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Abstract

We present a fast Galerkin spectral method to solve logarithmic singular equations on

segments. The proposed method uses weighted first-kind Chebyshev polynomials. Conver-

gence rates of several orders are obtained for fractional Sobolev spaces H̃−1/2 (or H
−1/2
00 ).

Main tools are the approximation properties of the discretization basis, the construction of

a suitable Hilbert scale for weighted L2-spaces and local regularity estimates. Numerical

experiments are provided to validate our claims.

Mathematics subject classification: 65R20, 65F35, 65N22, 65N38.
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1. Introduction

We study elliptic problems in R2 having as common ground unbounded domains with cuts.

Such domains are not even Lipschitz and usually fall in the category of screen, crack or interface

problems [8,27,28,33]. Our focus lies on the analysis of integral logarithmic singular operators

appearing in the associated integral representations. In the simplest scenario, let Γc ⊂ R2 be

an open Jordan curve, Ω := R2 \ Γc an isotropic medium, and consider the following problem:

find u such that {
−∆u = 0 for x ∈ Ω,

u = g for x ∈ Γc,
(1.1)

where g is a given datum in a suitable functional space. It is well known [22], that the potential

u can be represented as the single layer potential :

u(x) =

∫

Γc

log
1

‖x− y‖ϕ(y)dy , for x ∈ Ω , (1.2)

a representation known as the indirect method [30], wherein ϕ is the solution of the logarithmic

singular integral equation:

g(x) =

∫

Γc

log
1

‖x− y‖ϕ(y)dy , for x ∈ Γc . (1.3)
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This type of first-kind Fredholm equation has received considerable attention in the past [2,10,

14, 19, 31] with several strategies put forward to solve it numerically.

More recently, explicit expressions for the inverse of the weakly singular and hypersingular

operators over a straight segment (−1, 1) as well as Calderón-type identities were provided

in [17]. These results were computationally implemented and numerically analyzed for non-

uniform low-order discretization in [16]. Still, the number of degrees of freedom required to

attain high accuracy remains impractical when performing large scale/numbers of simulations.

For example, this is the case when the Monte Carlo method is used to compute statistical

moments of the screen problem solutions subject to uncertainties in either geometrical features

or sources. As an alternative remedy, one can use p-refinement schemes, sometimes referred

to as spectral methods [3, 4, 7]. In [13], the authors provide convergence results for polygonal

segments. Along both lines of work, Lintner and Bruno [5,6] developed a generalized Calderón

formula for open arcs. When combined with their high-order Nyström methods, they observe

excellent performance of their Calderón preconditioner for a wide range of geometries and wave

propagation problems. However, no mathematical analysis of their method is available.

In this work, we provide a fast spectral Galerkin method to solve general logarithmic singular

kernels. Although not a new idea for structures of co-dimension one in R2 [14,31] in the setting

of weighted Sobolev spaces, the generalization to classic Sobolev spaces and interface problems

seems rather original. Without loss of generality, we will remit to Γc given by bounded Jordan

arcs, the case of semi-infinite or infinite cuts not being considered. By changing coordinates, the

integral equation is cast over the canonical interval (−1, 1), so that it has the form of a compactly

perturbed logarithmic integral operator. As we will show, solutions are characterized by square-

root singularities at the endpoints {±1} and weighted Chebyshev polynomials naturally define

a basis for numerical approximation. Though we had a different aim, we obtain similar results

to those published by Dominguez et al. [15] wherein so-called Hilbert scales are studied along

with their connection to weighted Sobolev spaces.

The remaining of this work is organized as follows. In Section 2, we recall certain definitions

and introduce notation conventions. Section 2.6 recalls uniqueness and existence results [17]

for the exterior Dirichlet problem for the Laplacian in R2 with a line segment removed that

lead to (1.3). After presenting Sobolev spaces over [0, π] and weighted L2-spaces in Sections 3

and 4, we establish convergence results and truncation errors for associated series expansions in

Section 5. Although many of the presented results are well known [10,21,23], we will emphasize

the link between trigonometric and Chebyshev polynomials as well as their profound connection

with logarithmic operators. In this sense, we extend previous results obtained in the setting of

Hölder continuous functions developed in [24, 25]. Numerical results are discussed in Section 6

and conclusions drawn in Section 7.

2. Preliminaries

2.1. Model geometry

We start by recalling the canonic splitting of R2 into two half-planes:

π± :=
{
x = (x, y) ∈ R2 : y ≶ 0, ∀ y ∈ R

}
, (2.1)

with interface Γ given by the line y = 0. The interface is further divided into the open disjoint

segments Γc := (a−, a+) × {0}, where a−, a+ ∈ R are such that −∞ < a− < a+ < ∞, and
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Γf := Γ \ Γ̄c. Consequently, the domain over which the partial differential equations will be

imposed is Ω := R2 \ Γ̄c. Furthermore, we define the canonic segment Γ̂c := (−1, 1)× {0} and

connect it to the interval I := [0, π] via the mapping x 7→ cos θ when taking its closure.

Later on we will assume Γ to be a Jordan curve, i.e. there exists a bijective parametrization

ϑ : R → R2 such that Γ = ϑ(R), with the consequent splitting of R2,

π± :=
{
x ∈ R2 : y ≶ ϑ(t), ∀ t ∈ R

}
, (2.2)

and define Γc as a bounded segment in Γ.

2.2. Notation

Let D ⊆ Rd, with d = 1, 2, be a Lipschitz bounded or unbounded domain. We denote

by Ck(D) the space of k-times differentiable continuous functions over D with k ∈ N0, with

N0 := N ∪ {0}. Its subspace of compactly supported functions is Ck0 (D) and for infinitely

differentiable functions we writeD(D) ≡ C∞
0 (D). The space of distributions or linear functionals

overD(D) is D′(D). Also, let Lp(D) be the standard equivalence class of functions with bounded

Lp-norm over D. Duality products are denoted by angular brackets, 〈· , ·〉, with subscripts

accounting for the duality pairing by stating only the functional space of the second argument.

Inner products are denoted by round brackets, (· , ·), with integration domains or functional

spaces specified by subscripts. Furthermore, operators are denoted in mild calligraphic style –

with the exception of D (cf. (4.18))– and complex conjugates by overline. Finally in the whole

paper, the notation a . b is used for the estimate a ≤ C b, where C is a generic positive

constant that does not depend on a, b nor on any polynomial degree N .

2.3. Standard Sobolev spaces

For s ∈ R, Hs(Rd) are the classic Sobolev spaces [1,32] with H0(Rd) ≡ L2(Rd). Let D ⊆ Rd

be a non-empty open set, one writes

Hs(D) =
{
u ∈ D′(D) : u = U |D for some U ∈ Hs(Rd)

}
. (2.3)

For s ≥ 0, we say that a distribution belongs to the local Sobolev spaceHs
loc(R

d) if its restriction

to every compact set K ⋐ Rd lies in Hs(K). If D has a boundary, we assume that it can be

extended over a closed manifold D̃ and write ũ for the extension of u by zero over D̃ \D. For

s > 0 and D Lipschitz, it holds

H̃s(D) :=
{
u ∈ Hs(D) : ũ ∈ Hs(D̃)

}
, (2.4)

provided with the norm ‖u‖H̃s(D) = ‖ũ‖Hs(D̃). If D is a bounded domain in Rd then one uses

D̃ := Rd and if D is closed H̃s(D) ≡ Hs(D). For negative s, we identify H̃s(D) with the dual

space of H−s(D). In particular,

H̃−1/2(D) ≡
(
H1/2(D)

)′
and H−1/2(D) ≡

(
H̃1/2(D)

)′
. (2.5)

If D is Lipschitz and bounded, let ̺ := dist(x, ∂D) be the Euclidean distance from x to ∂D.

With this, we recall the following result [12, 20]:
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Lemma 2.1. Let 0 ≤ s < 1
2 . Then, the application

u 7−→ ̺−su (2.6)

is linear and continuous from Hs(D) to L2(D). Moreover, if u ∈ H̃1/2(D) and ∂D Lipschitz,

then ũ ∈ H1/2(Rd) and

̺−1/2u ∈ L2(D) (2.7)

are equivalent characterizations.

2.4. Traces

Define restrictions u± := u|π±
. As customary, we introduce the interior trace operators

γ± : D(π±) → D(Γ) as

γ±u : = lim
ǫ→ 0±

u(x, ǫ) = γ±u±. (2.8)

If s > 1
2 , the operators γ± have unique extensions to bounded linear operators Hs

loc(π±) →
H
s−1/2
loc (Γ). We will denote by γ±c the restriction of the trace operator to a bounded Γc. If

s > 1
2 , a unique extension to a bounded linear operator γ±c : Hs

loc(π±) → Hs−1/2(Γc) can be

obtained by density of D(π±) in H
s(π±).

The symbol [γ] := γ+ − γ− represents the jump operator across Γ. Normal derivatives are

written ∂
∂n = n · ∇ with n pointing outwards for closed boundaries. In the case of Γ, being a

non-orientable manifold of codimension one, we assume n pointing along the positive y-axis.

2.5. Weighted Sobolev spaces

Since the problem domain is unbounded, one usually works in either local Sobolev spaces

or in the following weighted Sobolev space [26] :

W 1,−1(Ω) =

{
u ∈ D′(Ω) :

u

(1 + r2)1/2 log(2 + r2)
∈ L2(Ω), ∇u ∈ L2(Ω)

}
, (2.9)

where r := ‖x‖ with x ∈ R2. This space coincides with the standardH1
loc(Ω) for a bounded part

of Ω, which avoids specifying decaying behaviors at infinity [26]. Furthermore, this weighted

space is a Hilbert one, whereas local Sobolev spaces are only of Fréchet-type.

Now, traces along Γ for elements in W 1,−1(Ω) lie in the usual H
1/2
loc (Γ), and their restriction

to a bounded Γc generates the subspace H1/2(Γc). Lastly, let us introduce two more spaces:

H̃
−1/2
〈0〉 (Γc) as the subspace of H̃−1/2(Γc)-distributions with zero mean value, i.e.

