appl Microbiol Biotechnol, vol.99, pp.1885-1895, 2015.

M. Ciani and F. Maccarelli, Oenological properties of nonSaccharomyces yeasts associated with wine-making, World J Microbiol Biotechnol, vol.14, pp.199-203, 1997.

M. Ciani and G. Picciotti, The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with wine-making, Biotechnol Lett, vol.17, pp.1247-1250, 1995.

P. Renault, C. Miot-sertier, P. Marullo, P. Hernández-orte, L. Lagarrigue et al., Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: potential applications in the wine industry, Int J Food Microbiol, vol.134, pp.201-210, 2009.

C. Brandam, Q. P. Lai, A. Julien-ortiz, and P. Taillandier, Influence of oxygen on alcoholic fermentation by a wine strain of Torulaspora delbrueckii: kinetics and carbon mass balance, Biosci Biotechnol Biochem, vol.77, pp.1848-1853, 2013.

P. Renault, J. Coulon, G. De-revel, J. C. Barbe, and M. Bely, Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement, Int J Food Microbiol, vol.207, pp.40-48, 2015.
DOI : 10.1016/j.ijfoodmicro.2015.04.037

M. Bely, P. Stoeckle, I. Masneuf-pomarède, and D. Dubourdieu, Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation, Int J Food Microbiol, vol.122, pp.312-320, 2008.
DOI : 10.1016/j.ijfoodmicro.2007.12.023

P. Nissen and N. Arneborg, Characterization of early deaths of non-Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae, Arch Microbiol, vol.180, pp.257-263, 2003.

R. Velázquez, E. Zamora, M. L. Álvarez, L. M. Hernández, and M. Ramírez, Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine, Front Microbiol, vol.6, p.1222, 2015.

M. Ramírez, R. Velázquez, M. Maqueda, A. López-piñeiro, and J. C. Ribas, A new wine Torulaspora delbrueckii killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus, Front Microbiol, vol.6, p.983, 2015.

N. Rodriguez-cousino, M. Maqueda, J. Ambrona, E. Zamora, R. Esteban et al., A New Wine Saccharomyces cerevisiae Killer Toxin (Klus), encoded by a double-stranded RNA virus, with broad antifungal activity is evolutionarily related to a chromosomal host gene, Appl Environ Microbiol, vol.77, pp.1822-1832, 2011.

H. Albergaria, D. Francisco, K. Gori, N. Arneborg, and F. Gírio, Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains, Appl Microbiol Biotechnol, vol.86, pp.965-972, 2010.
DOI : 10.1007/s00253-009-2409-6

P. Branco, D. Francisco, M. Monteiro, M. G. Almeida, J. Caldeira et al., Antimicrobial properties and death-inducing mechanisms of saccharomycin, a biocide secreted by Saccharomyces cerevisiae, Appl Microbiol Biotechnol, vol.101, pp.159-171, 2017.
DOI : 10.1007/s00253-016-7755-6

H. Albergaria and N. Arneborg, Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions, Appl Microbiol Biotechnol, vol.100, pp.2035-2046, 2016.

E. Holm-hansen, P. Nissen, P. Sommer, J. C. Nielsen, and N. Arneborg, The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae, J Appl Microbiol, vol.91, pp.541-547, 2001.

G. Daum, N. D. Lees, M. Bard, and R. Dickson, Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae, Yeast, vol.14, pp.1471-1510, 1998.

H. Alexandre, I. Rousseaux, and C. Charpentier, Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata, FEMS Microbiol Lett, vol.124, pp.17-22, 1994.

C. Pina, C. Santos, J. A. Couto, and T. Hogg, Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae, influence of different culture conditions, Food Microbiol, vol.21, pp.439-447, 2004.

C. Deytieux, L. Mussard, M. J. Biron, and J. M. Salmon, Fine measurement of ergosterol requirements for growth of Saccharomyces cerevisiae during alcoholic fermentation, Appl Microbiol Biotechnol, vol.68, pp.266-271, 2005.

C. Delfini and A. Costa, Effects of the Grape must lees and insoluble materials on the alcoholic fermentation rate and the production of acetic acid, pyruvic acid, and acetaldehyde, Am J Enol Vitic, vol.44, pp.86-92, 1993.

I. Rosi and M. Bertuccioli, Influence of lipid addition on fatty acid composition of Saccharomyces cerevisiae and aroma characteristics of experimental wines, J Inst Brew, vol.98, pp.305-314, 1992.

A. G. Lee, How lipids affect the activities of integral membrane proteins, Biochim Biophys Acta BBA Biomembr, vol.1666, pp.62-87, 2004.

N. D. Lees, M. Bard, and D. R. Kirsch, Biochemistry and function of sterols, 1997.

F. W. Kleinhans, N. D. Lees, M. Bard, R. A. Haak, and R. A. Woods, ESR determinations of membrane permeability in a yeast sterol mutant, Chem Phys Lipids, vol.23, pp.143-154, 1979.

I. Loira, R. Vejarano, M. A. Bañuelos, A. Morata, W. Tesfaye et al., Influence of sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on wine quality, LWT Food Sci Technol, vol.59, pp.915-922, 2014.

L. Canonico, F. Comitini, and M. Ciani, Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains, Int J Food Microbiol, vol.259, pp.7-13, 2017.

