
HAL Id: hal-01957157
https://hal.science/hal-01957157

Submitted on 17 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed Automata with Parametric Updates
Étienne André, Didier Lime, Mathias Ramparison

To cite this version:
Étienne André, Didier Lime, Mathias Ramparison. Timed Automata with Parametric Updates. 18th
International Conference on Application of Concurrency to System Design (ACSD 2018), Jun 2018,
Bratislava, Slovakia. pp.21-29, �10.1109/acsd.2018.000-2�. �hal-01957157�

https://hal.science/hal-01957157
https://hal.archives-ouvertes.fr


Timed automata with parametric updates
Étienne André

Université Paris 13, LIPN, CNRS,
UMR 7030, F-93430
Villetaneuse, France

Didier Lime
École Centrale de Nantes, LS2N, CNRS,

UMR 6004,
Nantes, France

Mathias Ramparison
Université Paris 13, LIPN, CNRS,

UMR 7030, F-93430
Villetaneuse, France

Abstract—Timed automata (TAs) represent a powerful formal-
ism to model and verify systems where concurrency is mixed with
hard timing constraints. However, they can seem limited when
dealing with uncertain or unknown timing constants. Several
parametric extensions were proposed in the literature, and the
vast majority of them leads to the undecidability of the EF-
emptiness problem: “is the set of valuations for which a given
location is reachable empty?” Here, we study an extension of
TAs where clocks can be updated to a parameter. While the EF-
emptiness problem is undecidable for rational-valued parameters,
it becomes PSPACE-complete for integer-valued parameters. In
addition, exact synthesis of the parameter valuations set can be
achieved. We also extend these two results to the EF-universality
(“are all valuations such that a given location is reachable?”),
AF-emptiness (“is the set of valuations for which a given location
is unavoidable empty?”) and AF-universality (“are all valuations
such that a given location is unavoidable?”) problems.

I. INTRODUCTION

Timed automata (TAs) [AD94] represent a powerful for-
malism to model and verify systems where concurrency is
mixed with hard timing constraints. TAs are an extension of
finite-state automata with clocks, i. e., real-valued variables,
that can be compared to integer constants and updated to 0
along edges (called reset in the literature). TAs benefit from
many decidability results such as the reachability of a discrete
location (and some undecidability results too, such as language
inclusion).

Although TAs seem to be able to model many interest-
ing problems related to timed concurrent systems, several
extensions were studied. For instance, TAs where clocks
can be updated to integer constants have been introduced
in [BDFP04] and interesting decidability results have been
obtained, depending amongst other restrictions of the nature of
the clock constraints (e. g., diagonal-free, i. e., whether clocks
are compared to each other) and the updates of clocks (e. g.,
whether it is allowed to update a clock to its current value
increased by some rational constant). In a different direction,
stopping the time elapsing of at least one clock in a TA
gives stopwatch automata, for which the reachability problem
becomes undecidable [CL00].

Timed automata may turn inappropriate to verify systems
where the timing constants are subject to some uncertainty,

This work is partially supported by the ANR national research program
PACS (ANR-14-CE28-0002). This is the author version of the manuscript
of the same name published in the proceedings of the 18th International
Conference on Application of Concurrency to System Design (ACSD 2018).
The final version is available at dx.doi.org/10.1109/ACSD.2018.000-2.

where they can range in intervals, or when they are simply not
known at some early design stage. Extending timed automata
with parameters in guards in place of integers gives parametric
timed automata (PTAs) [AHV93] and alleviates this drawback
by allowing parameters (unknown constants) in the timing
constraints. In the PTA literature, the main problem studied
is the reachability emptiness, or EF-emptiness (“is the set
of timing parameter valuations for which a given location
is reachable empty?”): it is “robustly” undecidable in the
sense that, even when varying the setting, undecidability is
preserved. For example, EF-emptiness is undecidable even
for a single bounded parameter [Mil00], even for a single
rational-valued or integer-valued parameter [BBLS15], even
with only one clock compared to parameters [Mil00], or with
strict constraints only [Doy07]. More generally, all non-trivial
problems are undecidable for PTAs (see [And17] for a survey).
The unavoidability emptiness where we seek for valuations for
which some location will always eventually be reached, or AF-
emptiness (“is the set of timing parameter valuations such that
a given location is unavoidable empty?”) is also undecidable
[JLR15]. Similarly EF-universality and AF-universality (“are
all timing parameter valuations such that. . . ”) are undecidable
[ALR16a] for the general class of PTAs, while decidability
results have been shown for L/U-PTAs [HRSV02], [BL09],
[AL17]. Formal definitions of these problems are given in
Section III-C.

Contribution: We show that extending timed automata
with parametric updates, i. e., the ability to update a clock
to an unknown rational constant, leads to the undecidability
of the four following problems: EF-emptiness, AF-emptiness,
EF-universality, AF-universality. That is, it is undecidable to
determine:

• whether the set of parameter valuations for which a run
leads to a given location is empty;

• whether for all parameter valuations there is a run that
leads to a given location;

• whether the set of parameter valuations for which a given
location is unavoidable empty;

• whether for all parameter valuations a given location is
unavoidable.