H̃
−1/2
〈0〉 (Γc) =

{
ϕ ∈ H̃−1/2(Γc) : 〈ϕ , 1〉H1/2(Γc)

= 0
}
, (2.10)

and H
1/2
∗ (Γc) as the space of functions in H1/2(Γc) satisfying

∫ a+

a−

1√
(a+ − t)(t− a−)

g(t) dt = 0 .
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2.6. Laplace problem with Dirichlet boundary condition

We start by considering the Laplace problem with Dirichlet conditions over a bounded

segment Γc. Let g ∈ H1/2(Γc), we seek u ∈ W 1,−1(Ω) such that:

{
−∆u = 0 on Ω ,

γ±c u = g over Γc .
(2.11)

Proposition 2.1 (Prop. 2.7 and Cor. 2.9 in [17]) If g ∈ H1/2(Γc), then (2.11) has a unique

solution in W 1,−1(Ω) whose Neumann jump at Γc belongs to the space H̃
−1/2
〈0〉 (Γc).

We return to our original integral equation (1.3), now over Γ̂c:

L[ϕ](x) :=
∫

Γ̂c

log
1

‖x− y‖ ϕ(y) dy = g(x) , ∀ x ∈ Γ̂c , (2.12)

and recall the following proposition.

Proposition 2.2 (Prop. 3.1 in [17]) The integral equation (2.12) admits a variational for-

mulation in the Hilbert space H̃
−1/2
〈0〉 (Γ̂c) equal to

〈
Lϕ , ϕt

〉
H̃−1/2(Γ̂c)

=
〈
g , ϕt

〉
H̃−1/2(Γ̂c)

, ∀ ϕt ∈ H̃
−1/2
〈0〉 (Γ̂c) . (2.13)

L is a bijection between H̃
−1/2
〈0〉 (Γ̂c) and the subspace H

1/2
∗ (Γ̂c) and the associated bilinear form

is coercive, i.e.

〈Lϕ , ϕ〉H̃−1/2(Γ̂c)
& ‖ϕ‖2H̃−1/2(Γ̂c)

, ∀ ϕ ∈ H̃
−1/2
〈0〉 (Γ̂c) . (2.14)

The above variational formulation constitutes the main equation to be solved. Key to the

proposed numerical scheme is the analysis of the singular behavior of Neumann jumps at the

segment endpoints.

2.7. Local regularity results.

Let (r±, θ±) denote local coordinates in Ω centered at the endpoints a± of Γc, respectively,

and such that θ± = 0 when on Γc from above and θ± = 2π from below. Fix cut-off functions

η± such that η± ≡ 1 near the corresponding endpoints and η± ≡ 0 near the other endpoint. If

g is sufficiently smooth in (2.11), the potential satisfies (cf. [12]):

η±u = c1±η±r
1/2
± sin

θ±
2

+ c2±η±r
3/2
± sin

3θ±
2

+ uR± , (2.15)

with uR± ∈ Hs
loc(Ω) and s such that 3

2 < s − 1 < 5
2 . The coefficients ci, i = 1, 2, are real

numbers. Let ρ(x) := dist(x, a−) dist(x, a+) = |x − a−||x − a+|, represent a sort of distance

from any point in Γc to the closest endpoint in ∂Γc. Thus, in local polar coordinates –by taking

θ± = {0, 2π} and using the equivalence between ρ and r–, the above decomposition implies

that for the Neumann jump ϕ ∈ H̃
−1/2
〈0〉 (Γc), it holds

η±ϕ = η±

[
∂u

∂n

]
= c′1±η±ρ

−1/2 + c′2±η±ρ
1/2 + ϕR± , (2.16)
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where ϕR± ∈ H̃s−3/2(Γ) for 5
2 < s < 7

2 and the coefficients c′i, i = 1, 2, are still real numbers.

This decomposition implies that

ϕ = c′1ρ
−1/2 + c′2ρ

1/2 + ϕR + ψ, (2.17)

where ϕR := ϕR+ + ϕR− + (1− η+ − η−)ϕ ∈ H̃s−3/2(Γ) for 5
2 < s < 7

2 , c
′
i := c′i+ + c′i− and

ψ := ρ−1/2
∑

±

(
c′1±(η± − 1) + c′2±(η± − 1)ρ

)
.

3. Trigonometric Bases and Sobolev Spaces in [0, π]

Let us consider the following spectral value Sturm-Liouville problem with Neumann condi-

tions over I := [0, π]. More precisely, we look for λ ∈ C and u 6= 0 in C1(I), dependent on λ,

such that {
−u′′ = λu in I ,

u′ = 0 on ∂I .
(3.1)

Solutions clearly take the form:

u(θ) = A cos(
√
λθ) + B sin(

√
λθ) , (3.2)

with derivative

u′(θ) = −
√
λA sin(

√
λθ) +

√
λB cos(

√
λθ) . (3.3)

Upon imposing boundary conditions, we obtain B = 0, set A = 1 and retrieve the set of

eigenpairs (λm, um) = (m2, cosmθ) form ∈ Z. Since for negative and positivem the associated

eigenpairs are identical, it holds

Proposition 3.1 ([23]) The set of trigonometric polynomials:

ecosm (θ) :=





1/

√
π for m = 0,√

2
π cosmθ for m ≥ 1,

(3.4)

with m ∈ N0, constitutes an orthonormal basis for L2(I).

As a consequence of Proposition 3.1, we can write any function ϕ in L2(I) as a series

expansion:

ϕ(θ) =
∑

m∈N0

acosm ecosm (θ), (3.5)

where the complex coefficients acosm are those of the cosine-Fourier transform of ϕ:

acosm :=

∫ π

0

ϕ(θ) ecosm (θ) dθ . (3.6)

If s ∈ [0,∞), we denote by Hs
cos(I) the Sobolev space of functions ϕ in L2(I) with the

property ∑

m∈N0

m2s |acosm |2 <∞ , (3.7)
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for the cosine Fourier coefficients acosm of ϕ with

m :=

{
1 for m = 0 ,

m for m ∈ N .
(3.8)

Notice that H0
cos(I) coincides with L

2(I).

Theorem 3.1 ([29]) The Sobolev space Hs
cos(I) is a Hilbert space with the inner product de-

fined by

(ϕ , ψ)Hs
cos(I)

:=
∑

m∈N0

m2s acosm bcosm (3.9)

for ϕ, ψ ∈ Hs
cos(I) with coefficients acosm and bcosm , respectively. Consequently, the norm on

Hs
cos(I) is given by

‖ϕ‖2Hs
cos(I)

=
∑

m∈N0

m2s |acosm |2 . (3.10)

Notice that the above definition extends to complex-valued elements.

Remark 3.1. Alternatively, for k ∈ N, we can make the identification:

Hk
cos(I) ≡ dom

(
∆
k/2
N

)
, (3.11)

where dom (∆N ) is the domain of the Laplacian with zero Neumann conditions over I:

dom (∆N ) =
{
ϕ ∈ H2(I) : ϕ′(0) = ϕ′(π) = 0

}
, (3.12)

and dom
(
∆

1/2
N

)
= H1(I). For example, H4

cos(I) = dom
(
∆2
N

)
is given by

dom
(
∆2
N

)
= {ϕ ∈ dom (∆N ) : ∆ϕ ∈ dom(∆N )}

=
{
ϕ, ϕ(2) ∈ H2(I) ϕ(1)(0) = ϕ(1)(π) = 0, ϕ(3)(0) = ϕ(3)(π) = 0

}
.

(3.13)

Now, by injection of Sobolev spaces into continuous ones [1], it holds for k ≥ 2:

Hk
cos(I) =

{
ϕ ∈ Hk(I) : ϕ(2j+1)(0) = ϕ(2j+1)(π) = 0 , ∀ j = 0, . . . ,

⌊
k

2
− 1

⌋}
, (3.14)

where ⌊·⌋ denotes the largest integer less or equal than the argument.

We are interested in finding the best approximation over the above defined Sobolev spaces.

For N ≥ 0, let Πcos
N (I) denote the (N + 1)-dimensional space spanned by the cosine basis up

to degree N in [0, π]. Let Pcos
N : Hs

cos(I) −→ Πcos
N (I) be the orthogonal projection in the inner

product of L2(I), i.e. if ϕ ∈ Hs
cos(I), for s ≥ 0, it holds

(ϕ − Pcos
N ϕ , φ)L2(I) = 0, ∀φ ∈ Πcos

N (I) , (3.15)

and which approximates ϕ by the finite sum:

Pcos
N [ϕ](x) =

N∑

m=0

acosm ecosm (x) . (3.16)

Moreover, Pcos
N ϕ is the best approximation in the L2-norm among all functions in Πcos

N (I).
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Theorem 3.2. Let r, s ∈ R with 0 ≤ s ≤ r and let N be a positive integer. Then, the following

projection error holds

‖ϕ − Pcos
N ϕ‖Hs

cos(I)
≤ Ns−r ‖ϕ‖Hr

cos(I)
, (3.17)

for ϕ ∈ Hr
cos(I).

Proof. One can write

‖ϕ − Pcos
N ϕ‖2Hs

cos(I)
=
∑

m>N

m2s−2r+2r |acosm |2

≤N2(s−r)
∑

m>N

m2r |acosm |2 ≤ N2(s−r) ‖ϕ‖2Hr
cos(I)

,
(3.18)

and the statement is attained after taking square roots. �

Remark 3.2. This result shows that the more regular u is, the better the approximation by

Pcos
N ϕ. More precisely, if we take the L2-norm, i.e. for s = 0, the error is of order O(N−r) and

if ϕ is analytic one achieves exponential or spectral convergence, i.e. O(e−ηN ) [7, 34].

