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Abstract  

Red blood cells under shear flow present a specific swinging motion superimposed to a fluid-

like tanktreading motion. Swinging is hypothesized to originate from periodic storage of shear 

energy in the cell membrane. Here we designed giant unilamellar vesicles with two lipid 

phases separated by a contact line, which swing and tanktread like red cells. We propose a 

model that quantitatively fits our data, finds the value of the contact-line tension and shows 

that swinging is due to the storage of elastic energy associated with the periodic modulation 

of the contact-line length during tanktreading. 

 

 

I. INTRODUCTION 

 

The dynamics of deformable microcapsules, such as giant unilamellar lipid vesicles 

(GUVs)
1,2

, polymer microcapsules
3
, elastic drops

4
 and red blood cells

5
 (RBCs) in suspension 

under shear flow is extensively studied because of its importance in proper blood circulation 

and drug delivery, the archetypal example being the RBC motion under shear flow. The 

coupling between the capsule elasticity and the suspending fluid, which depends on the 

constitutive mechanical properties displayed by microcapsules, is non-trivial and raises 

complex questions of non-linear physics and fluid structure interaction. The resulting richness 

of regimes of motion of these capsules is still not understood.  

Prolate or oblate ellipsoidal capsules have two motions under shear flow known since the 

seventies, namely tumbling and tanktreading
6,7,8

. They are observed when the capsule is 

suspended in a fluid of respectively low and high viscosity compared to that of the internal 

fluid. Tumbling is analogous to a rigid-ellipsoid motion with a non-stationary orientation in 

flow (Fig. 1a). Note that GUVs, because of their high membrane flexibility, present also a 

tumbling motion with strong time-dependent shape deformations, called trembling
9

. 

Tanktreading is a droplet-like motion, characterized by the rotation of the shell and the 

internal fluid of the capsule around its center of mass, while the capsule maintains a stationary 
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orientation with respect to the flow direction (Fig. 1c). In the following, we call ‘membrane’ 

the capsule shell in reference to GUVs and RBCs. In 1982, Keller and Skalak
10

 modeled the 

motion under shear flow of a fluid ellipsoid with a prescribed shape. They predicted both 

tumbling and tanktreading, and a ‘tumbling to tanktreading’ transition (T/TT transition) 

governed by two parameters, the viscosity contrast between the suspending fluid and the 

capsule inner fluid, and the ellipsoid aspect ratio.  

Various other regimes of motion were recently discovered, such as swinging
5
, superimposed 

to tanktreading, which has been reported for both RBCs, protein-coated drops and polymer 

capsules, and rolling
11

 (Fig. 1b), kayaking
12

, flip-flopping
13

 and chaotic motion (in oscillatory 

shear flow)
14

 which have been observed for RBCs. These new regimes of motion were 

explained by accounting for the shear elasticity of the membrane, in addition to the viscosity 

contrast and the aspect ratio. The specific role of shear elasticity is best illustrated by the 

example of swinging. In this regime, the inclination of the tanktreading capsule oscillates 

about a mean angle. The strain of a local membrane element on a capsule deformed under 

shear flow periodically varies as the element moves along the capsule during tanktreading and 

therefore, so does the capsule shear-elastic energy (Fig. 1d). Moreover, when the stress-free 

shape of the capsule (i.e. the three-dimensional geometry of the membrane in which there is 

no shear stress
15

) is not spherical the membrane elements are not equivalent and the total 

shear strain and elastic energy
16

 of the capsule membrane also periodically vary during 

tanktreading, as illustrated in Fig. 1d for a capsule with an ellipsoidal stress-free shape. The 

dynamics of the system then depends on two time-dependent variables, the orientation angle 

of the capsule with respect to the flow and the position of the membrane elements on the 

capsule surface. During tanktreading these two coupled variables synchronize, leading to the 

periodic variation of the orientation angle of the capsule observed in swinging
5,17

.  

The key phenomenon generating a large variety of motions is therefore believed to be the 

capacity of a capsule to periodically store energy during its flow motion. In addition to very 

compelling 3D numerical simulations
12,13,18

, the validity of this hypothesis is based on the 

experimental observation that tanktreading capsules with a shear modulus swing, whereas 

purely viscous GUVs tanktread with a steady inclination
1,19

. Moreover, shear-energy storage 

also explains why the T/TT transition depends on the shear rate for RBCs and not for GUVs. 

