HOW TO PREDICT THE ODOR PROFILE OF WINE FROM ITS CHEMICAL COMPOSITION? IN SILICO MODELLING USING EXPERTS’ KNOWLEDGE, FUZZY LOGIC AND OPTIMIZATION

Alice Roche, Nathalie Perrot, Thomas Chabin, Angélique Villière, Ronan Symoneaux, Thierry Thomas-Danguin

To cite this version:

Alice Roche, Nathalie Perrot, Thomas Chabin, Angélique Villière, Ronan Symoneaux, et al.. HOW TO PREDICT THE ODOR PROFILE OF WINE FROM ITS CHEMICAL COMPOSITION? IN SILICO MODELLING USING EXPERTS’ KNOWLEDGE, FUZZY LOGIC AND OPTIMIZATION. International Symposium on Olfaction and Electronic Nose (ISOEN), May 2017, Montréal, Canada. hal-01957114

HAL Id: hal-01957114
https://hal.archives-ouvertes.fr/hal-01957114
Submitted on 17 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
BACKGROUND

The odor component of food represents the identity, exemplarity, acceptability and the recognition by consumers of the food product\(^1\). The analysis of odor odor provides a list of molecules\(^2\), but no information about the perceptual influence of mixed compounds.

The perception of a mixture of odorants is not the simple sum of the odor of each odorant but the results of highly complex perceptual interactions\(^3\)\(^4\).

However there are few papers focusing on the odor characteristics of mixtures of molecules\(^4\)\(^5\).

RESULTS & DISCUSSION

Predictive approaches are now developing to predict the odor characteristics of molecules: detection thresholds\(^6\)\(^7\), odor quality\(^8\), odor intensity\(^9\)\(^10\)\(^11\), odor pleasantness\(^12\)\(^13\).

The Intensity of the descriptor "Blackcurrant bud" has been predicted (\(\text{R}^2 = 0.80\), \(\text{SE} = 0.17\)) from the modelling strategy.

Conclusions

Principal Component Analysis: PCA(Sensory evaluation)=PCA(Sensory predicted score) ?

The average of the prediction accuracy for the 15 sensory descriptors is higher than 96.6%. But the wine ranking has to be improved.

BIBLIOGRAPHY