4. Weighted L2-spaces and Chebyshev Polynomials

The Chebyshev polynomials Tn(x) and Un(x) of the first and second kinds, respectively, are

polynomials of degree n, defined in x ∈ [−1, 1] as:

Tn(x) = cosnθ and Un(x) =
sin (n+ 1) θ

sin θ
, (4.1)

with x = cos θ, θ ∈ [0, π]. These satisfy the recurrence relations:

Pn(x) = 2xPn−1(x) − Pn−2(x) , n = 2, 3, . . . , (4.2)

together with initial conditions T0(x) = 1, T1(x) = x, U0(x) = 1 and U1(x) = 2x. Furthermore,

it holds

Un(x) − Un−1(x) = 2Tn(x) , (4.3)

T ′
n(x) = nUn−1(x) , (4.4)

(wUn−1)
′
(x) = −nw−1(x)Tn(x), (4.5)

for n ∈ N, where the weight function w is given by

w(x) :=
√
1 − x2 for x ∈ [−1, 1]. (4.6)

Moreover, the Tn are orthogonal with respect to w−1:

∫ 1

−1

Tn(x)Tm(x)w−1(x) dx =





0 n 6= m ,

π/2 n = m 6= 0 ,

π n = m = 0 .

(4.7)

For the second kind Chebyshev polynomials Un, it holds

∫ 1

−1

Un(x)Um(x)w(x) dx =

{
0 n 6= m,

π/2 n = m 6= 0.
(4.8)
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Based on the above, we can define the weighted function spaces and norms:

L2
1/w :=

{
u measurable : ‖f‖21/w :=

∫ 1

−1

|f(x)|2 w−1(x) dx < ∞
}
,

L2
w :=

{
u measurable : ‖f‖2w :=

∫ 1

−1

|f(x)|2 w(x) dx < ∞
}
,

and the associated space:

W =
{
u measurable : u ∈ L2

1/w , u
′ ∈ L2

w

}
, (4.10)

with graph norm

‖u‖W = ‖u‖1/w + ‖u′‖w . (4.11)

Proposition 4.1. There is a continuous inclusion L2
1/w ⊂ L2

w. Define W and W−1 by Wϕ :=

wϕ and W−1ϕ = w−1ϕ, then they are isometries, namely

W : L2
w → L2

1/w and W−1 : L2
1/w → L2

w, (4.12)

are isometries.

Proof. Let u ∈ L2
1/w. Since all terms are positive, we get

‖u‖2w =

∫ 1

−1

|u(x)|2 w2(x)

w(x)
dx ≤

(∫ 1

−1

w2(x) dx

)
‖u‖21/w . ‖u‖21/w (4.13)

and the inclusion follows. The isometries are found from the norm definitions: if ϕ ∈ L2
w,

‖ϕ‖w =

∫ 1

−1

w(x)|ϕ(x)|2 dx =

∫ 1

−1

|ψ(x)|2
w(x)

dx = ‖ψ‖1/w , (4.14)

where ψ = wϕ ∈ L2
1/w and, if ϕ is in L2

1/w, application of W−1 yields

‖ϕ‖1/w =
∥∥w−1ϕ

∥∥
w
, (4.15)

which concludes the proof. �

Lemma 4.1 ([29]) The spaces L2
w, L

2
1/w and W are Hilbert spaces with inner products induc-

ing the norms ‖·‖w , ‖·‖1/w and ‖·‖W :

(u , v)w±1 =

∫ 1

−1

u(t) v(t)w±1(t) dt, (4.16)

(u , v)W = (u , v)1/w + (u′ , v′)w . (4.17)

One can generalize the above definitions to spaces of order k ∈ N0. First, define the following

first-order differential operator:

D := −w d

dx
, (4.18)

and denote by D
n the composition D ◦ . . .◦D n-times. With this, we define the weighted spaces

as

W k :=
{
u measurable : D

l u ∈ L2
1/w , ∀ l = 0, . . . , k

}
(4.19)
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with norm

‖u‖2Wk =

k∑

l=0

∥∥∥Dl u
∥∥∥
2

1/w
(4.20)

and induced inner product. Clearly, W 0 = L2
1/w and W 1 =W . Finally, we derive a result that

will be used later on.

Proposition 4.2. Let m ∈ N0. Then, Wm is continuously imbedded in L2((−1, 1)).

Proof. By definition, it holds Wm →֒ L2
1/w for m ≥ 1 and hence, we only need to prove the

above for L2
1/w. Let u ∈ L2

1/w and take the standard L2-norm over the interval (−1, 1):

‖u‖2L2((−1,1)) =

∫ 1

−1

|u(x)|2 dx =

∫ 1

−1

|u(x)|2 w(x)
w(x)

dx ≤ ‖u‖21/w , (4.21)

since the L∞-norm of w is equal to one. �

4.1. Link with Hs
cos(I) spaces

We now use the mapping x = cos θ which takes I 7→ [−1, 1], with measure given by dx =

− sin θdθ, to define

ǔ(θ) := u(cos θ) , (4.22)

and present some results concerning the relation between the weighted L2-spaces just defined

and the Sobolev spaces over the segment I introduced in Section 3.

Proposition 4.3. The spaces L2
1/w and L2(I) are isometric.

Proof. We note that the change of variables x = cos θ transforms the space

u ∈ L2
1/w 7−→ ǔ ∈ L2(I) . (4.23)

Moreover, the transformation is isometric since

‖u‖1/w =

∫ 1

−1

|u(x)|2
w(x)

dx =

∫ π

0

|ǔ(θ)|2 dθ = ‖ǔ‖L2(I) (4.24)

as stated. �

Proposition 4.4. An isometric isomorphism between W and H1
cos(I) exists.

Proof. Let u ∈ H1
cos(I). Then, the derivative can be written as

ǔ′(θ) = u′(cos θ)(− sin θ) = −u′(x)w(x) . (4.25)

Taking the L2-norm gives

‖ǔ′‖2L2(I) =

∫ 1

−1

|w(x)u′(x)|2 w−1(x)dx =

∫ 1

−1

∣∣∣w1/2(x)u′(x)
∣∣∣
2

dx = ‖u′‖2w (4.26)

so that w1/2u′ ∈ L2((−1, 1)). By Proposition 4.3 and the definition ofW , the statement follows.

�

Now, the question is whether for all non-negative integers k, ǔ ∈ Hk
cos(I) implies u in W k.

The answer is positive:
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Proposition 4.5. Let k ∈ N0. There is an isometric isomorphism between the spaces W k and

Hk
cos(I) defined by (4.22).

Proof. We focus on the case k ≥ 2 as for k = 0, 1 this is already shown in Propositions 4.3

and 4.4. Let u ∈ Hk
cos(I). From the definition of W k, we need to bound the derivatives Dl u in

the L2
1/w-norm for l = 0, . . . k, i.e.

∥∥∥Dl u
∥∥∥
2

1/w
=

∫ 1

−1

∣∣∣Dl u(x)
∣∣∣
2 dx

w(x)
< ∞ . (4.27)

Mapping x into cos θ gives ∫ π

0

∣∣∣Ďlǔ(θ)
∣∣∣
2

dθ < ∞ . (4.28)

On the other hand, it holds

Ď = − sin θ

(
dθ

dx

d

dθ

)
=

d

dθ
, (4.29)

and so D
l u is mapped into ǔ(l). Consequently,

∫ π

0

∣∣∣Ďlǔ(θ)
∣∣∣
2

dθ =

∫ π

0

∣∣∣ǔ(l)(θ)
∣∣∣
2

dθ =
∥∥∥ǔ(l)

∥∥∥
2

L2
1/w

. (4.30)

Hence, the result follows for l = 0, . . . k. �

4.2. Fourier-Chebyshev series

We now consider approximations in terms of Chebyshev polynomials for the solutions of the

integral equation (2.12). Specifically, we wish to expand a function f as:

f(x) =
f0
2
T0(x) +

∞∑

n=1

fnTn(x) , x ∈ (−1, 1), (4.31)

with

fn =
2

π
(f , Tn)1/w , n ∈ N0 . (4.32)

The convergence of the Chebyshev series of a function f towards the actual function f is ana-

lyzed according to a given norm. In particular, we will study the convergence of approximations

in weighted L2-norms.

Let ΠN ((−1, 1)) denote the (N+1)-dimensional space spanned by polynomials up to degree

N in (−1, 1). Define the projection operator

PTN : L2
1/w −→ ΠN ((−1, 1)), (4.33)

which approximates f by first kind Chebyshev polynomials {Tn}Nn=0 with

PTN [f ](x) =
f0
2

+

N∑

n=1

fnTn(x) (4.34)

and fn as given in (4.32). We recall the following result found in [21]:
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Theorem 4.1. If f ∈ L2
1/w, then its first kind Chebyshev series expansion converges in the

L2
1/w-norm. Moreover, the norm of f in this space is given by

‖f‖21/w =
1

4
|f0|2 +

∞∑

n=1

|fn|2 .

Theorem 4.2. Let u ∈ W k, k ∈ N and N ≥ k. Then the following truncature high-order

error estimate holds ∥∥u− PTNu
∥∥
L2

1/w

≤ N−k ‖u‖Wk . (4.35)

Proof. Using the mapping (4.22), by Proposition 4.3 one can directly obtain

∥∥u− PTNu
∥∥
L2

1/w

= ‖ǔ− Pcos
N ǔ‖L2(I) ≤ N−k ‖ǔ‖Hk

cos(I)
= N−k ‖u‖Wk , (4.36)

where the inequality is due to Theorem 3.2 and the last identity to Proposition 4.5. �

Remark 4.1. In standard references [7, 23], higher-order convergence results are provided for

weighted Sobolev spaces for m ∈ N0:

Hm
1/w :=

{
u : u(α) ∈ L2

1/w , 0 ≤ |α| ≤ m, α ∈ N0

}
, (4.37)

with associated norm

‖u‖2m,1/w =
∑

0≤ |α| ≤m

∥∥∥u(α)
∥∥∥
2

1/w
,

for which one can show that the mapping u 7→ ǔ is continuous from Hm
1/w to Hm

cos(I). However,

the space Hm
1/w is not isomorphic to Hm

cos(I) for m ∈ N but to a smaller space. Moreover, W

containsH1
1/w due to Proposition 4.1 and, for allm, the strict continuous inclusion Hm

1/w ⊂Wm

holds. This can be understood when comparing the coefficients of the highest order derivatives

for both spaces, i.e. w−1/2+m for W k and w−1/2 for Hm
1/w, m ∈ N0.

