On the use of a pulsed-laser source in laboratory seismic experiments
Chengyi Shen, Daniel Brito, Julien Diaz, Deyuan Zhang, Clarisse Bordes, Florian Faucher, Stéphane Garambois

To cite this version:
Chengyi Shen, Daniel Brito, Julien Diaz, Deyuan Zhang, Clarisse Bordes, et al.. On the use of a pulsed-laser source in laboratory seismic experiments. AGU meeting 2018, Dec 2018, Washington, United States. hal-01957147

HAL Id: hal-01957147
https://hal.archives-ouvertes.fr/hal-01957147
Submitted on 17 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Reproduction of large-scale seismic exploration at laboratory-scale with controllable sources is a promising approach that could not only be applied to study small-scale physical properties of the medium, but also contribute to significant progress in wave-propagation understanding and complex media imaging at exploration scale via upscaling methods. We seek to characterize the properties of a laser-generated source for new geophysical experiments at laboratory scale. This consists in generating seismic waves by pulsed-laser impacts and measuring the displacement wavefield by laser vibrometry. Parallel 2D/3D simulations using Discontinuous Galerkin discretization method and analytic predictions have been made to test the experimental data.

Research context & objectives

On the use of a pulsed-laser source in laboratory seismic experiments

C. Shen\(^1\), D. Brito\(^2\), D. Diaz\(^3\), D. Zhang\(^4\), C. Bordets\(^5\), F. Faucher\(^6\), S. Garambois\(^7\)

1) CNRS/ TOTAL / Univ Pau & Pays Adour/E2S UPPA, Laboratoire des Fluides Complexes et leurs Réservoirs – IRLA, UMR5150, 64000, Pau, FRANCE
2) Univ Pau & Pays Adour/CNRS, Laboratoire de Mathématiques et de leurs Applications, UMR5142, 64000, Pau, FRANCE
3) Project Team Magique-3D, Inria Bordeaux-Sud-Ouest, 64013 Pau, France
4) Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISterre, UMR5275, 38000 Grenoble, France

Pulsed-laser source : General

Lab set-up for pulsed-laser source characterization

Two different experimental tools were mounted to investigate in Cartesian coordinates or in cylinder coordinates. (2) Q-switched laser generator: (3) convergent lens: (4) Aluminum foil samples of various thickness (10, 50, 100 mm), Vp = 6000 m/s, V s = 2Vp. (5) single-point Laser Doppler Vibrometer (LDV). (6) six sample: (7) piezoelectric source.

Theoretical and analytical signals

Pulsed-laser source : Seismogram

Seismogram and radiation patterns

Regime evolution with d under constant input energy. Since the spot size depends on d, the observable regime cannot be determined universally by \(p_2\).

Seismogram measured along linear receivers on the 50 mm thick aluminum block with different sources, accompanied by simulated/modeled radiation patterns: a) radiation pattern of a point source (thermocouple); b) radiation pattern of a piezoelectric source (d = 10mm); c) radiation pattern of a typical thermocouple source (d = laser irradiation).

Epicentral records under the ablation regime

Source stability and reproducibility

Pulsed-laser source : Application

First arrival time base tomography

Toward Full Waveform Inversion (FWI) ?

The idea of Full Waveform Inversion (FWI) is to perform a quantitative reconstruction of the medium parameters. The inversion process reduces the difference between the observations and simulations, in order to resolve the medium parameters more directly. The quality of the inversion process is judged with the residual, in a symmetric manner. The objective is to test the ability of the code to perform full waveform inversion on real seismic data.

References

[3] Project Team Magique-3D, Inria Bordeaux-Sud-Ouest, 64013 Pau, France
[4] Univ Pau & Pays Adour/CNRS, Laboratoire de Mathématiques et de leurs Applications, UMR5142, 64000, Pau, FRANCE

Conclusion:

This laser-generated source opens new perspectives on various applications such as precise Non-Destructive Test on metals under high temperatures, monostatic seismic exploration on small and intermediate scale samples of random shapes in the laboratory etc. We are especially interested in testing geophysical applications in rock mechanics, rocks or digital rock imaging for geological reservoirs explorations. The laser-generated source appears to be well controllable, flexible and reproducible under some precautions. The combination of this pulsed laser source and the LDV is particularly adapted to generate broadband seismic full waveforms in heterogeneous natural rocks, for novel imaging applications in geological explorations.