M. Azzolini, B. Fedrizzi, E. Tosi, F. Finato, P. Vagnoli et al., Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine, Eur Food Res Technol, vol.235, pp.303-313, 2012.

P. Nissen, D. Nielsen, and N. Arneborg, Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism, Yeast, vol.20, pp.331-341, 2003.

C. Brandam, N. Fahimi, and P. Taillandier, Mixed cultures of Oenococcus oeni strains: a mathematical model to test interaction on malolactic fermentation in winemaking, LWT Food Sci Technol, vol.69, pp.211-216, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01911992

C. Lopez, S. Beaufort, C. Brandam, and P. Taillandier, Interactions between Kluyveromyces marxianus and Saccharomyces cerevisiae in tequila must type medium fermentation, World J Microbiol Biotechnol, vol.30, pp.2223-2229, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01891336

M. E. Salgado, C. Albasi, and J. P. Riba, A two-reservoir, hollowfiber bioreactor for the study of mixed-population dynamics: design aspects and validation of the approach, Biotechnol Bioeng, vol.69, pp.401-408, 2000.

J. M. Salmon and P. Barre, Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain, Appl Environ Microbiol, vol.64, pp.3831-3837, 1998.

C. Albasi, P. Tataridis, E. Salgado-manjarrez, and P. Taillandier, A new tool for the quantification of microorganism interaction dynamics, Ind Eng Chem Res, vol.40, pp.5222-5227, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02143257

R. R. Jimenez and J. K. Ladha, Automated elemental analysis: a rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples, Commun Soil Sci Plant Anal, vol.24, pp.1897-1924, 1993.

J. S. Racine, RStudio: a platform-independent IDE for R and Sweave, J Appl Econom, vol.27, pp.167-172, 2012.

R. J. Rodriguez, C. Low, C. D. Bottema, and L. W. Parks, Multiple functions for sterols in Saccharomyces cerevisiae, Biochim Biophys Acta BBA-Lipids Lipid Metab, vol.837, pp.336-343, 1985.

H. A. Lucero and P. W. Robbins, Lipid rafts-protein association and the regulation of protein activity, Arch Biochem Biophys, vol.426, pp.208-224, 2004.

C. M. Souza and H. Pichler, Lipid requirements for endocytosis in yeast, Biochim Biophys Acta BBA Mol Cell Biol Lipids, vol.1771, pp.442-454, 2007.

J. Valdez-taubas and H. Pelham, Slow diffusion of proteins in the yeast plasma membrane allows polarity to Be maintained by endocytic cycling, Curr Biol, vol.13, pp.1636-1640, 2003.

C. A. Viegas, M. F. Rosa, I. Sá-correia, and J. M. Novais, Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation, Appl Environ Microbiol, vol.55, pp.21-28, 1989.

P. E. Renault, W. Albertin, and M. Bely, An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions, Appl Microbiol Biotechnol, vol.97, pp.4105-4119, 2013.

J. C. Mauricio, C. Millán, and J. M. Ortega, Influence of oxygen on the biosynthesis of cellular fatty acids, sterols and phospholipids during alcoholic fermentation by Saccharomyces cerevisiae and Torulaspora delbrueckii, World J Microbiol Biotechnol, vol.14, pp.405-410, 1998.

J. Tronchoni, J. A. Curiel, P. Morales, R. Torres-pérez, and R. Gonzalez, Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii, Int J Food Microbiol, vol.241, pp.60-68, 2017.

D. Rivero, L. Berná, I. Stefanini, E. Baruffini, A. Bergerat et al., Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains: Natural yeast interactions, vol.17, pp.3069-3081, 2015.

C. Barbosa, A. Mendes-faia, P. Lage, N. P. Mira, and A. Mendes-ferreira, Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii, Microb Cell Factories, vol.14, p.124, 2015.

M. J. Hernández-lópez, C. Pallotti, P. Andreu, J. Aguilera, J. A. Prieto et al., Characterization of a Torulaspora delbrueckii diploid strain with optimized performance in sweet and frozen sweet dough, Int J Food Microbiol, vol.116, pp.103-110, 2007.

P. Branco, T. Viana, H. Albergaria, and N. Arneborg, Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells, Int J Food Microbiol, vol.205, pp.112-118, 2015.

A. Lichtenstein, T. Ganz, M. E. Selsted, and R. I. Lehrer, In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes, Blood, vol.68, pp.1407-1410, 1986.

B. K. Pandey, S. Srivastava, M. Singh, and J. K. Ghosh, Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2, Biochem J, vol.436, pp.609-620, 2011.

K. A. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nat Rev Microbiol, vol.3, p.238, 2005.

F. Harris, S. Dennison, and D. Phoenix, Anionic Antimicrobial Peptides from Eukaryotic Organisms, Curr Protein Pept Sci, vol.10, pp.585-606, 2009.

B. L. Kagan, T. Ganz, and R. I. Lehrer, Defensins: a family of antimicrobial and cytotoxic peptides, Toxicology, vol.87, pp.131-149, 1994.

M. Gallo and E. Katz, Regulation of secondary metabolite biosynthesis: catabolite repression of phenoxazinone synthase and actinomycin formation by glucose, J Bacteriol, vol.109, pp.659-667, 1972.