In view of the above remark, one may be tempted to use only the conditions on the highest

order derivative for defining W k, wlu(l) ∈ L2
1/w. Unfortunately, this only works for k = 0, 1, 2.

For larger k, the multiplication of derivatives of w with smaller order derivatives of u blows up.

4.3. Application to logarithmic integral operators

As shown in Section 4.2, any function ϕ ∈ L2
1/w admits a series expansion in terms of Tn.

On the other hand, the logarithmic kernel satisfies the following:

Remark 4.2 ([10, 17]) For a given x ∈ (−1, 1), the logarithmic kernel admits the expansion

on Chebyshev polynomials:

log
1

|x− y| = log 2 +

∞∑

n=1

2

n
Tn(x)Tn(y), ∀ y ∈ (−1, 1), (4.38)

as a function in L2
1/w.
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The above series converges in the associated weighted norm but not point-wise. In C0((−1, 1)),

only Cesàro sums converge. From the orthogonality relation in L2
1/w, one obtains that the

weighted logarithmic integral operator1) defined as:

L1/w[ϕ](x) :=

∫ 1

−1

log
1

|x− t|
ϕ(t)√
1− t2

dt, (4.39)

has eigenvalues

λn =

{
π log 2 n = 0

π/n n ≥ 1
(4.40)

and eigenfunctions Tn(x), n ≥ 0. With this, we can prove

Proposition 4.6. The operator L1/w : L2
1/w → W is bounded and continuously invertible,

i.e. the Fredholm index zero. If ϑ ∈ W , the unique solution of the integral equation with purely

weighted logarithmic kernel normalized on the interval (−1, 1), L1/wϕ = ϑ, is given by

ϕ(x) =
ϑ0

2π log 2
T0(x) +

∞∑

n=1

n

π
ϑnTn(x) , x ∈ (−1, 1) , (4.41)

where the coefficients ϑn are obtained by (4.32).

Proof. The action of L1/w over ϕ can be written as the inner product in L2
1/w between the

logarithmic kernel and ϕ. Using the Fourier-Chebyshev expansion (4.38), for almost everywhere

x ∈ (−1, 1), with ϕ ∈ L2
1/w, we obtain

L1/w[ϕ](x) = log 2 (T0 , ϕ)1/w +

∞∑

n=1

2

n
Tn(x) (Tn , ϕ)1/w , (4.42)

which clearly shows that L1/wϕ ∈ L2
1/w as the terms (Tn , ϕ)1/w are well defined. Since the

series (4.38) is convergent in L2
1/w for fixed y, for both x and y the series lies in a Hilbert-Schimdt

tensor product

L2
1/w ⊗ L2

1/w
∼= L2

(
(−1, 1),

dx

w(x)
; (−1, 1),

dy

w(y)

)

with tensor norm denoted ‖·‖1/w⊗1/w. Specifically, we define a bivariate measure

µ(x, y) :=
dxdy

w(x)w(y)

under which elements in the tensor product correspond to L2((−1, 1)2, µ), wherein functions

f(x, y) satisfy
∑∞
m,n=0 fmn <∞ and fmn are coefficients. These can be approximated by finite

sums, and then by taking the limit Nx, Ny → ∞ and using Fubini’s theorem. Moreover, if we

derive in x and, by showing that the residue goes to zero, one can conclude that the derivative

L′
1/w is well defined. Furthermore, by relation (4.4) one obtains

L′
1/w[ϕ](x) =

∞∑

n=1

2

n
T ′
n(x) (Tn , ϕ)1/w

=
∞∑

n=1

2Un−1(x) (Tn , ϕ)1/w =
∞∑

n=0

2Un(x) (Tn+1 , ϕ)1/w , (4.43)

1) Not to be confused with the functional space L2
1/w

.
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implying that L′
1/wϕ lies in fact in L2

w. Hence, if ϕ ∈ L2
1/w, then L1/wϕ ∈W . By the Cauchy-

Schwarz inequality, we have

∣∣L1/wϕ
∣∣ =

∣∣∣∣∣

(
log

1

|x− ·| , ϕ
)

1/w

∣∣∣∣∣ ≤
(
log

1

|x− ·| , log
1

|x− ·|

)1/2

1/w

‖ϕ‖1/w . (4.44)

Introducing once more the Fourier-Chebyshev series expansion for the logarithm and the or-

thogonality of Tn, we obtain

(
log

1

|x− ·| , log
1

|x− ·|

)

1/w

= π log2 2 +

∞∑

n=1

(
4

n2
T 2
n(x)

)
π

2

≤π log2 2 + 2π

∞∑

n=1

1

n2
≤ π log2 2 +

π2

3
, (4.45)

proving the boundedness of L1/w over L2
1/w. Finally, let ϑ ∈ W . Then, by Theorem 4.1, we

can write both ϕ and ϑ as Fourier-Chebyshev series (4.31) with coefficients ϕn and ϑn given

by (4.32). We take the inner product

(
L1/wϕ , Tm

)
1/w

= (ϑ , Tm)1/w = πϑ0 δ0m +
π

2
ϑn δnm, (4.46)

where δnm is Kronecker’s delta. The left-hand side is equal to

(
π log 2ϕ0 +

∞∑

n=1

π

n
ϕnTn(x) , Tm

)

1/w

= π2 log 2ϕ0 δ0m +
π2

2n
ϕn δnm. (4.47)

Thus,

ϕ0 =
ϑ0

π log 2
and ϕn =

n

π
ϑn for n ≥ 1, (4.48)

yielding the stated result. �

4.3.1. Perturbed kernels

We now perturb the integral equation by adding a sufficiently smooth operator K:

(
L1/w + K

)
[ϕ](x) =

∫ 1

−1

[
log

1

|x − t| + K(x, t)

]
ϕ(t)√
1− t2

dt = f(x) (4.49)

for |x| ≤ 1.

Lemma 4.2. Let K(x, t) be a Hilbert-Schmidt kernel belonging to the tensor space L2
1/w⊗L2

1/w

with derivative ∂xK(x, t) ∈ L2
w⊗L2

1/w. Both tensor spaces are endowed with the natural Hilbert-

Schmidt norms. Then, the operator K : L2
1/w →W defined as

K[ϕ](x) =

∫ 1

−1

K(x, y)ϕ(y)
dy√
1− y2

is compact.
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Proof. By the orthogonality relations (4.7) and (4.8), Chebyshev polynomials Tn and Un
span the spaces L2

1/w and L2
w, respectively. Thus, K and ∂xK can be represented by Fourier-

Chebyshev series of Tn and Un. By Parseval-Bessel’s inequality, we have the Hilbert-Schmidt

norms:

‖K(x, y)‖1/w⊗1/w =

∞∑

n=0

∞∑

m=0

|knm|2 < ∞, (4.50)

‖∂xK(x, y)‖w⊗1/w =
∞∑

n=0

∞∑

m=0

n2|knm|2 < ∞. (4.51)

For the finite-dimensional operators:

KN (x, y) =
N∑

n=0

∞∑

m=0

knmTn(x)Tm(y), (4.52)

∂xKN (x, y) =

N∑

n=1

∞∑

m=0

nknmUn−1(x)Tm(y), (4.53)

it holds

lim
N→∞

‖K(x, y) − KN(x, y)‖1/w⊗1/w = lim
N→∞

∞∑

n=N+1

∞∑

m=0

|knm|2 = 0, (4.54a)

lim
N→∞

‖∂xK(x, y) − ∂xKN(x, y)‖w⊗1/w = lim
N →∞

∞∑

n=N+1

∞∑

m=0

n2|knm|2 = 0. (4.54b)

Let

KN [ϕ](x) =

∫ 1

−1

KN (x, y)ϕ(y)
dy√
1− y2

= (KN(x, ·) , ϕ)1/w , (4.55)

which is compact since it is of finite range. From the Cauchy-Schwarz inequality, we obtain

‖Kϕ − KNϕ‖2W = ‖Kϕ − KNϕ‖21/w + ‖∂xKϕ − ∂xKNϕ‖2w
=
(
| (K(x, ·) − KN(x, ·) , ϕ)1/w |2 , 1(x)

)

1/w

+

(∣∣∣∂x (K(x, ·) − KN (x, ·) , ϕ)1/w
∣∣∣
2

, 1(x)

)

w

. (4.56)

The first term on the right-hand side of the above is bounded as follows:
(
| (K(x, ·) − KN(x, ·) , ϕ)1/w |2 , 1(x)

)

1/w

≤
(
‖ϕ‖21/w ‖K(x, ·) − KN (x, ·)‖21/w , 1(x)

)

1/w

≤ π ‖K(x, ·) − KN(x, ·)‖21/w⊗1/w ‖ϕ‖21/w , (4.57)

whereas for the second term, the bound is
(∣∣∣∂x (K(x, ·) − KN(x, ·) , ϕ)1/w

∣∣∣
2

, 1(x)

)

w

≤ π

2
‖∂xK(x, ·) − ∂xKN (x, ·)‖2w⊗1/w ‖ϕ‖21/w . (4.58)
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Thus, from (4.54a) and (4.54b), the norm ‖Kϕ − KNϕ‖W tends to zero when N → ∞ and

since the image space W is a Banach space, K is compact. �

Proposition 4.7. Let K be defined as in Lemma 4.2. Then, the compound operator L1/w +K :

L2
1/w → W is a Fredholm operator of index zero.

Remark 4.3. Clearly, the same result is found if K is continuous or weakly continuous over

C0((−1, 1)).