In contrast, when we restrict the parameters domain to inte-
gers, all four problems do not only become decidable, but
we can achieve exact synthesis, i. e., represent the full set
of valuations for which a run or all runs lead(s) to a given

1

dx.doi.org/10.1109/ACSD.2018.000-2


location.
On the one hand, our undecidability results adds to the long

list of undecidable parametric extensions of timed automata.
On the other hand, our decidability result enriches the

notably short list of decidable such parametric extensions:
the exact synthesis of integer-valued parameters compared as
upper-bounds to clocks can be achieved [BL09]; the emptiness
of the valuations set for which a location is reachable is decid-
able both for rational-valued L/U-PTAs (in which parameters
are always either upper bounds or lower bounds) [HRSV02],
and for rational-valued integer-point PTAs, a semantic class for
which the membership is however undecidable (although we
exhibited a syntactic subclass, namely reset-PTAs) [ALR16a].
And AF-universality is decidable for L/U-PTAs only if the
parameters are bounded with closed bounds (i. e., of the
form p ∈ [a, b]). In the three latter cases (i. e., L/U-PTAs
and integer-point PTAs), exact synthesis cannot be achieved
though [JLR15], [ALR16a], which makes our synthesis result
a rarity, together with only [BL09].

Finally, our formalism is supported by the parametric model
checker IMITATOR [AFKS12].

Outline: Section II recalls necessary definitions. Sec-
tion III introduces our formalism of update-to-parameter timed
automata. Section IV proves our general undecidability result,
while Section V proves the decidability when parameters
become integer-valued. Section VI concludes the article and
outlines future research directions.

II. PRELIMINARIES

Let N, Z, Q+ and R+ denote the sets of non-negative
integers, integers, non-negative rational numbers and non-
negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH}
of clocks, i. e., real-valued variables that evolve at the same
rate. A clock valuation is a function w : X→ R+. We identify
a clock valuation w with the point (w(x1), . . . , w(xH)) of
RH

+ . We write ~0 for the clock valuation that assigns 0 to all
clocks. Given d ∈ R+, w + d denotes the valuation such that
(w + d)(x) = w(x) + d, for all x ∈ X.

We assume a set P = {p1, . . . , pM} of parameters, i. e.,
unknown constants. A parameter valuation v is a function
v : P → Q+. An integer parameter valuation is a valuation
v : P → N. We identify a valuation v with the point
(v(p1), . . . , v(pM )) of QM

+ .
In the following, we assume ./ ∈ {<,≤,≥, >}.
A parametric guard g is a constraint over X∪P defined by

inequalities of the form x ./ z, where z is either a parameter
or a constant in Z. A non-parametric guard is a parametric
guard without parameters (i. e., over X).

Given a parameter valuation v, v(g) denotes the constraint
over X obtained by replacing in g each parameter p with v(p).
Likewise, given a clock valuation w, w(v(g)) denotes the ex-
pression obtained by replacing in v(g) each clock x with w(x).
A clock valuation w satisfies constraint v(g) (denoted by
w |= v(g)) if w(v(g)) evaluates to true. We say that v
satisfies g, denoted by v |= g, if the set of clock valuations

satisfying v(g) is nonempty. We say that g is satisfiable if
∃w, v s.t. w |= v(g).

A parametric update is a partial function r : X ⇀ N ∪ P
which assigns to some of the clocks an integer constant or
a parameter. For v a parameter valuation, we define a partial
function v(r) : X ⇀ Q+ as follows: for each clock x ∈ X,
v(r)(x) = k if r(x) = k ∈ N and v(r)(x) = v(p) ∈ Q+ if
r(x) = p a parameter. For a clock valuation w and a parameter
valuation v, we denote by [w]v(r) the clock valuation obtained
after applying v(r).

III. UPDATE-TO-PARAMETER TIMED AUTOMATA

Timed automata [AD94] are an extension of finite-state
automata augmented with clocks that can be compared to
(usually) integer constants in guards (along edges), and that
can be updated (usually) to 0 along edges. We extend this
formalism by allowing clocks to be updated to parameters.

A. Syntax

Definition 1 (U2P-TA). An update-to-parameter timed au-
tomaton (U2P-TA)A is a tupleA = (Σ, L, l0,X,P, E), where:

1) Σ is a finite set of actions,
2) L is a finite set of locations,
3) l0 ∈ L is the initial location,
4) X is a finite set of clocks,
5) P is a finite set of parameters,
6) E is a finite set of edges e = (l, g, a, r, l′) where l, l′ ∈ L

are the source and target locations, g is a non-parametric
guard, a ∈ Σ and r : X ⇀ N ∪ P is a parametric update
function.

In a concurrent setting, timed automata can be synchro-
nized on shared actions. It is well-known that the product of
several TAs gives a TA (see e. g., [Mil00]). Moreover, real-
time physical systems modeled with TAs can be implemented
and timed properties checked using e. g., Uppaal [BLL+95]
or IMITATOR [AFKS12]. Similarly, our U2P-TAs can be
synchronized the same way, and their product gives a U2P-TA.
Their implementation is discussed in Section V.

Example 1. Consider the U2P-TA in Fig. 1c with five loca-
tions, four clocks (x, y, z and t) and three parameters (pm, pA,
pB). Observe that all three parameters are used in an update
along the edge from l0 and l1.

As a motivating toy example, consider the case of a PhD
student aiming at obtaining the authorization of her/his uni-
versity in order to defend before December (assuming the
system is starting at any moment). Two committees need
to give their authorization sequentially (A then B), and the
student must bring both authorizations to the administration
two months ahead of the defense. Committee A (resp. B)
meets periodically every two (resp. three) months, which is
depicted in Figs. 1a and 1b, assuming time units are months.

The student workflow is modeled by the U2P-TA in Fig. 1c,
synchronizing with both committees using actions comA and
comB (clock x is shared between committee A and the student
automaton, while y is shared between B and the student).