But so far, apart from polymer microcapsules
 
for which swinging was incidentally reported

3
, 

RBCs are the only capsules combining shear-elasticity and non-spherical stress-free shape for 

which swinging and shear-rate induced T/TT transition was extensively experimentally, 

theoretically, and numerically reported.  
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Here, we consider GUVs whose membrane consists of two lipid phases separated by a contact 

line. These GUVs have prolate ellipsoidal shape under shear flow. When they tanktread the 

contact line rotates from the meridian zone of the GUV to its equatorial one. The length of the 

contact line therefore varies. As the energy of the contact line depends on its length, it is 

expected to periodically vary during tanktreading. This system is therefore a good candidate 

to exhibit swinging under shear flow and shear-rate induced T/TT transition. The aim of this 

work is to comfort the causality between storage energy and swinging by combining an 

experimental and theoretical work on designed-on-purpose two-phase GUVs, able to periodic 

store and tune their contact-line energy during the flow motion. 

 

II. MATERIALS AND METHODS 

 

A. GUV preparation 

Two-phase vesicles were prepared using the electroformation method at 60°C
20

 from a 

mixture of dioleoyl-phosphatidylcholine (DOPC), dipalmitoyl-phosphatidylcholine (DPPC) 

and cholesterol (Chol) in mass ratio 4:4:2 at a final concentration of 2 mg/mL in 

methanol:chloroform 1:9. N-(lyssamine rhodamine B sulfonyl)-dipalmitoyl-

phosphatidylethanolamine (Rh-DPPE) (1mg/ml) (5% in volume) was added to the mixture for 

fluorescence microscopy observation (all lipids from Avanti Polar Lipids). Vesicles were 

electroformed in 0.1 M sucrose solution and subsequently diluted in 0.105 to 0.2 M glucose 

solution to control vesicle deflation. At room temperature the ternary lipid mixture 

spontaneously forms two stable liquid-ordered (Lo) and liquid-disordered (Ld) phases 

separated by a contact line. Rh-DPPE preferentially partitions in the Ld phase.  

For certain GUVs, the surface areas of the two liquid-ordered and liquid-disordered phases 

were equal (50% Lo / 50% Ld). For several GUVs, some vesiculation probably occurred and 

the membrane surface area of the two lipid phases was different, up to 30% Lo / 70% Ld. 

Flow experiments: Vesicles were gently injected in a parallelepiped flow chamber with four 

optical faces (1×10×45 mm
3
), let sediment, and observed using a microscope (LEICA) tilted 

at 90° with a ×20 objective and a camera Andor Neo sCMOS at 20 fps, as previously 

described
1
. The flow was applied using a syringe pump (ProSense B.V model NE-1000) at 

shear rates ranging from 1 to 12 s
-1

. We experimentally observed 10 different GUVs at 

various shear rates (from 3 to 11.5 s
-1

), among which 8 were in the tanktreading/swinging 

regime and whose motion was analyzed. Within this set of 8 vesicles, 4 were studied at 

varying shear rates (3 to 4 values). The geometric parameters (size, reduced volume and Lo/Ld 
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partitioning), the capillary number, and the shear rates used for the 10 vesicles are listed in 

Table 1. 

 

B. Image analysis. 

In-house Matlab routines were developed to track the vesicles and extract their geometrical 

parameters. The shape of the vesicle projection in the shear plane was fitted by an ellipse. The 

long and short axis of the ellipse were identified: we determined their respective lengths (2a1 

and 2a2) and the orientation of the long axis with respect to the flow direction, defined as the 

inclination angle . The projection of the phase separation line on the ellipse was identified: 

we derived the length l of the contact line on the whole vesicle (considered as an ellipsoid of 

revolution around its long axis) and determined the phase angle . It is defined as the angle 

formed by the major axis of the ellipse and the bisector of the two segments each connecting 

the center of the ellipsoid to the contact line (figure 2b and Supplemental Material
21

).  

 

III. RESULTS AND DISCUSSION 

 

A. Observations 

A typical experiment is illustrated in Fig. 2. Without flow, GUVs rest on the bottom surface 

on the flow chamber and have a non-axisymmetric bilobed shape, each lobe consisting of Lo 

and Ld domains, respectively, separated by a contact line (Fig. 2a). The equilibrium shape of 

GUVs minimizes the total energy of their membrane resulting from the sum of bending 

energy (Helfrich energy), buoyancy, and contact-line energy.  

Under low shear rate (  ), GUVs elongate and move on the surface along the flow direction. 