4.4. Relation with the original operator L

The previous results given in weighted L2-spaces considered the modified operator L1/w and

not the original logarithmic operator L. To return to the latter, instead of taking out the factor

w−1 from L1/w, we multiply functions in L2
1/w by w. By the properties between L2

1/w and L2
w

described in Proposition 4.1, the statements from Propositions 4.6 and 4.7 can be restated as

follows:

Proposition 4.8. The operator L = L1/w ◦ W : L2
w → W is bounded and continuously

invertible. If g ∈ W , the unique solution of the integral equation with logarithmic kernel nor-

malized on the canonical interval (2.12), is given by

ϕ(x) =
g0

2π log 2

T0(x)√
1− x2

+

∞∑

n=1

n

π
gn

Tn(x)√
1− x2

, x ∈ (−1, 1), (4.59)

where the coefficients gn are obtained by (4.32).

The following diagram will clarify the point:

L2
w

W
//

L

!!
C

C

C

C

C

C

C

C

C

C

C

C

L2
1/w

L1/w

��

W

where clearly L can be interpreted as L1/w ◦ W . Also, one has following corollary:

Corollary 4.1. Let K be as in Lemma 4.2 and define Kw := K ◦ W. The compound operator

L + Kw : L2
w → W is a Fredholm operator of index zero.

The above observations suggest the use of weighted Chebyshev polynomials to approximate the

solutions of logarithmic integral equations to which we turn our discussion.

5. An Adapted Spectral Galerkin Method

In Section 2.6 we recalled the continuity and coercivity of the logarithmic integral operator

L defined over Γ̂c = (−1, 1)× {0} and mapping H̃
−1/2
〈0〉 (Γ̂c) onto H

1/2
∗ (Γ̂c). We now construct

approximation spaces on Γ̂c:

QN(−1, 1) := span
{
w−1Tn

}N
n=1

, (5.1)
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and extend their definition over Γc, denoted by QN (Γc), through the mapping x 7→ x̂ into

(−1, 1):

x̂ :=
2(x − x̄c)

a+ − a−
with x̄c :=

a+ + a−
2

. (5.2)

Hence, we can write ϕ(x) = ϕ̂(x̂) and approximate ϕ with ϕN through the weighted truncated

Fourier-Chebyshev expansion on the nominal domain:

ϕN (x) = ϕ̂N (x̂) := w−1(x̂)

N∑

n=1

ϕn Tn(x̂) , (5.3)

where ϕn are the Fourier-Chebyshev coefficients obtained via (ϕ̂, Tn)1/w. Using standard results

[17], one can prove the next proposition:

Proposition 5.1. If QN (Γc) is a closed subspace of H̃
−1/2
〈0〉 (Γc) and if g in H

1/2
∗ (Γc), then the

Galerkin variational solution ϕN ∈ QN(Γc) of

〈
LϕN , ϕtN

〉
H̃−1/2(Γc)

=
〈
g , ϕtN

〉
H̃−1/2(Γc)

, ∀ ϕtN ∈ QN (Γc), (5.4)

satisfies the following stability condition:

‖ϕN‖H̃−1/2(Γc)
. ‖g‖

H
1/2
∗ (Γc)

, (5.5)

and the error bound:

‖ϕ − ϕN‖H̃−1/2(Γc)
. inf

ψN∈QN (Γc)
‖ϕ − ψN‖H̃−1/2(Γc)

. (5.6)

The extension to compactly perturbed operators is immediate. Thus, if besides the principal

logarithmic term, continuous functions are introduced in the kernel, the solution scheme remains

stable for all N ≥ N∗.

5.1. Approximation properties of QN (Γc)

We now show that QN(Γc) satisfies the above mentioned approximation property, namely

we prove that the spaces are included in H̃
−1/2
〈0〉 (Γc).

Lemma 5.1. The space QN(Γc) is a closed subspace of H̃
−1/2
〈0〉 (Γc).

Proof. Without loss of generality, we consider the canonical segment Γ̂c. Set ϕN ∈
QN (−1, 1) then ϕN = ϕ∗

Nw
−1, with ϕ∗

N being a polynomial of order N . By definition,

‖ϕN‖H̃−1/2(Γ̂c)
= sup

g∈H1/2(Γ̂c)

〈ϕN , g〉H1/2(Γ̂c)

‖g‖H1/2(Γ̂c)

= sup
g∈H1/2(Γ̂c)

〈
w−1 , ϕ∗

Ng
〉
H1/2(Γ̂c)

‖g‖H1/2(Γ̂c)

, (5.7)

and by [12, Theorem 1.4.4.2], it holds

‖ϕ∗
Ng‖H1/2(Γ̂c)

≤ ‖ϕ∗
N‖H1(Γ̂c)

‖g‖H1/2(Γ̂c)
, (5.8)

so that ϕN belongs to H̃−1/2(Γ̂c) if w
−1 does. Denote by w̃ the extension by zero of w outside

Γ̂c for which one has the Fourier transform [11]:

F
[
w̃−1

]
(ξ) =

1√
2π

∫

R

w̃−1(x) eıξx dx =

√
π

2
J0(ξ) , (5.9)
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where J0(ξ) is the Bessel function of the first kind. Its behavior at infinity is as O
(
ξ−1/2

)
.

Thus,

∥∥w̃−1
∥∥2
H−1/2(R)

=
1√
2π

∫

R

(1 + ξ2)−1/2
[
Fw̃−1

]2
dξ

=
π

2
√
2π

∫

R

(1 + ξ2)−1/2 [J0(ξ)]
2
dξ < ∞

(5.10)

showing the bound in the H−1/2(R)-norm. Lastly, we need to prove that 〈ϕN , 1〉 = 0 for all N .

Since T0 is not included in QN(−1, 1), this comes immediately from the orthogonality relations

of Chebyshev polynomials (4.7). �

Lemma 5.2. The space Q∞(Γc) = limN→∞ QN (Γc) is dense in H̃
−1/2
〈0〉 (Γc).

Proof. Since D(Γc) is dense in H−1/2(Γc), it is sufficient to show that, for u ∈ D(Γc), we

have convergence

lim
N →∞

inf
uN∈QN (Γc)

‖u − uN‖H̃−1/2(Γc)
= 0. (5.11)

Let us take u ∈ D(Γc), so that

‖u − uN‖H̃−1/2(Γc)
(5.12)

= sup
g∈H1/2(Γc)

〈u − uN , g〉H1/2(Γc)

‖g‖H1/2(Γc)

= sup
g∈D(Γc)

〈u − uN , g〉H1/2(Γc)

‖g‖H1/2(Γc)

,

again by density. Since (u − uN)g belongs to L1(Γc), the duality can be expressed as the

integral

〈u − uN , g〉H1/2(Γc)
=

∫

Γc

(u − uN )g dx =

∫

Γc

ρ1/4(u − uN )ρ−1/4g dx .

where ρ(x) = (x − a−)(a+ − x) is the “distance” function towards the endpoints of Γc. The

Cauchy-Schwarz inequality yields

∣∣∣〈u − uN , g〉H1/2(Γc)

∣∣∣ ≤
∥∥∥ρ1/4(u − uN )

∥∥∥
L2(Γc)

∥∥∥ρ−1/4g
∥∥∥
L2(Γc)

.

Now, by Lemma 2.1, it holds

∥∥∥ρ−1/4g
∥∥∥
L2(Γc)

. ‖g‖H1/4(Γc)
. ‖g‖H1/2(Γc)

. (5.13)

Consequently,

‖u − uN‖H̃−1/2(Γc)
.
∥∥∥ρ1/4(u − uN)

∥∥∥
L2(Γc)

=
∥∥∥ρ1/2u − u∗N

∥∥∥
L2

1/w

, (5.14)

where L2
1/w is now defined over Γc. Since ρ1/2u lies in L2

1/w, Proposition 4.1 holds and the

proof is achieved. �
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5.2. First-order convergence

As discussed in Section 2.7, the local asymptotic expansion of the Neumann jump density

ϕ solution of (2.13) is (cf. (2.17))

ϕ = c′1ρ
−1/2 + c′2ρ

1/2 + ϕR + ψ on Γc , (5.15)

where ϕR ∈ H̃s−3/2(Γc), for
5
2 < s < 7

2 , and

ψ = ρ−1/2
∑

±

(c′1±(η± − 1) + c′2±(η± − 1)ρ) on Γc , (5.16)

with real coefficients ci±, i = 1, 2. The main result of this section is the next proposition, whose

proof is based on a series of Lemmas provided in the Appendix.

Proposition 5.2. Let ϕ ∈ H̃
−1/2
〈0〉 (Γc) admit the splitting (5.15) for 5

2 < s < 7
2 . Then, there

exist N∗ ∈ N and ϕN ∈ QN (Γc) such that

‖ϕ− ϕN‖H̃−1/2(Γc)
. N−1

(
‖ϕR‖H̃s−3/2(Γc)

+
∑

±

(∣∣c′1±
∣∣+
∣∣c′2±

∣∣)
)

∀N ≥ N∗ . (5.17)

Proof. The key idea is to reduce the error bound from ϕ− ϕN to the one on regular parts.