2



lA

x = 2
comA
x := 0

(a) Committee A

lB

y = 3
comB
y := 0

(b) Committee B

l0 l1 l2 l3 l4
t := pm
x := pA
y := pB

start

comB

comA

comA

comB

z := 0

comA, comB z ≥ 2
∧t = 12
defend

(c) A PhD student’s defense workflow

Fig. 1: A motivating example of U2iP-TA

First, the student starts the process at time pm, using the
parametric update t := pm. At the same time, we set the
current clock of both committees to an unknown time; that
is, assuming pA ∈ [0, 2] and pB ∈ [0, 3], the last occurrence
of committee A (resp. B) is pA (resp. pB) or, put differently,
the next occurrence of committee A is 2− pA (resp. 3− pB).
This allows us to analyze symbolically the system, by setting
the clock t, that acts as a global timer, to the accurate student
start date pm, while assuming an unknown situation of the
two periodic committees. Then, the student waits for the next
commission A, and gets the authorization, moving to loca-
tion l2; then, (s)he waits for the next commission B, and gets
the authorization, moving to location l3. Finally, (s)he waits
two more months (using z ≥ 2) and defends in December
(encoded by t = 12) in location l4. The synchronization on
comA and/or comB on self-loops allows the system to remain
non-blocking.

The purpose of this analysis is to understand when in the
year the student may start the workflow in order to be able
to defend in December, depending on the current “offset” of
the committees. That is, we want to synthesize the parameter
valuations for pm, pA and pB such that the system may
eventually reach l4.

Given a parameter valuation v, we denote by v(A) the
structure where all occurrences of a parameter pi have been
replaced by v(pi). If v(A) is such that all constants in updates
are integers, then v(A) is an updatable timed automaton (see
[BDFP04, Section 3.1]). In the following, we simply refer to
an updatable timed automaton as a timed automaton. In the
following, we consider a timed automaton any structure v(A),
by assuming a rescaling of the constants: by multiplying all
constants in v(A) by their least common denominator, we
obtain an equivalent (integer-valued) timed automaton.

A bounded U2P-TA is a U2P-TA with a bounded pa-
rameter domain that assigns to each parameter a minimum
integer bound and a maximum integer bound. That is, each
parameter pi ranges in an interval [ai, bi], with ai, bi ∈ N.
Hence, a bounded parameter domain is a hyperrectangle of
dimension M .

B. Semantics of timed automata

Let us now recall the concrete semantics of TAs.

Definition 2 (Concrete semantics of a TA). Given a U2P-
TA A = (Σ, L, l0,X,P, E), and a parameter valuation v, the

concrete semantics of v(A) is given by the timed transition
system (S, s0,→), with
• S = {(l, w) ∈ L× RH

+} , s0 = (l0,~0)
• → consists of the discrete and (continuous) delay transi-

tion relations:
– discrete transitions: (l, w)

e7→ (l′, w′), if
(l, w), (l′, w′) ∈ S, there exists e = (l, g, a, r, l′) ∈ E,
w′ = [w]v(r), and w |= g.

– delay transitions: (l, w)
d7→ (l, w + d), with d ∈ R+, if

∀d′ ∈ [0, d], (l, w + d′) ∈ S.

Moreover we write (l, w)
e−→ (l′, w′) for the combination

of a delay and a discrete transition where ((l, w), e, (l′, w′)) ∈
→ if ∃d,w′′ : (l, w)

d7→ (l, w′′)
e7→ (l′, w′).

Given a TA v(A) with concrete semantics (S, s0,→), we
refer to the states of S as the concrete states of v(A).
A (concrete) run of v(A) is a possibly infinite alternating
sequence of concrete states of v(A) and edges starting from
the initial concrete state s0 of the form s0

e0−→ s1
e1−→ · · · em−1−→

sm
em−→ · · · , such that for all i = 0, 1, . . . , ei ∈ E, and

(si, ei, si+1) ∈ →. Given a state s = (l, w), we say that s
is reachable (or that v(A) reaches s) if s belongs to a run
of v(A). By extension, we say that l is reachable in v(A), if
there exists a state (l, w) that is reachable.

Throughout this paper, let K denote the largest constant in a
given U2P-TA, i. e., the maximum between the largest constant
compared to a clock in a guard or used in an update, and the
largest bound of a parameter (if the U2P-TA is bounded).

C. Problem

In this paper, we address the two following problems,
given P a class of problems (e. g., reachability, unavoidability,
TCTL model-checking):

P-emptiness problem:
INPUT: a U2P-TA A and an instance φ of P
PROBLEM: is the set of valuations v such that v(A)
satisfies φ empty?

P-universality problem:
INPUT: a U2P-TA A and an instance φ of P
PROBLEM: are all valuations v such that v(A) satisfies φ?

We mainly focus on reachability (EF) and unavoidability
(AF) [JLR15]. EF-emptiness asks, given a U2P-TA A and
a location l whether the set of valuations v such that there
is a run in v(A) reaching l is empty? It is equivalent to

3



AG-universality [And17]. More formally, the problem can be
written as {v | ∃s0

e0−→ (l1, w1)
e1−→ · · · em−1−→ (l, w) a run of

v(A)} = ∅?
AF-emptiness asks, given a U2P-TA A and a location l

whether the set of valuations v such that all runs in v(A)
reach l is empty? It is equivalent to EG-universality [And17].
EF-universality asks, given a U2P-TA A and a location l

whether all valuations v are such that there is a run in v(A)
reaching l? It is equivalent to AG-emptiness [And17].