When    increases, they unbind and stabilize their position at a given distance from the 

substrate, where the lift force balances the vesicle buoyancy
1
. The shape deformation of 

GUVs depends on their reduced volume  , a non-dimensional number defined as the ratio of 

the vesicle volume V to the volume of the sphere with the same surface area A:   

   

           , (   1,   = 1 for a sphere). The lower the reduced volume the higher the shape 

deformation. GUVs with high reduced volume (  ≥ 0.9) display a quasi-stationary shape 

tending to a prolate ellipsoid and tanktread as reported for single-phase GUVs
1
 and RBCs

8,5
. 

The vesicle (GUV#1 in Table 1) shown in Figure 2c and in ref (22) is a typical one with an 

average reduced volume < > = 0.96 ±0.04. The rotation of the membrane at low    (<10 s
-1

) is 

in the shear plane with a stable orbit. Noteworthy, the contact line remains in a plane 
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perpendicular to the shear plane. At higher   , the membrane movement is more complex with 

a transitory out-of-shear plane contribution as observed when increasing the shear rate to 11.5 

s
-1

 (GUV #1, Fig. 2d and ref (23)). At intermediate reduced volume, GUVs strongly deform 

during tanktreading as shown for GUV#9 in Table 1:   ≈ 0.8 (Fig. 2e and ref (24)). When the 

contact line passes in the meridian zone, the GUV looks like two adhered vesicles, and the 

contact line is shorter than for ellipsoidal GUVs. At lower reduced volume, GUVs tumble 

(see Fig. 2f and see Supplemental Material
25

, GUV #10 in Table 1:   ≈ 0.7), thus avoiding the 

strong increase in the contact line that would be required when passing in the meridian zone 

of an elongated shape. Tumbling of GUVs whose internal fluid and suspending fluid have the 

same viscosity has never been previously experimentally observed.  

 

B. Motion and shape analysis 

The motion is characterized by four geometrical parameters (Fig. 2b),  the inclination angle  

between the GUV major axis and the flow direction, the phase angle   between the major 

axis and the bisector of the two segments each connecting the center of the ellipsoid to the 

contact line,  the length of the contact line l between the two lipid phases, and the GUV 

flattening defined as f = (a1-a2)/a1, where a1 and a2 are the half-lengths of the long and short 

axis, respectively. Temporal evolutions of l and fare shown in Fig. 3a for a quasi-

spheroid GUV (GUV #6 in Table 1). Here the GUV flows very close to the surface and an 

asymmetry in temporal evolution is observed. The origin of this asymmetry is not clear. 

We hypothesize that it results from the dissymmetry between the Lo/Ld partitioning on the 

GUV combined with its very close vicinity to the wall. Indeed, this GUV being almost 

spherical experiences only a small unbinding force. Typically, GUVs swing (angle) and 

their swinging period is half that of tanktreading (angle), similarly to observations on 

RBCs
5
. A significant periodic flattening (typically 20%) and contact-line length variation are 

observed at the swinging period. Another vesicle (GUV #3 in Table 1) is shown, see 

Supplemental Material
26

. The   -effect on swinging and tanktreading is displayed in Fig. 3b-c 

by showing the evolution of  and versus the adimensioned time    . Supplemental 

Material
27

 shows -dependence on real time, superimposed with the model fits (see below). 

The amplitude of the oscillations on the -curves and the tanktreading period very 

significantly decrease with increasing shear rate. The phase relationships between f, and l 

are shown in Fig. 4a. f and l have a 180° phase shift: the maximal contact line, observed when 

it lies in the plane containing the long GUV axis, is reached for the minimal GUV elongation, 



 6 

thus contributing to limit the contact-line length and its associated elastic energy. l and  

have a 90° phase shift. The   -dependence of the tanktreading period and of the swinging 

amplitude for all analyzed GUVs (GUVs #1-8 in Table 1) are displayed in Fig. 4b. Both 

parameters vary linearly in   -1. All tanktreading periods fall on the same curve whereas the 

swinging amplitudes, more sensitive to the reduced volume and the partitioning between the 

lipid phases fall in the narrow shade region.  