Without loss of generality, we consider the canonical segment Γ̂c. Recalling the splitting (5.15)

of ϕ,

ϕ = ρ−1/2
(
c′1 + c′2ρ + ϕ∗

R + ψ∗
)
,

we look for its approximation ϕN with N ≥ 2 in the form

ϕN = ρ−1/2
(
c′1 + c′2ρ + ϕ∗

R,N + ψ∗
N

)
, (5.18)

where the coefficients c′i, i = 1, 2, are the same as for ϕ given in (5.15) and ϕ∗
R,N := PTNϕ∗

R

(resp. ψ∗
N := PTNψ∗) is the L2

1/w-projection on the set of polynomials of degree ≤ N of ϕ∗
R

(resp. ψ∗) given by Theorem 4.2. By construction, ϕ∗
N = ρ1/2ϕN is a polynomial of degree N ,

hence it is a linear combination of Chebyshev polynomials Tn for n ∈ {0, 1, · · · , N}. Therefore,
in view of the definition of QN (−1, 1), we need to show that

∫ 1

−1

ϕ∗
N (x)w−1(x)dx = 0 . (5.19)

By definition, ϕ satisfies (ϕ , 1)Γ̂c
= 0. Since ρ1/2 = w, we deduce that ϕ∗ = ρ1/2ϕ satisfies

(ϕ∗ , 1)1/w = 0. As

ϕ∗ = c′1 + c′2ρ + ϕ∗
R + ψ∗,

we deduce that
∫ 1

−1

(ϕ∗
R(x) + ψ∗(x))w−1(x)dx = −

∫ 1

−1

(c′1 + c′2ρ(x))w
−1(x)dx . (5.20)

Now, we make use of the fact that ϕ∗
R,N (resp. ψ∗

N ) is the L2
1/w projection on the set of

polynomials of degree ≤ N of ϕ∗
R (resp. ψ∗) and, therefore

∫ 1

−1

(
ϕ∗
R,N (x) + ψ∗

N (x)
)
w−1(x)dx =

∫ 1

−1

(ϕ∗
R(x) + ψ∗(x))w−1(x)dx .
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as one is a polynomial of degree ≤ N . Hence, by using (5.20), we obtain

∫ 1

−1

(ϕ∗
R,N (x) + ψ∗

N (x))w−1(x)dx = −
∫ 1

−1

(c′1 + c′2ρ(x))w
−1(x)dx ,

which is nothing else than (5.19). This shows that ϕN belongs to QN(−1, 1). Also, by con-

struction, it holds

ϕ− ϕN = ρ−1/2(ϕ∗
R − ϕ∗

R,N + ψ∗ − ψ∗
N ) ,

and we can apply Lemma A.4 to obtain

‖ϕ− ϕN‖H̃−1/2(Γc)
.
∥∥ϕ∗

R − ϕ∗
R,N

∥∥
L2

1/w

+ ‖ψ∗ − ψ∗
N‖L2

1/w
.

By Theorem 4.2, we deduce that

‖ϕ− ϕN‖H̃−1/2(Γc)
. N−1

(
‖ϕ∗

R‖W + ‖ψ∗‖W
)
,

and we conclude thanks to Lemmas A.2 and A.3. �

5.3. Higher-order convergence

Our goal now is to obtain higher-order convergence for the solution of the integral equation

(2.12) results for smoother data. As before, if g is smooth enough, then for m ≥ 1, the solution

u admits the local decomposition at the endpoints [12]:

η±u(r±, θ±) = η±

m∑

i=0

ci±r
1
2
+i

± sin

{(
1

2
+ i

)
θ±

}
+ uR± , (5.21)

where uR± ∈ Hs
loc(Ω) with m + 3

2 < s < m + 5
2 . Hence the normal derivative jump along Γc

behaves locally as

η±ϕ = η±

[
∂u

∂n

]
=

m∑

i=0

c′i±η±r
i− 1

2 + ϕR± , (5.22)

with ϕR± ∈ H̃s− 3
2 (Γc). In order to replace r± by ρ, we first consider r− over Γc and use that

r
i− 1

2

− (x) = ρi−
1
2 (x)(a+ − x)

1
2
−i , x ∈ (a−, a+).

Since (a+ − x)
1
2
−i is smooth near x = a−, it can be written as

(a+ − x)
1
2
−i = piK(x) + riK(x) ,

where piK(x) =
∑K

k=0 aik(x+a−)
k is the Taylor expansion of (a+−x) 1

2
−i at x = a− truncated

at the order K and riK is the residue. If K + i > s− 7
2 , we deduce that

ρi−
1
2 riK ∈ H̃s− 3

2 (Γc) .

Due to the constraint m + 3
2 < s < m+ 5

2 , we can chose K = m− 1. By employing a similar

argument at x = a+, we deduce that

η±ϕ = η±ρ
− 1

2 p± + ϕR±, (5.23)
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where p± is a polynomial of degree smaller or equal to 3m− 1 and ϕR± ∈ H̃s− 3
2 (Γc).

As in Section 2.7, we can now state the decomposition:

ϕ = ρ−
1
2 p + ϕR + ψ, (5.24)

where p is polynomial of degree less or equal to 3m− 1, ϕR ∈ H̃s− 3
2 (Γc) and

ψ := ρ−
1
2

∑

±

(1− η±)p± . (5.25)

Proposition 5.3. Let ϕ ∈ H̃
−1/2
〈0〉 (Γc) admit the decomposition (5.24) with ϕR ∈ H̃s− 3

2 (Γc) for

m + 3
2 < s < m + 5

2 . Then, there exist N∗ ∈ N, ϕN ∈ QN(Γc) and a positive constant c(m)

depending only on m such that

‖ϕ− ϕN‖H̃−1/2(Γc)
≤ c(m)N−m

(
‖ϕR‖H̃s−1/2(Γc)

+
∑

±

m∑

i=0

∣∣c′i±
∣∣
)

(5.26)

for all N ≥ N∗.

Proof. The proof is the same as the one of Proposition 5.2. Here, we make use of Lemmas

A.5 and A.6. �

For numerical experiments, instead of verifying the inequality (5.26), we use the following

equivalent result.

Corollary 5.1. We can verify Propositions 5.2 and 5.3 by finding, for each m ≥ 1, an N∗ ∈ N

such that

‖ϕ− ϕN‖H̃−1/2(Γ) . N−m (‖ϕ∗
R + ψ∗‖Wm) , ∀ N ≥ N∗, (5.27)

where ‖u‖2Wm =
∑m

l=0

∥∥Dlu
∥∥2
1/w

.

Proof. Recall the asymptotic decomposition

ϕ = c1ρ
−1/2 + c2ρ

1/2 + ϕR + ψ. (5.28)

We also have

ϕN = c1ρ
−1/2 + c2ρ

1/2 + ϕRN + ψN . (5.29)

Now, by construction we have

ϕ− ϕN = ρ−1/2 (ϕ∗
R − ϕ∗

RN + ψ∗ − ψ∗
N ) , (5.30)

and we can apply Lemma A.4 to obtain

‖ϕ− ϕN‖H̃−1/2(Γ) . ‖ϕ∗
R + ψ∗ − ϕ∗

RN − ψ∗
N‖L2

1/w
. (5.31)

Finally, by Theorem 4.2, it holds

‖ϕ− ϕN‖H̃−1/2(Γ) . N−m ‖ϕ∗
R + ψ∗‖Wm . (5.32)

Verification of Propositions 5.2 and 5.3 comes from Lemmas A.3 and A.6, respectively. Indeed,

by using the triangle inequality, we obtain

‖ϕ− ϕN‖H̃−1/2(Γ) . N−m ‖ϕ∗
R + ψ∗‖Wm . N−m (‖ϕ∗

R‖Wm + ‖ψ∗‖Wm)

. N−m

(
‖ϕ∗

R‖Wm +
∑

±

(|c′1±|+ |c′2±|)
)
.

Lastly, as in Remark 3.2, exponential convergence can be achieved if the solution ϕ is

analytic. �
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6. Numerical Results

In what follows, we present several numerical experiments to validate our findings. Let Q

denote the number of quadrature points, and N the number of spectral degrees of freedom

(dofs), with specific values for both quantities given for each test. We consider two error norms:

(i) Wm-norms, for m ≤ 3, for which the corresponding D
l derivatives are calculated analyti-

cally; and,

(ii) H̃−1/2-norms, defined over Γ̂c, obtained through the energy norm related to the weakly

singular operator L.

For the latter, Galerkin orthogonality yields

‖ϕ− ϕN‖2H̃−1/2(Γ̂c)
≈ 〈L(ϕ− ϕN ) , (ϕ− ϕN )〉H̃−1/2(Γ̂c)

= 〈Lϕ , ϕ〉H̃−1/2(Γ̂c)
− 〈LϕN , ϕN 〉H̃−1/2(Γ̂c)

, ∀ϕ ∈ H̃
−1/2
〈0〉 (Γ̂c) , (6.1)

and where the first term is calculated by spectral quadrature using an overkill numerical solution

ϕok of Nok spectral dofs such that Nok ≫ N . Then, by defining ϕ
N

as the vector of associated

Chebyshev coefficients, and L as the discrete weakly singular spectral diagonal matrix, (6.1)

boils down to

‖ϕ− ϕN‖2H̃−1/2(Γ̂c)
≈ (ϕok − ϕ

N
)TL(ϕok − ϕ

N
) . (6.2)

The rationale behind this comparison between Wm and H̃−1/2-error norms comes from Corol-

lary 5.1 as it is difficult to compute H̃s-norms for s ≥ 1/2.

6.1. Converge results for approximation of elements in H̃−1/2(Γ̂c)

Tables 6.1–6.3 show convergence results obtained for the approximation of different choices

of ϕ(x):

xw−1, w−1(4x3 − 3x), w−1 sinx, w cosx− w−1 sinx, sin(2πx).

We clearly observe the described convergence rates of Corollary 5.1. For all examples, the

values for Q and Nok remained the same in order to compare their behavior at a given precision.

Although one would naively expect that the accuracy of ϕok would improve when increasing

Nok, we actually observe that after a certain threshold it introduces additional numerical error.

This phenomenon is customary in high-order methods. Finally, it is worth mentioning that the

even Chebyshev coefficients of the function ϕ = sin(2πx) are zero, therefore, Table 6.3 only

shows the results for the odd numbers of degrees of freedom.

6.2. Convergence results for the Laplace problem with Dirichlet boundary condi-

tions

From Proposition 4.8, if we consider g ∈ W as our right-hand side, then the numerical

approximation of ϕ ∈ H̃
−1/2
〈0〉 (Γ̂c) in QN(−1, 1) is given by

ϕN (x) = w−1(x)

N∑

n=1

ϑnTn(x) .

We run numerical experiments by using different functions g ∈ W as our right-hand side.
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Table 6.1: Fist-order and higher-order convergence results with Nok = Q = 100.

(a) ϕ(x) = xw−1(x).