Finally, AF-universality asks, given a U2P-TA A and a
location l whether all valuations v are such that all runs in
v(A) reach l? It is equivalent to EG-emptiness [And17].

Beyond the theoretical decision problems above, an ultimate
goal is the following computation problem.

P-synthesis problem:
INPUT: a U2P-TA A and an instance φ of P
PROBLEM: compute the set of valuations v such that v(A)
satisfies φ

Note that if EF-emptiness is undecidable, there is no hope
for a useful and effective EF-synthesis procedure.

IV. UNDECIDABILITY

In this section, we show that our extension of TAs with
parametric updates leads to the undecidability of the EF-
emptiness problem.

We show that any bounded (rational-valued) PTA can be
transformed into a U2P-TA, and therefore that U2P-TAs are
at least as expressive as (bounded) PTAs for which the EF-
emptiness is known to be undecidable [Mil00].

Let us first recall PTAs [AHV93].

Definition 3 (PTA). A parametric timed automaton (PTA) is
a U2P-TA such that

1) every update function is a non-parametric update func-
tion;

2) guards along edges may be parametric guards.

Given a PTA A and a valuation v, we denote by v(A) the
structure where all occurrences of a parameter pi have been
replaced by v(pi). If v(A) is such that all constants in guards
are integers, then v(A) is a timed automaton. Again, as for
U2P-TA, given a PTA A, we may denote as a timed automaton
any structure v(A), by assuming a rescaling of the constants.
The semantics of PTA is identical to that of U2P-TA, since
it is given in Definition 2 for a valuated PTA, i. e., a timed
automaton.

The main idea of our proof is as follows: suppose that, in a
PTA, we want to measure a (parametric) duration p. Then we
can update a clock x to 0 and then test it with a guard x = p.
But provided we know an upper bound K on p, we could, with
a U2P-TA, update clock x to K − p and test it with a guard
x = K instead. Now, since we do not allow linear expressions
in updates, we instead replace K − p with a new parameter
p′ and prove that the existence of a valuation for p′ in the
U2P-TA such that the property holds, is equivalent to that of
a valuation for p in the initial PTA. This idea extends to other

comparison operators than = and its practical development
requires a few clock and parameter duplications.

Let A = (Σ, L, l0,X,P, E) be a bounded PTA and K its
largest constant. Let us define the following U2P-TA: A′ =
(Σ, L∪ {l′0}, l′0,X′,P′, E′), which has the same actions as A.
For each x ∈ X, X′ contains x and a duplicate xp for each
parameter p to which x is compared in A. P′ contains all
parameters in P, as well as one extra parameter per clock
in X; given a clock x ∈ X, we denote by px its corresponding
extra parameter in P′.

Let us now build E′, initially containing all edges of E,
and then modified as follows. Let x be a clock. Let e =
(l1, g, a, r, l2) be an edge of A. If r(x) = 0, we perform the
following modifications: first, we also update xp to px along e,
i. e., r(xp) = px. In addition, for any edge e′ comparing
clock x to parameter p in its guard, we replace x ./ p with
x ./ K. All other updates and non-parametric guards remain
unchanged. Finally, we add one additional location l′0 to the
locations L of A, which will be the new initial location, and
one new additional edge from l′0 to the former inital location l0
of A, with guard x = 0 for any clock x ∈ X and which updates
for all clock x ∈ X, xp to px.

Example 2. An example of this construction is shown in
Fig. 2, where we assume that p1 is bounded in [2, 5] and
p2 ∈ [0, 12]—therefore K = 12. For example, 12− p1x plays
the role of p1, and 12− p2x plays the role of p2.

Since the initial sets of clocks X and P are finite and our set
of linear constraints is finite, we only add a finite number of
clocks and parameters to the new automaton. Finally, ARtP is
a U2P-TA. We denote byARtP = UtP(A) this transformation.

Note that our transformation adds to the initial system in the
worst case one parameter and one clock for each comparison
to a parameter, i. e., |P′|+ |X′| ≤ |P|+ |X|+ 2× |P| × |X|.

In order to show that EF-emptiness is undecidable for
U2P-TA, we prove the following behavior: a goal location
is reached by a run in a U2P-TA A, if and only if there is a
run in UtP(A) reaching it.

Consider the automaton presented in Fig. 3a. Given a
parameter valuation v(p), we duplicate the clock x to xp
and update it to px where x is updated to 0. When x is
compared to p, we replace this comparison by xp compared
to px, providing the automaton presented in Fig. 3b. During
an execution of Fig. 3a accessing l2, the time elapsed since
the update of x until its comparison to p is v(p). During
an execution of Fig. 3b accessing l2, the time elapsed since
the update of xp until its comparison to px is K − v(px).
We define the parameter valuation v′(p) = K − v(px). With
this construction, there is a parameter valuation v such that
there is a run from l0 to l2 in Fig. 3a iff there is a parameter
valuation v′ as defined such that there is a run from l0 to l2
in Fig. 3b.

Proposition 1. Let A be a bounded PTA, K its maximum
constant, v be a parameter valuation, and v′ = K − v. Let l
be a goal location.