 

C. Model 

We rely on the analytical model of Keller and Skalak (KS) and on its extension for RBCs
5
 to 

include in the KS model the energy periodically stored by the contact line of the GUV 

membrane. The KS model treats a capsule as a fluid ellipsoid of revolution delimited by a 

membrane enclosing a viscous liquid. The membrane elements are prescribed to rotate along 

elliptical trajectories parallel to the shear plane. KS established the equation of evolution of  

by stating that at equilibrium the total moment exerted by the external fluid on the capsule 

vanishes. In addition, the movement satisfies the conservation of energy, i.e. the rate of 

dissipation of energy in the capsule must equal the rate at which work is done by the external 

fluid on the capsule. KS calculated both rates assuming viscous energy dissipation in the 

capsule. In the case of RBCs, the AFV-SS
5
 model added to this latter contribution that of the 

elastic power stored in the periodic local shear deformations of the membrane during 

tanktreading. Two coupled differential equations for d/dt and d/dt were then obtained, 

which allowed to numerically calculate the capsule motion. 

Here we adapt this model to GUVs, taken as prolate ellipsoids of revolution (identical short 

axes a2 and a3) and divided in two phases and we introduce the contribution of the contact-

line energy. For the sake of simplicity, we describe the calculation when the vesicle displays a 

membrane of equal surface area between the two phases (50%/50% Lo/Ld). The extension of 

the model for surface areas of different ratios between the two phases are described in 

Supplemental Material
28

. We write the balance of energy as Wp = Dv + PL, where Dv is the 

rate at which the work Wp is transferred by the external fluid on the GUV and PL is the time 

derivative of the line energy. PL = dEL/dt, where EL = L · l() is the line energy,  L is the line 

tension, l() is the length of the elliptical separation line when the phase angle is equal to . 

The value l() is derived from the Ramanujan approximation for the circumference of an 

ellipse : 

                                                 (1)  
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with 

         
           

              (2) 

The -derivative of l() is  

                 
           

                         
     (3) 

with 

       
   

    
        

      
      (4) 

 

The value of PL therefore writes as 

   
  

  
             (5) 

 

Conservation of energy yields a second differential equation in complement to that derived by 

KS from the equilibrium of moments. 

The two adimensioned coupled equations are 

  

  
     

 

 
                       (6) 

 

  

  
                             (7) 

where     is the adimensionned ratio  
     

    
   with     

  being the maximal value of       and 

V the vesicle volume,     
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    ,    and     are the viscosities of the suspending fluid and of the inner fluid, 

respectively, and f1, f2 and f3 are the geometrical factors defined by KS. 

When the viscosity of the external and the inner fluid are equal,     and     are only 

geometrical factors and the ratio 
   

   
 

       
 

            
 represents the ratio of the maximal line energy 

to the fluid energy. Therefore, it clearly appears from (7) that 
   

   
 controls the nature of the 

motion. At low values the GUV tanktreads and swings whereas above a critical value it 

tumbles. For a given GUV geometry, the regime of motion is determined by the ratio 
   

       
. 

The   -behavior of   and   in both tanktreading and tumbling regimes are shown in Fig. 5. 

The phase trajectories of  versus  are illustrated by their limit cycle in Fig. 6 for a GUV 

with 40% of the surface area covered by the Lo phase. Corresponding Movies in 
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Supplemental Material
29,30,31

 display the evolution of vs  that led to the curves in Fig. 6. 

Interestingly, at the tumbling-tanktreading transition, an intermittent regime is observed, 

similar to that reported at the tumbling-tanktreading transition of RBCs
5,15,16

.  

Finally, we numerically solved the equations to fit the motions of GUV #1 and GUV #7 in 

Table 1 under the 4 different shear rates experimentally studied. We used the average values 

of a1 and a2 measured on each GUV, and set a2 = a3; the viscosities of the dilute sucrose and 

glucose solutions, i and e, were taken identical and equal to 1.2 · 10
-3

 Pa.s. All these 

parameters were determined with an uncertainty of approximately 10%. The line tension L 

was the only adjustable parameter. It was set to 15 pN to correctly fit the 8 experiments (4 

shear rates, two vesicles). It is in good agreement with experimental data reported in the 

literature for DOPC/DPPC/Chol (≈ 3 pN for 20% Chol
32

) and with modeling
33

 (4-35 pN). 

Model predictions and experiments are in good quantitative agreement concerning the   -

dependence of the swinging period and inclination angle (Figs. 3-4 and Supplemental 

Material
27

), for GUVs #1 and #7, and Supplemental Material
26

 for the GUV#3). Furthermore, 

the model fits the tumbling motion of GUV #10 (Fig. 2f) under a shear rate of 3 s
-1

. By using 

a line tension of 100 pN (6.5 higher than for other vesicles), the model correctly predicts the 

observed tumbling period (5s) and the quasi-null oscillation of the angle  (see Supplemental 

Material
34

).  The neck shape of this GUV at the contact line indeed suggests a high value of 

the line tension.  