N N−m
∥

∥ϕ∗

R + ψ∗

∥

∥

Wm

‖ϕ− ϕN‖
H̃−1/2 m = 1 m = 2 m = 3

2 4.82e-15 8.86e-01 5.43e-01 1.75e-01

3 4.82e-15 5.91e-01 2.41e-01 3.46e-02

4 4.81e-15 4.43e-01 1.36e-01 1.09e-02

5 4.80e-15 3.54e-01 8.68e-02 4.48e-03

(b) ϕ(x) = (4x3 − 3x)w−1(x).

N N−m
∥

∥ϕ∗

R + ψ∗

∥

∥

Wm

‖ϕ− ϕN‖
H̃−1/2 m = 1 m = 2 m = 3

2 1.29e+00 2.17e+00 3.04e+00 4.50e+00

3 0.00e+00 1.45e+00 1.35e+00 1.33e+00

4 0.00e+00 1.09e+00 7.59e-01 5.62e-01

5 0.00e+00 8.68e-01 4.86e-01 2.88e-01

Table 6.2: Fist-order and higher-order convergence results with Nok = Q = 100.

(a) ϕ(x) = sin(x)w−1(x).

N N−m
∥

∥ϕ∗

R + ψ∗

∥

∥

Wm

‖ϕ− ϕN‖
H̃−1/2 m = 1 m = 2 m = 3

2 5.02e-02 7.84e-01 4.92e-01 3.27e-01

4 4.96e-04 3.92e-01 1.23e-01 4.09e-02

6 2.52e-06 2.61e-01 5.46e-02 1.21e-02

8 7.77e-09 1.96e-01 3.07e-02 5.11e-03

10 1.60e-11 1.57e-01 1.97e-02 2.62e-03

12 2.42e-14 1.31e-01 1.37e-02 1.51e-03

14 4.05e-15 1.12e-01 1.00e-02 9.53e-04

(b) ϕ(x) = cos(x)w(x) − sin(x)w−1(x).

N N−m
∥

∥ϕ∗

R + ψ∗

∥

∥

Wm

‖ϕ− ϕN‖
H̃−1/2 m = 1 m = 2 m = 3

2 8.80e-02 1.08e+00 1.55e+00 2.39e+00

4 1.37e-03 5.39e-01 3.87e-01 2.98e-01

6 9.47e-06 3.59e-01 1.72e-01 8.83e-02

8 3.70e-08 2.69e-01 9.67e-02 3.73e-02

10 9.23e-11 2.16e-01 6.19e-02 1.91e-02

12 1.60e-13 1.80e-01 4.30e-02 1.10e-02

14 4.01e-15 1.54e-01 3.16e-02 6.95e-03

Table 6.3: Fist-order and higher-order convergence results for ϕ(x) = sin(2πx) with Nok = Q = 100.

N ‖ϕ− ϕN‖
H̃−1/2 N−1

∥

∥ϕ∗

R + ψ∗

∥

∥

W
N−2

∥

∥ϕ∗

R + ψ∗

∥

∥

W2 N−3
∥

∥ϕ∗

R + ψ∗

∥

∥

W3

2 7.9131e-01 2.4824e+00 7.5163e+00 2.4557e+01

3 7.8778e-01 1.6549e+00 3.3406e+00 7.2761e+00

5 2.6804e-01 9.9297e-01 1.2026e+00 1.5716e+00

7 4.3338e-02 7.0926e-01 6.1358e-01 5.7276e-01

9 4.2260e-03 5.5165e-01 3.7118e-01 2.6949e-01

11 2.7928e-04 4.5135e-01 2.4847e-01 1.4760e-01

13 1.3417e-05 3.8191e-01 1.7790e-01 8.9420e-02

15 4.9137e-07 3.3099e-01 1.3362e-01 5.8209e-02

17 1.4199e-08 2.9205e-01 1.0403e-01 3.9987e-02

19 3.3240e-10 2.6131e-01 8.3283e-02 2.8642e-02

21 6.4375e-12 2.3642e-01 6.8175e-02 2.1213e-02

23 1.0491e-13 2.1586e-01 5.6834e-02 1.6147e-02

25 1.4590e-15 1.9859e-01 4.8104e-02 1.2573e-02

• Example 1. Let g(x) = sin(2πx). The corresponding analytical solution is

ϕ(x) =

∞∑

n=0

2n

π
a2nT2n(x), x ∈ (−1, 1),

where a2n = 2Jn(2π) sin(
nπ
2 ). Figure 6.1(a) shows the obtained errors. They are also

detailed in Table 6.4, from where we observe that numerical precision is achieved with

N = 27.
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Table 6.4: Convergence results for solving Lϕ = g using an overkill ϕok of Nok=100 dofs.

(a) g(x) = sin(2πx)

N ‖ϕok − ϕN‖1/w ‖ϕok − ϕN‖
H̃−1/2

2 1.0204e+01 1.3259e+00

3 1.1155e+01 1.3240e+00

5 9.5472e+00 6.0238e-01

7 2.4860e+00 1.2445e-01

9 3.3971e-01 1.4810e-02

11 2.9248e-02 1.1561e-03

13 1.7478e-03 6.4075e-05

15 7.7073e-05 2.6592e-06

17 2.6174e-06 8.5877e-08

19 7.0661e-08 2.2220e-09

21 1.5543e-09 4.7131e-11

23 2.8407e-11 8.3483e-13

25 4.3780e-13 1.2539e-14

(b) g(x) = exp(x)

N ‖ϕok − ϕN‖1/w ‖ϕok − ϕN‖
H̃−1/2

2 7.6387e-01 5.4857e-02

3 1.2343e-01 7.7896e-03

4 1.5122e-02 8.6199e-04

5 1.4898e-03 7.8133e-05

6 1.2265e-04 5.9970e-06

7 8.6701e-06 3.9911e-07

8 5.3686e-07 2.3445e-08

9 2.9571e-08 1.2326e-09

10 1.4667e-09 5.8638e-11

11 6.6157e-11 2.5474e-12

12 2.7381e-12 1.0183e-13

13 1.0399e-13 3.7806e-15

14 4.7499e-15 3.2121e-16
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(a) g(x) = sin(2πx)
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(b) g(x) = ex

Fig. 6.2. Convergence results for ϕ solution of Lϕ = g.

• Example 2. Now set g(x) = exp(x). The exact solution is

ϕ(x) =
J0(i)

2π log(2)
T0(x) + 2

∞∑

n=1

n

π
inJn(−i)Tn(x), x ∈ (−1, 1). (6.3)

The resulting convergence is summarized in Table 6.4 and it is also contained in Fig-

ure 6.1(b). This time we obtained numerical precision with N = 14.

For both examples, it can be seen that the solutions converge exponentially in N as can be

expected from the analyticity of the source terms g.

6.3. Helmholtz problem

We now consider the weakly singular operator for the Helmholtz problem. In this case,

the operator can be decomposed into singular and compact terms, with the singular operator

being equal to the Laplace case. We provide a comparison between solutions obtained via
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the presented spectral discretization basis and traditional low-order boundary elments or h-

refinement at two different wavenumbers.

Table 6.5 shows absolute and relative H̃−1/2(Γ̂c)-errors obtained when using again an overkill

numerical solution ϕok as reference. The relative error is measured as

rel. error =
‖ϕok − ϕN‖H̃−1/2(Γ̂c)

‖ϕok‖H̃−1/2(Γ̂c)

.

In Tables 6.5 (a)-(b), we observe that the spectral approach converges faster than the h-

discretization. Numerical quadratures are computed as described in [18, Section 3.3].

Table 6.5: Helmholtz convergence when using an overkill ϕok with Nok dofs taking as right-hand side

g = exp(ıx). Notice we slightly abuse notation as this overkill changes from the spectral discretization

to the h-discretization.

(a) Results for wavenumber k = 1 using Nok = Q = 97.

Spectral discretization h-discretization

N ‖ϕok − ϕN‖
H̃−1/2 rel. error ‖ϕok − ϕN‖

H̃−1/2 rel. error

4 1.76e-02 1.08e-02 1.53e+00 3.36e-01

7 1.94e-06 1.91e-06 1.04e+00 2.29e-01

13 3.21e-13 1.97e-13 7.25e-01 1.59e-01

25 7.13e-14 4.37e-14 5.00e-01 1.10e-01

49 3.33e-14 2.04e-14 3.34e-01 7.35e-02

(b) Results for wavenumber k = 20 using Nok = Q = 97.

Spectral discretization h-discretization

N ‖ϕok − ϕN‖
H̃−1/2 rel. error ‖ϕok − ϕN‖

H̃−1/2 rel. error

4 3.83e-00 2.54e-01 3.97e+01 5.46e-01

7 9.74e-01 6.48e-02 1.90e+01 2.61e-01

13 9.41e-02 6.26e-03 1.04e+01 1.43e-01

25 3.56e-04 2.38e-05 5.50e+00 7.57e-02

49 7.84e-11 5.22e-12 2.80e+00 3.85e-02
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Fig. 6.3. Convergence for wavenumbers k = 1, 20 with right-hand side g = exp(ıx).
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7. Concluding Remarks

We have introduced a fast convergent method to solve logarithmic singular equations over

a segment or smooth Jordan curve using weighted polynomials, both through detailed analysis

and numerical experiments. As predicted, convergence rates theoretically obtained, for standard

Sobolev spaces, are retrieved in our numerical results for purely logarithmic singular kernels.

The strength of the method lies in its fast convergence and simple implementation. These two

features become a critical issue when dealing with large numbers of simulations. Moreover,

we would like to point out that the method can be directly extended to interface or fracture

problems as long as the underlying operator is elliptic. For coercive operators such as Helmholtz

one, the method can still be applied. However, the oscillatory nature of the kernel requires more

adequate quadrature rules but our preliminary results are promising. Finally, future work seeks

to extend these ideas to three-dimensional screens.

A. Technical Lemmas

Lemma A.1. The space W is continuously imbedded in H̃−1/2(Γc).

Proof. This can be obtained from the dense embedding of L2(Γc) into H̃
−1/2(Γc) and from

Proposition 4.2, which is easily extended to Γc by the coordinate change described in (5.2). �

Lemma A.2. Let ϕR ∈ H̃s−3/2(Γc) for 5
2 < s < 7

2 . Then, the term ϕ∗
R := ρ1/2ϕR belongs to

W and it holds

‖ϕ∗
R‖W . ‖ϕR‖H̃s−3/2(Γc)

.