4



l0 l1 l2 l3 l4 l5
x ≤ 3

y := 0 x := 0

x < 5 x ≤ p1

y ≥ 10
∧x = p2

l′0 l0 l1 l2 l3 l4 l5
x := 0

xp1 := p1x

xp2 := p2x

x = 0 x ≤ 3

y := 0 x := 0
xp1 := p1x
xp2 := p2x

x < 5 xp1 ≤ 12
y ≥ 10
∧xp2 = 12

Fig. 2: A bounded PTA A (above) and its equivalent UtP(A) (below)

l0 l1 l2
x := 0

x = p

(a) A PTA A

l0 l1 l2
xp := px, x := 0

xp = K

(b) An U2P-TA UtP(A)

Fig. 3: A PTA A and its equivalent UtP(A)

There is a run in v(A) reaching l iff there is a run in
v′(UtP(A)) reaching l.

Proof. Let ρ be a finite run of v(A) ending in a concrete state
(l, w) and let σ = e1 . . . en be the corresponding sequence of
edges taken by ρ. We build by induction on n, a run ρ′ in
v′(UtP(A)) ending in a concrete state (l, w′) such that for all
x ∈ X, w′(x) = w(x) and for all clock x′ ∈ X′ \X, w′(xp) =
K − v(p) + w(x).

If n = 0, then ρ′ consists only of the additional initial
edge of UtP(A), which clearly sets all clocks to the adequate
values.

Suppose now that we have built ρ′ for size n and consider
a run ρ with n+ 1 edges. Then ρ consists of a run ρ1, ending
in (l1, w1) with n edges followed by a delay d and finally a
discrete transition along the last edge e. From the induction
hypothesis, we can build an equivalent run ρ′1 in UtP(A)
ending in (l1, w

′
1), such that for all x ∈ X, w′1(x) = w1(x)

and for all clock xp ∈ X′ \ X, w′1(xp) = K − v(p) + w1(x).
Let w2 (resp. w′2) be the clock valuation obtained in A (resp.
UtP(A)) after the delay d. By construction, the part of the
guard of e comparing clocks in X to constants is satisfied by
w′2 since it is the same as in A. Further, for each clock x ∈ X,
such that x ./ p along e in A, we have instead xp ./ K along
the modified e in UtP(A). But w′2(xp) = K−v(p)+w2(x), so
the latter comparison is equivalent to K−v(p)+w2(x) ./ K,
i. e., w2(x) ./ v(p). So, since the guard is satisfied in A by
w2, the corresponding guard is satisfied in UtP(A) by w′2.
Then clocks in X are updated normally, and for all clocks
xp ∈ X′ \X, we have an update to v′(px) = K − v(p), which
concludes the induction.

The other direction, starting from a run in UtP(A), is
similar.

Theorem 1. The EF-emptiness problem is undecidable for
bounded U2P-TAs.

Proof. From the undecidability of EF-emptiness for bounded
PTAs [Mil00].

We now show that this result can be extended to the full
class of (unbounded) U2P-TAs.

Theorem 2. The EF-emptiness problem is undecidable for
U2P-TAs.

Proof. Similarly to the proof of [ALR16b, Proposition 8], we
claim that a bounded U2P-TA can be easily simulated using
an unbounded U2P-TA. We present a gadget in Fig. 4 that
uses two clocks (that can be clocks used by the PTA) and
two transitions that can be added before the initial location
of any unbounded U2P-TA, and ensures a parameter p is
bounded, i. e., given two integer constants min and max we
have p ∈ [min,max ]. We need one gadget per parameter;
these gadgets can be branched sequentially before the initial
location of an unbounded U2P-TA, and all clocks must be
updated to 0 before entering the initial location.

The gadget works as follows: when taking the first transition
from l0 to l1, clock x is updated to p and clock y to 0. The
transition from l1 to l2 can be taken if and only if in a 0-
delay ensured by the guard y = 0, we have that x ≤ max
and min ≤ x. This means there is a run from l0 to l2 if
and only if there is a parameter valuation v such that min ≤
v(p) ≤ max , which in other words means that the parametric
domain is bounded.

As from Theorem 1 the EF-emptiness problem is undecid-
able for bounded U2P-TA, and as any bounded U2P-TA can be
expressed using a U2P-TA, we conclude that the EF-emptiness
problem is undecidable for unbounded U2P-TA.

Corollary 1. The AF-emptiness problem is undecidable for
U2P-TAs.

Proof. The AF-emptiness problem is undecidable for PTAs as
it is proven undecidable for one of its subclasses in [JLR15].
Since we can encode a PTA into a U2P-TA, it is undecidable
for the former.

Corollary 2. AF, EF-universality problems are undecidable
for U2P-TAs.

Proof. In [ALR16a], EG, AG-emptiness problems are proven
undecidable for PTAs. As AF, EF-universality are their equiv-

5



l0 l1 l2
x := p, y := 0

min ≤ x ≤ max , y = 0

x := 0

Fig. 4: A gadget that ensures a parameter p is bounded by min and max

alent respectively, they are also undecidable for PTAs, and
therefore for U2P-TAs.

V. DECIDABILITY

Let us now show that, when parameters are restricted
to (unbounded) integers, the EF-emptiness problem becomes
PSPACE-complete.

If parameters in an U2P-TA only have (possibly unbounded)
integer valuations, we say it is an U2iP-TA. Note that once
valuated by an integer parameter valuation v, an U2iP-TA is an
updatable timed automaton with updates to integer constants,
as defined in [BDFP04, Section 3.1]. Hence clock regions are
still topical in this context [BDFP04, Section 5.1]. Let us recall
the notion of clock region [AD94]. Given a clock x and a
clock valuation w, recall that bw(x)c denotes the integer part
of w(x) while frac(w(x)) denotes its fractional part.