A question also arises about the potential effect on swinging of the difference in bending 

energies between the two lipid phases
35

. For instance, 2D numerical simulations performed on 

two-component 2D-vesicles with a difference in bending energy between the lipid phases 

predicted a T/TT transition triggered by an increase in shear rate
36,37

. In this model, however, 

the contact line being reduced to two points cannot drive an energy variation. As noticed in 

ref. 22, values of bending and line energy do not lie in the same range. Briefly, the variation 

of bending energy during tanktreading is of the order of  
  

   
               , where 

          is the bending energy of the lipid membrane
38

 and 
  

   
, the variation ratio between 

the two lipid phase bending energy, is of the order of 0.2
22

. The variation of line energy is 

2  
  

   
                    , where the contact line radius   is of the order of 10

-5
 m, the 

variation rate of R during tanktreading, 
  

   
    , and the line tension   10

-11
N. The line 

energy is therefore three orders of magnitude larger than the bending energy, thus showing 

that this latter parameter does not drive the observed GUV regimes of motion. It should 
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however be noted that for GUVs with an equally distributed membrane surface area between 

the two phases, the bending energy does not change during tanktreading. Indeed, these GUVs 

present a central symmetry. For instance, when the DPPC-rich zone rotates, the membrane 

element at the front of this zone reaches a region on the GUV shape where the curvature is the 

same as that the membrane element at the rear of this zone just left. The bending energy is 

however important for the local continuous membrane geometry at the contact line. The 

difference in orders of magnitude between bending and line energy clearly appears in ref. 24, 

where tumbling is observed on extremely deflated deformable 2D-GUVs and the swinging is 

motion is mixed with shape variations, which is not experimentally observed in line-energy 

controlled experimental GUV motion.   

 

IV. CONCLUSION 

 

In conclusion we show that the two-phase GUVs tumble, swing and tanktread like RBCs due 

to their non-symmetric rest shape and ability to periodically store elastic energy in their 

contact line. By quantitatively fitting experimental data, our model supports the interpretation 

of RBC swinging motion, based on periodic elastic energy storage in the cell membrane with 

an asymmetric stress-free shape.  

 

Acknowledgments: We thank LAI (Aix Marseille Univ, CNRS, Inserm) for hosting S.M. and 

A.-H. A. –H. during several months. 
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Table 1. Shape parameters of the 10 vesicles from the study, and the shear rates under which 

they were observed. 

GUV 

# 

Mean 

radius 

<r> 

(µm) 

Flattening 

f 

Reduced 

volume 

  

Lo/Ld 

partitioning 

(%/%) 

Capillary number 
    

    

   
 

Shear rate 

(s
-1

) 

Regime 

of 

motion 

1 15.6 0.35 0.96 32/68 148/243/342/437 3.9/6.4/9/11.5 TT 

2 17.4 0.52 0.88 49/51 205/327/406 3.9/6.2/7.7 TT 

3 17 0.23 0.98 46/54 192 3.9 TT 

4 19.6 0.32 0.96 37/63 294 3.9 TT 

5 21 0.48 0.91 52/48 565 6.1 TT 

6 15.8 0.24 0.98 28/72 118 3 TT 

7 22 0.30 0.97 47/53 415/681/958/1224 3.9/6.4/9/11.5 TT 

8 24 0.34 0.96 43/57 539/884/1244/1590 3.9/6.4/9/11.5 TT 

9 21 0.62 0.82 38/62 361 3.9 TT 

10 NA NA < 0.71 53/47  3 T 

 

The mean radius <r> is the average value of long and short axis lengths (2a1 and 2a2, 

respectively) of the ellipse fitting the vesicle projection. 

The flattening f characterizes the shape aspect ratio at maximal GUV elongation. 

The reduced volume   is the ratio of the vesicle volume to the volume of a sphere with the 

same surface area. GUVs #1-9 were approximated by an ellipsoid of revolution, to calculate 

their volume and surface area. In the peculiar case of GUV #10 which looks like two adhered 

spheres (one in Lo phase, the other one in Ld phase), the vesicle could not be fitted by an 

ellipsoid : the volume and surface area were calculated by considering the sum of the 2 

spheres, leading to an overestimation of the reduced volume. 

The Lo/Ld partitioning is the surface area percentages of the Lo (non-fluorescent) and Ld 

(fluorescent) phases. 

The capillary number was calculated by using           , the bending energy     
        , r is the mean radius and     is the shear rate. 