Proof. We carry out the analysis for Γ̂c without loss of generality. Again, ρ(x) = w2(x) =

1 − x2. First, show that ϕ∗
R ∈ L2

1/w. By regularity of ϕR and boundedness of the square-root

factor, it holds

‖ϕ∗
R‖2L2

1/w
=

∫ 1

−1

|ϕ∗
R(x)|

2

√
1− x2

dx =

∫ 1

−1

√
1− x2 |ϕR(x)|2 dx . ‖ϕR‖2H̃s−3/2(Γ̂c)

. (A.1)

Now, we have to prove (ϕ∗
R)

′ ∈ L2
w. Leibniz’s rule provides

(ϕ∗
R)

′
(x) = ϕ′

R(x)
√

1− x2 − x√
1− x2

ϕR(x) . (A.2)

The first term yields

∫ 1

−1

∣∣∣ϕ′
R(x)

√
1− x2

∣∣∣
2√

1− x2dx .

∫ 1

−1

|ϕ′
R(x)|

2
dx . ‖ϕR‖2H̃s−3/2(Γ̂c)

, (A.3)

by regularity of ϕR. The second term gives rise to the integral:

∫ 1

−1

∣∣∣∣
xϕR(x)√
1− x2

∣∣∣∣
2√

1− x2 dx =

∫ 1

−1

x2√
1− x2

|ϕR(x)|2 dx (A.4)

≤
∫ 1

−1

x2dx√
1− x2

‖ϕR‖2L∞(Γ̂c)
. ‖ϕR‖2H̃s−3/2(Γ̂c)

∫ 1

−1

x2dx√
1− x2

,



154 C. JEREZ-HANCKES, S. NICAISE AND C. URZÚA-TORRES

due to the embedding H̃s−3/2(Γ̂c) →֒ C0(Γ̂c). By using the variable change x = cos θ, we obtain

∫ 1

−1

x2dx√
1− x2

=

∫ π

0

cos2 θ dθ =
π

2
, (A.5)

which concludes the proof. �

Lemma A.3. Let ψ be defined by (5.16). Then, ψ∗ := ρ1/2ψ belongs to W and

‖ψ∗‖W .
∑

±

(|c′1±|+ |c′2±|) .

Proof. As before, we carry out the analysis on Γ̂c. From (5.16), we clearly have

ψ∗ =
∑

±

(c′1±(η± − 1) + c′2±(η± − 1)ρ) .

Since ρ is a polynomial, we see that ψ∗ and its derivative are uniformly bounded, this implies

the conclusion because w−1 is integrable. �

Lemma A.4. Let v ∈ L2(Γc) and N ∈ N. For all vN ∈ QN (Γc), define v
∗
N := wvN ∈ L2

1/w,

where L2
1/w is now defined over Γc. Then it holds

‖v − vN‖H̃−1/2(Γc)
.
∥∥∥ρ1/2v − v∗N

∥∥∥
L2

1/w

, (A.6)

where L2
1/w is now defined over Γc.

Proof. By definition,

‖v − vN‖H̃−1/2(Γc)
= sup

h∈H1/2(Γc)

〈v − vN , h〉H1/2(Γc)

‖h‖H1/2(Γc)

. (A.7)

Clearly, vh ∈ L1(Γc) since it is the product of square-integrable functions. We now show that the

product vNh also lies in L1(Γc). Since vN can be written at an endpoint as vN (ζ) = ζ−1/2P (ζ)

where P (·) is a polynomial, vN is Lp-integrable for p < 2 as locally it holds, for ǫ > 0,

∫ ǫ

0

|ζ|−p/2 dζ <∞ for − p

2
+ 1 > 0 . (A.8)

On the other hand, H1/2(Γc) →֒ Lq(Γc) for all q ≥ 1. Hence, vNh ∈ L1(Γc) and the duality

product can be written as the integral:

〈v − vN , h〉H1/2(Γc)
=

∫

Γc

(v − vN )h dx =

∫

Γc

ρ1/4(v − vN )ρ−1/4h dx (A.9)

≤
∥∥∥ρ1/4(v − vN )

∥∥∥
L2(Γc)

∥∥∥ρ−1/4h
∥∥∥
L2(Γc)

.
∥∥∥ρ1/2v − v∗N

∥∥∥
L2

1/w

‖h‖H1/2(Γc)
,

where the first inequality results from applying Cauchy-Schwarz while the last one by Lemma

2.1. �
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Lemma A.5. Let m + 3
2 < s < m + 5

2 . If ϕR ∈ H̃s− 3
2 (Γc), then ϕ∗

R := ρ1/2ϕR ∈ Wm and

there exists a constant independent of m such that

‖ϕ∗
R‖Wm . m2m ‖ϕR‖

H̃s− 3
2 (Γc)

.

Proof. We carry out the proof on Γ̂c. By definition, one must show that the L2
1/w-norm

of D
l(ρ1/2ϕR) is bounded for all l = 0, . . . ,m. Again, we exchange ρ1/2 by w and change

coordinates x by cos θ to obtain

∥∥∥Dl(wϕR)
∥∥∥
2

1/w
=

∫ 1

−1

∣∣∣Dl(wϕR)
∣∣∣
2

w−1dx =

∫ π

0

∣∣∣(ϕ̌R(θ) sin θ)(l)
∣∣∣
2

dθ, (A.10)

by the mapping D 7→ Ď. On the other hand, it holds

∣∣∣(ϕ̌R(θ) sin θ)(l)
∣∣∣
2

=

∣∣∣∣
l∑

k=0

(
l

k

)
ϕ̌
(k)
R (θ)

dl−k

dθl−k
sin θ

∣∣∣∣
2

≤ l

l∑

k=0

(
l

k

)2 ∣∣∣ϕ̌(k)
R (θ)

∣∣∣
2
∣∣∣∣
dl−k

dθl−k
sin θ

∣∣∣∣
2

. (A.11)

For l < m, this leads to

∣∣∣(ϕ̌R sin θ)(l)
∣∣∣
2

≤ l
l∑

k=0

(
l

k

)2 ∣∣∣ϕ̌(k)
R (θ)

∣∣∣
2

. (A.12)

Using this in the integral (A.10) above yields

∫ π

0

∣∣∣(ϕ̌R(θ) sin θ)(l)
∣∣∣
2

dθ ≤ l

l∑

k=0

(
l

k

)2 ∫ π

0

∣∣∣ϕ̌(k)
R (θ)

∣∣∣
2

dθ ≤ l

l∑

k=0

(
l

k

)2 ∫ 1

−1

∣∣∣ϕ(k)
R

∣∣∣
2

w−1dx

≤ πl

l∑

k=0

(
l

k

)2 ∥∥∥ϕ(k)
R

∥∥∥
2

L∞(Γ̂c)
≤ πl22l max

k=0,...,l

∥∥∥ϕ(k)
R

∥∥∥
2

L∞(Γ̂c)
, (A.13)

since
(
l
k

)
≤ 2l and

∫ 1

−1
w−1dx = π. Due to the continuous embedding ofH1(Γ̂c) into C0((−1, 1)),

we deduce for all k ≤ l that
∥∥∥ϕ(k)

R

∥∥∥
L∞(Γ̂c)

.
∥∥∥ϕ(k)

R

∥∥∥
H1(Γ̂c)

. ‖ϕR‖Hk+1(Γ̂c)
,

for a constant independent of k. Since k + 1 ≤ m < s− 3
2 , we deduce that

∥∥∥ϕ(k)
R

∥∥∥
L∞(Γ̂c)

. ‖ϕR‖
Hs− 3

2 (Γ̂c)
.

This last estimate reveals that
∫ π

0

∣∣∣(ϕ̌R(θ) sin θ)(l)
∣∣∣
2

dθ . πl22l ‖ϕR‖2
Hs− 3

2 (Γ̂c)
. (A.14)

For l = m, we distinguish between k < m and k = m to obtain

∣∣∣(ϕ̌R(θ) sin θ)(m)
∣∣∣
2

≤ m
m−1∑

k=0

(
m

k

)2 ∣∣∣ϕ̌(k)
R (θ)

∣∣∣
2

+m sin2 θ
∣∣∣ϕ̌(m)
R (θ)

∣∣∣
2

. (A.15)
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Introducing the above in the integral (A.10) gives

∫ π

0

∣∣∣(ϕ̌R(θ) sin θ)(m)
∣∣∣
2

dθ . πm22m ‖ϕR‖2
Hs− 3

2 (Γ̂c)
+ m

∫ π

0

∣∣∣ϕ̌(m)
R (θ)

∣∣∣
2

sin2 θdθ

. πm22m ‖ϕR‖2
Hs− 3

2 (Γ̂c)
+ m

∫ 1

−1

∣∣∣ϕ(m)
R

∣∣∣
2

wdx .

This shows that
∫ π

0

∣∣∣(ϕ̌R(θ) sin θ)(m)
∣∣∣
2

dθ . (πm22m +m) ‖ϕR‖2
Hs− 3

2 (Γ̂c)
, (A.16)

because m < s− 3
2 . Lastly, the two estimates (A.14) and (A.16) imply that

‖ϕ∗
R‖

2
Wm . (πm22m +m)m ‖ϕR‖2

H̃s− 3
2 (Γ̂c)

,

which leads to the requested estimate. �

Lemma A.6. Let ψ be defined by (5.25). Then, ψ∗ = ρ1/2ψ belongs to Wm and there exists a

positive constant c(m) depending only on m such that

‖ψ∗‖Wm ≤ c(m)
∑

±

m∑

i=0

∣∣c′i±
∣∣ .

Proof. Since ψ∗ =
∑

±(1 − η±)p±, we easily show that it belongs to Wm by using Leibniz

rule and Faa di Bruno’s formula. The conclusion follows from the definition of p±. �
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