Definition 4 (clock region). For two clock valuations w and
w′, ∼ is an equivalence relation defined by: w ∼ w′ iff

1) for all clock x, either bw(x)c = bw′(x)c or
w(x), w′(x) > K;

2) for all clocks x, y with w(x), w(y) ≤ K, frac(w(x)) ≤
frac(w(y)) iff frac(w′(x)) ≤ frac(w′(y));

3) for all clock x with w(x) ≤ K, frac(w(x)) = 0 iff
frac(w′(x)) = 0.

A clock region Rc is an equivalence class of ∼.

Two clock valuations in the same clock region reach the
same region by time elapsing, satisfy the same guards and
thus can take the same transitions [AD94].

Theorem 3. The set of parameter valuations for which a given
location is reachable is effectively computable for U2iP-TA.

Proof. We first need an intermediate lemma:

Lemma 1. Let A be an U2iP-TA. Let K be the greatest
constant in A. Let l be a goal location. Let v, v′ be two
rational parameter valuations s.t. for all parameter p, ei-
ther v(p) = v′(p) or v(p) > K and v′(p) > K. There is a run
in v(A) reaching (l, w) iff there is a run in v′(A) reaching
(l, w′) s.t. at each state, two clock valuations of ρ and ρ′ are
in the same clock region and location.

Proof. By induction on the length of the run. Let v, v′ be such
parameter valuations.

For a run of length 0 of v(A), there is a run of length 0 of
v′(A) reaching the initial location. If there is a run of length 0
of v′(A), there is a run of length 0 of v(A) reaching the initial
location.

Now, suppose the result holds for every run of length i.
Assume a run of v(A) of length i + 1, with a prefix ρ of
length i reaching (li, wi) followed by a state obtained using

edge e = (li, g, a, r, li+1). That is, the run is of the form
ρ

e−→ (li+1, wi+1).
By induction hypothesis, let ρ′ be a run of v′(A) reaching

(li, w
′
i) s.t. at each state, two clock valuations of ρ and ρ′ are

in the same clock region and location.
Now if for all clock x, no wi(x) is the result of a

parametric update, then trivially wi |= g and as wi ∼ w′i,
w′i |= g. Alternatively, suppose for some x and parameter p,
we have wi(x) = v(p). If v(p) < K + 1 and wi |= g,
since v′(p) = v(p) then as wi ∼ w′i, w′i |= g. If v(p) ≥ K+ 1
and wi |= g, since v′(p) ≥ K + 1 then as wi ∼ w′i, w

′
i |= g.

We treat the case of multiple updates of clocks to parameters
in e the same way. Finally, we can take the transition e with
the same delay. Hence e−→ (li+1, w

′
i+1) is a run of v′(A) of

length i + 1 reaching li+1 with the same actions, locations,
delays and at each state, two clock valuations of ρ and ρ′ are
in the same clock region and location.

The other way is a direct consequence of the previous
paragraph and the definition of the clock regions.

We can now go back to the proof of Theorem 3. Let A
be an U2iP-TA and K be the greatest constant in A. Now
let v be a (integer) parameter valuation. Since v(A) is an
updatable timed automaton, the reachability of a given state
(l, w) is decidable [BDFP04, Section 5]. It is sufficient to
enumerate all integer valuations s.t. for each parameter p,
v(p) ≤ K+1. Indeed, from Lemma 1 a parameter valuation v
with v(p) > K + 1 allows to take the same transitions and
reach the same guards as the parameter valuation v′ s.t. for
all p′ 6= p, v(p′) = v′(p′) and v′(p) = K + 1 so we can
replace such parameter valuations by a valuation v′ as defined
previously. In conclusion, there is a finite number of parameter
valuations to test to obtain the full set of valuations for which
the goal location is reachable.

Proposition 2. The EF-emptiness problem is PSPACE-
complete for U2iP-TAs.

Proof. Since we can synthesize exactly the set of parameter
valuations for which the goal location is reachable using
Theorem 3, the decidability of the EF-emptiness follows
immediately.

Let us now have a look at the complexity of the EF-
emptiness problem for U2iP-TA. First, since a TA is a special
case of U2iP-TA with no parametric update, we have the
PSPACE-hardness for EF-emptiness in our U2iP-TA [AD94].
Now, let G be a set of goal locations of A. Consider the non-
deterministic Turing machine that:

1) takes A, G and K as input
2) non-deterministically “guesses” an integer valuation v

bounded by K + 1 and writes it to the tape

6



3) overwrite on the tape each parameter p by v(p), giving
the updatable TA v(A)

4) solves reachability in v(A) for G
5) accepts iff the result of the previous step is “yes”.

The machine accepts iff there is an integer valuation v bounded
by K + 1 and a run in v(A) reaching a location l ∈ G.

The size of the input is |A| + |G| + |K|, using |.| to
denote the size in bits of the different objects. There are at
most (K + 1)M possible valuations, where M is the number
of parameters in A. Storing the valuation at step 2 uses at
most M × |K + 1| additional bits, which is polynomial w.r.t.
the size of the input. Step 4 also needs polynomial space
from [BDFP04]. So globally this non-deterministic machine
runs in polynomial space. Finally, by Savitch’s theorem we
have PSPACE = NPSPACE [Sav70], and the expected result.

The following result is direct from Theorem 3:

Corollary 3. The EF-universality problem is decidable for
U2iP-TAs.