The regime of motion of the vesicles is either tanktreading/swinging (TT) or tumbling (T). 

 

 

  



 11 

Figure captions 

 

Figure 1. a-c) Schematics of RBCs successively  undergoing tumbling, rolling and 

tanktreading at increasing shear rate. The rolling regime is specific to RBCs and does not 

occur with vesicles. d) During swinging the elastic energy stored by membrane elements 

moving along the capsule contour varies periodically. 

 

Figure 2. a) Vesicle at rest on the flow chamber surface. b) Parameters measured to 

characterize vesicle motion: vesicle size and shape (a1,a2,a3), orientation to flow (), phase 

angle (), contact line length (l). c) Typical vesicle of high reduced volume (mean radius <r> 

= 15.6 µm, mean flattening <f> = 0.3, reduced volume   ≈ 0.95) exhibiting 

tanktreading/swinging motion under a shear rate of 3.9 s
-1

, with a mean inclination angle <> 

≈ 30° (GUV #1 in Table 1). d) Same vesicle as in c) undergoing complex motion with out-of-

plane orientational changes of the membrane under a higher shear rate of 11.5 s
-1

. The lipid 

phases change hemispheres during tanktreading. e) A deflated vesicle with an intermediate 

reduced volume (  ≈ 0.8) strongly deforms during tanktreading under a shear rate of 3.9 s
-1

 

(GUV #9 in Table 1). When the contact line is in the meridian zone the vesicle is no longer 

ellipsoidal but resembles two vesicles adhered together, each consisting of a lipid phase. 

When the contact line is in the equatorial zone the vesicle has an ellipsoidal shape. f) A highly 

deflated vesicle with a low reduced volume (  ≈ 0.7) tumbling under a shear rate of 3.9 s
-1

 

(GUV #10 in Table 1). Scale bars: 20 µm.  

 

Figure 3. a) Temporal evolution of , , f and l of a typical tranktreading/swinging vesicle 

(mean radius: <r> = 15.8 µm, <f> ≈ 0.2) under a shear rate of 3 s
-1

 (GUV #6 in Table 1). b-c) 

Phase () and inclination () angles as function of the adimensioned time for the vesicle 

shown in Fig. 2c, at three shear values (GUV #1 in Table 1). The solid lines are fits from Eqs. 

(6-7) using the vesicle shape parameters (a1=19.2 m, a2 = a3 =12 µm) and a line tension of 15 

pN. 

 

Figure 4. a) l-dependence of the flattening f and the inclination angle  for the vesicle shown 

in Fig. 3a (GUV #6 in Table 1). Insets show the vesicle configurations at extremal l-values. b) 

Shear-rate dependence of the tanktreading period T and of the swinging amplitude  in Log-

Log scale, for all the analyzed vesicles. Diamond symbols correspond to the 4 vesicles studied 

under several shear rates (one color per vesicle) whereas all other symbols correspond to 

vesicles observed under a single shear rate (see Table 1 for details). The thick solid lines are 

specific fits for two vesicles (GUV #1, purple diamonds and GUV #7, blue diamonds) 

calculated from the model using a line tension of 15 pN and the vesicle respective shape 

parameters. Slope -1 expected in the low-line-tension limit is indicated. The shaded region on 

the -plot is a guide to the eye: it contains the scattered data of all vesicles including the 2 

fits at different shear rates with exhibit the same slope. 

 

Figure 5. Theoretical phase (top) and inclination (bottom) angles versus time for 3 shear rates 

calculated from the model using a line tension of 150 pN for a vesicle of flattening f = 0.5 and 

reduced volume   ≈ 0.9. Left: tumbling motion, oscillates and  rotates; center: swinging-

tanktreading motion near the transition,  rotates and  oscillates in an asymmetric manner 

and with a large amplitude; right: swinging-tanktreading motion far from the transition,  

rotates and  oscillates with a small amplitude. Note the difference in the form of the (t) 

curve near and close the tumbling/tanktreading transition.  
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Figure 6. Theoretical phase trajectories of  vs . Left: limit cycle for the tumbling motion 

(shear rate of 0.8 s
-1

), oscillates and  rotates; center: limit cycle of an intermittent regime 

at the tumbling-tanktreading transition (shear rate of 1.2 s
-1

); right: limit cycle for the 

swinging-tanktreading motion (shear rate of 6 s
-1

),  rotates and  oscillates. The 

corresponding animations of the temporal evolutions of  vs  are available in Supplemental 

Material29, 30 and 31.  
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