Proof. Using Lemma 1 (see proof of Theorem 3) given an
U2iP-TA A and its greatest constant in A, there is a finite
number of parameter valuations to test. Therefore given a goal
location l, it is sufficient to test whether for all parameter
valuations, there is a run reaching l in the valuated instance
of A.

We state also the two following corollaries that fulfill the
last unknown decision problems considered in this paper for
U2P-TAs.

Corollary 4. The set of parameter valuations for which a
given location is unavoidable is effectively computable for
U2iP-TA.

Proof. Let A be an U2iP-TA and v a parameter valuation.
As we use in our construction the same clock regions as
in [AD94], suppose there is a run in v(A) reaching a loca-
tion l, then all runs going through the same clock regions are
equivalent—they satisfy the same guards, and end in the same
region after an update and after letting time elapse. Moreover,
using the construction of the region automaton of [AD94], it is
sufficient to test whether all runs in the region automaton of A
reach l, which are in finite number. Using the same reasoning
as in the proof of Theorem 3 we obtain our result.

Corollary 4 leads to the decidability of the AF-emptiness
problem. Following the same reasoning as in Theorem 3, we
state the last but not least result of this paper:

Corollary 5. The AF-emptiness and AF-universality problems
are decidable for U2iP-TAs.

Proof. Given an U2iP-TA A and using the same reasoning as
in the previous proof and the region automaton of [AD94],
we can test whether all runs in this region automaton reach l,
which are in finite number. As there is a finite number of

parameter valuations to test, we can compute the set of param-
eter valuations such that all runs reach l (i. e.,, AF-synthesis)
from Corollary 4. Testing the emptiness of the obtained set
of parameter valuations gives AF-emptiness. Given a goal
location l, it is sufficient to test whether for all parameter
valuations, there is a run reaching l in the valuated instance
of A to decide AF-universality.

Implementation in IMITATOR
U2P-TAs (and naturally U2iP-TA) are supported by IMITA-

TOR [AFKS12], a parametric model checker taking as input
extensions of parametric timed automata.

Passing Example 1 as input and using the reachability
synthesis algorithm, IMITATOR synthesizes the following con-
straint:

pB + 4 ≥ pm ∧ pB ≥ pA + 1 ∧ pB ≤ 3

∨
pm ≤ pB + 7 ∧ pA ≤ 2 ∧ pB ≤ pA + 1

The first conjunction of inequalities states that, if the com-
mittee B is the next to meet (which is encoded by pB ≥ pA+1,
and could also be written as 3 − pB ≤ 2 − pA), then the
month pm at which the student starts the process should be
less than 4 plus the number of months since the last occurrence
of committee B. (The last inequality simply recalls that pB is
less than or equal to 3). The second conjunction of inequalities
states that, if the committee A is the next to meet, then the
month pm at which the student starts the process should be
less than 7 plus the number of months since the last occurrence
of committee B.

For any such valuation, there exists a run of the system
(i. e., a configuration of the committees dates respecting their
respective periods) such that the student may defend in De-
cember. Also note that, if we add proper invariants1, then the
system becomes completely deterministic and the valuations
for which there exists a run reaching l4 are also such that all
runs reach l4 (since there exists only one run), and therefore
the student is guaranteed to be able to defend in December
for any of these valuations.

We can also study a situation where the system is only
partially parameterized: assume pm = 6, i. e., the student will
start the process in June in any case. The constraint encoding
the current state of committees A and B is given by:

pA ≤ 2 ∧ pB ≤ pA + 1

∨
pB ≥ 2 ∧ pB ≤ 3 ∧ pB ≥ pA + 1

A graphical visualization (output by IMITATOR) is given in
Fig. 5a (plain red depicts good valuations, i. e., for which the
student may defend in December).

Alternatively, if pm = 9 (i. e., the student starts the process
in September), then the constraint on pA and pB is as follows:

pB ≥ 2 ∧ pA ≤ 2 ∧ pA + 1 ≥ pB
1Precisely, x ≤ 2 in committee A, y ≤ 3 in committee B, and t ≤ 12 in

the student automaton.

7



(a) pm = 6 (b) pm = 9

Fig. 5: Graphical visualization in two dimensions of the parameter synthesis of Example 1

A graphical visualization is given in Fig. 5b.
Finally note that this entire example is not restricted to

integer-valued parameters (rational-valued months can be used
to denote finer time grain, e. g., days or even hours), and
it therefore falls in the undecidable case of Theorem 1.
Nevertheless, IMITATOR terminates here with an exact (sound
and complete) result.

VI. CONCLUSION

In this paper we defined two new formalisms to model
concurrent timed systems with uncertainty: U2P-TA for which
we proved that the EF-emptiness problem is undecidable,
even for bounded parameters, and U2iP-TA for which we
proved that the EF-emptiness problem is PSPACE-complete.
This discrepancy between integer-valued and rational-valued
was already spotted in parametric timed automata: the EF-
emptiness is decidable for integer-valued parameters with 1
parametric clock (i. e., a clock compared to a parameter in
at least one guard) and 3 non-parametric clocks [AHV93],
while it becomes undecidable over rational-valued parame-
ters [Mil00]. Similarly, the discrepancy between (rational-
valued) bounded parameters and unbounded parameters is
reminiscent of the recent result we showed for EG-emptiness
(“is the set of valuations for which at least one maximal run
remains in a given set of locations empty?”): this problem
is decidable for bounded L/U-PTAs (a parameter is either
used as an upper bound or a lower bound in guards) with
rational-valued parameters, while it becomes undecidable for
the full class of L/U-PTAs [AL17]. Furthermore, we extended
our undecidability results to the EF-universality, AF-emptiness
and AF-universality problems for U2P-TA, but also our decid-
ability results to these same problems for U2iP-TA. This paper
therefore handles a wide range of decision problems for U2P-
TA. We assume that the decidability could be extended to the
full TCTL model checking following a similar reasoning.

The fact that we allow update to parameters in the (pos-
sibly parametric) timed extensions of finite-state automata is
quite new and, to the best of our knowledge, has not been
investigated until now. Despite having an undecidability result

when the parameter domain is rational, we believe this new
formalism, improved with parameters allowed in guards, could
become decidable even over rational-parameters if we add
a few semantic restrictions. Indeed, reset-PTAs have been
studied in [ALR16a] and are a promising subclass of PTA
to extend. For this purpose, we would like to explore PTAs in
which update to parameters is also allowed, and under which
conditions the EF-emptiness problem could become decidable.
Moreover, the semantic restrictions of reset-PTAs (a clock is
updated to 0 whenever it is compared to a parameter) is in a
way reminiscent to initialized rectangular hybrid automata (a
variable is updated whenever its dynamic changes) presented
in [HKPV98] and it would be interesting to study these
systems in which we involve parameters. Therefore, extending
our result to hybrid automata is also an interesting perspective.

Finally, beyond the toy aspect of Example 1, we believe
that U2iP-TAs can be used to model scheduling problems for
real-time systems subject to uncertainty, notably in the tasks
offsets, as this is where we used parameters in Fig. 1.

REFERENCES

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, April 1994.

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain
Soulat. IMITATOR 2.5: A tool for analyzing robustness in
scheduling problems. In Dimitra Giannakopoulou and Dominique
Méry, editors, FM, volume 7436 of Lecture Notes in Computer
Science, pages 33–36. Springer, 2012.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Para-
metric real-time reasoning. In S. Rao Kosaraju, David S. Johnson,
and Alok Aggarwal, editors, STOC, pages 592–601, New York,
NY, USA, 1993. ACM.

[AL17] Étienne André and Didier Lime. Liveness in L/U-parametric
timed automata. In Alex Legay and Klaus Schneider, editors,
ACSD, pages 9–18. IEEE, 2017.

[ALR16a] Étienne André, Didier Lime, and Olivier H. Roux. Decision
problems for parametric timed automata. In Kazuhiro Ogata,
Mark Lawford, and Shaoying Liu, editors, ICFEM, volume 10009
of Lecture Notes in Computer Science, pages 400–416. Springer,
2016.

[ALR16b] Étienne André, Didier Lime, and Olivier H. Roux. On the
expressiveness of parametric timed automata. In FORMATS,
volume 9984 of Lecture Notes in Computer Science, pages 19–34.
Springer, 2016.

8



[And17] Étienne André. What’s decidable about parametric timed au-
tomata? International Journal on Software Tools for Technology
Transfer, 2017. To appear.

[BBLS15] Nikola Beneš, Peter Bezděk, Kim Gulstrand Larsen, and Jiřı́
Srba. Language emptiness of continuous-time parametric timed
automata. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, ICALP, Part II,
volume 9135 of Lecture Notes in Computer Science, pages 69–81.
Springer, July 2015.

[BDFP04] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and An-
toine Petit. Updatable timed automata. Theoretical Computer
Science, 321(2-3):291–345, August 2004.

[BL09] Laura Bozzelli and Salvatore La Torre. Decision problems for
lower/upper bound parametric timed automata. Formal Methods
in System Design, 35(2):121–151, 2009.

[BLL+95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Petters-
son, and Wang Yi. UPPAAL — a Tool Suite for Automatic
Verification of Real–Time Systems. In Proc. of Workshop on
Verification and Control of Hybrid Systems III, number 1066 in
Lecture Notes in Computer Science, pages 232–243. Springer–
Verlag, October 1995.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics,
algorithms and tools. In Jörg Desel, Wolfgang Reisig, and
Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri
Nets, Advances in Petri Nets, volume 3098 of Lecture Notes in
Computer Science, pages 87–124. Springer, 2003.

[CL00] Franck Cassez and Kim Guldstrand Larsen. The impressive
power of stopwatches. In Catuscia Palamidessi, editor, CONCUR,
volume 1877 of Lecture Notes in Computer Science, pages 138–
152. Springer, 2000.

[Doy07] Laurent Doyen. Robust parametric reachability for timed au-
tomata. Information Processing Letters, 102(5):208–213, 2007.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin
Varaiya. What’s decidable about hybrid automata? Journal of
Computer and System Sciences, 57(1):94–124, 1998.

[HRSV02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W.
Vaandrager. Linear parametric model checking of timed automata.
Journal of Logic and Algebraic Programming, 52-53:183–220,
2002.

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer
parameter synthesis for timed automata. IEEE Transactions on
Software Engineering, 41(5):445–461, 2015.

[Mil00] Joseph S. Miller. Decidability and complexity results for timed
automata and semi-linear hybrid automata. In Nancy A. Lynch
and Bruce H. Krogh, editors, HSCC, volume 1790 of Lecture
Notes in Computer Science, pages 296–309. Springer, 2000.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and
deterministic tape complexities. Journal of Computer and System
Sciences, 4(2):177–192, 1970.

9


	Introduction
	Preliminaries
	Update-to-parameter Timed Automata
	Syntax
	Semantics of timed automata
	Problem

	Undecidability
	Decidability
	Conclusion
	References

