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Concept This paper is a living review on automatic program repair1. Compared to
a traditional survey, a living review evolves over time. I use a concise bullet-list style
meant to be easily accessible by the greatest number of readers, in particular students and
practitioners. Within a section, all papers are ordered in a reverse chronological order, so
as to easily get the research timeline. The references are sorted chronologically and years
are explicitly stated inline to easily grasp the most recent references.

Inclusion criteria The inclusion criteria are that the considered papers 1) must be
about automatic repair with some kind of patch generation (runtime repair without patch
generation is excluded2); 2) must be a full-length research paper (typically >10 double-
column pages); 3) are stored on an durable site (notable publisher, arXiv, Zenodo). There is
no restriction about whether the paper has been formally peer-reviewed or not. I will stop
the living review once we reach the 500th reference.

Originality Compared to formal surveys [134, 127], this living review contains very
recent references and continues to evolve. It uses a bullet-list concise style that is not
typical academic writing.

Notification To get notified with new versions, click here.
Feedback Do not hesitate to report a mistake, a confusing statement or a missing paper,

monperrus@kth.se.

Citation This living review can be cited as : “The Living Review on Automated Program
Repair”, Martin Monperrus, Technical Report HAL # hal-01956501, 2018.
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1https://en.wikipedia.org/wiki/Living_review
2the scope of my previous survey [134] was larger, it also discussed runtime repair
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1 Program Repair of Dynamic Errors
1.1 Using Tests

• ReFixar: Multi-version Reasoning for Automated Repair of Regression
Errors (2021, 🝧) Le et al. [349] design 12 repair templates tailored to fixing regressions,

evaluated on 51 regression bugs.

• A Novel Approach For Search-Based Program Repair (2021, 🕸) Trujillo et al.

[371] create a variant of GenProg integrating Lehman and Stanley's `novelty search'

to promote exploration and diversity of patches.

• VarFix: Balancing Edit Expressiveness and Search Effectiveness in Auto-
mated Program Repair (2021, 🕸) Wong et al. [372] combine GenProg single edits

into a metaprogram to identify those combinations that pass all tests.

• FlexiRepair: Transparent Program Repair with Generic Patches (2020, 🝤),
Koyuncu et al. [306] present a repair pipeline built on top of the Coccinelle engine for

semantic patches.

• Astor: Exploring the Design Space of Generate-and-Validate Program Re-
pair beyond GenProg (2019, ⍾) Martinez et al. [256] identify 12 dimensions in the

design space of generate-and-validate program repair and implement them as exten-

sion points in the Astor framework.

• Impact Analysis of Syntactic and Semantic Similarities on Patch Priori-
tization in Automated Program Repair (2019, 🞱) Asad et al. [220] propose an

alternative patch ranking technique for CapGen.

• SOSRepair: Expressive Semantic Search for Real-World Program Repair
(2019, 🞱) Afzal et al. [219] proposes a better encoding than [86] to repair C programs

with SMT-based snippet search.

• LoopFix: An Approach to Automatic Repair of Buggy Loops (2019,Ω) Wang

et al. [272] describe a system that changes either the loop condition or an assignment

in the loop body, using symbolic execution and component-based synthesis.

• Automatic patch generation with context-based change application (2019,Ω)

Kim and Kim [239] present ConFix, that first searches for past patches with surround-

ing code similar to the suspicious code locations (based on a hash of the AST) and when

a context matches, the past change is ported to the suspicious location.

• Harnessing evolution for multi-hunk program repair (2019,Ω) Saha et al. [264]
mine repair locations that evolve together in order to search for patches consisting on

the same systematic edit done at different locations.

• TBar: Revisiting Template-based Automated Program Repair (2019,¤) Liu

et al. [246] consolidate 35 fix patterns in 15 categories and measure their effectiveness

over Defects4J.

• Ultra-Large Repair Search Space with Automatically Mined Templates: the
Cardumen Mode of Astor (2018) [189] shows that parametrized repair ingredients

yields an explosion of the repair search space and finds 8935 Patches for Defects4J.

• Mining Stackoverflow for Program Repair (2018) Liu and Zhong [184] clusters

AST diffs from code pairs in Stackoverflow to extract 12 repair patterns.

• Towards practical program repair with on-demand candidate generation
(2018) [175] does repair with metaprograming as [126] in order to explore the search

space of variable and literal replacement.
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• CFAAR: Control Flow Alteration to Assist Repair (2018) [204] uses specific

patterns to determine angelic values à la Nopol [149] (eg switch only the first execution

of the condition).

• Context-Aware Patch Generation for Better Automated Program Repair
(2018) [212] considers an ingredient-based, generate-and-validate repair loop à la Gen-

prog, and selects the ingredients that have the most similar context according to three

similarity metrics (context of the suspicious statement similar to context of the ingre-

dient). (code)

• Practical Program Repair via Bytecode Mutation (2018) [167] revisits Schulte's

work [27] for Java bytecode and Defects4J.

• Program Repair via Direct State Manipulation (2018) [173] proposes a variation

of the repair problem: find a patch such that some variables at a specific location have

certain values.

• Connecting Program Synthesis and Reachability: Automatic Program Re-
pair Using Test-Input Generation (2017) [136] creates ameta-programparametrized

with parameters, encoding the search space: the symbolic solution to satisfy all test

constraints is the patch. The tool is called CETI.

• Contract-based Program Repair Without the Contracts (2017) Chen et al.

[122] uses 5 repair templates, called schemas, with a focus on modifying the state by

adding an assignment. (code, journal version: [290])

• Precise Condition Synthesis for Program Repair (2017) Xiong et al. [148] inte-
grate different heuristics (Github) and code analysis techniques (dependency analysis

between variables) to create good conditions à la Nopol. (code)

• Leveraging syntax-related code for automated program repair (2017) Xin and
Reiss [147] use Tf-Idf similariy to select ingredients in a GenProg-like loop, together

with variable renaming to adapt repair ingredients. The authors have proposed an

improvement of ssFix called sharpFix [274, 273].

• ARJA: Automated Repair of Java Programs via Multi-Objective Genetic
Programming (2017) [155] combines 3 different techniques (patch representation,

multi-objective search, method scope) to improve aGenProg-based repair loop. ARJA-

e [280, 324] is an improvement overArja integrating templates and repair anti-patterns.

• ELIXIR: Effective Object Oriented Program Repair (2017) [137] proposes 8

repair patterns à la PAR [51] to be used together with simple enumeration-based syn-

thesis.

• ASTOR: A Program Repair Library for Java (2016) [116] presents the Java

framework in which jGenProg [133], jKali [133], DeepRepair [146], Cardumen [189]

are implemented.

• Automated Program Repair by Using Similar Codfe Containing Fix Ingre-
dients (2016) [108] modifies RSRepair [73] in order to select the most similar repair

ingredients first.

• DynaMoth: Dynamic Code Synthesis for Automatic Program Repair (2016)
[103] uses dynamic synthesis based on the debug interface of the JVM for repairing

conditions.

• Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analy-
sis (2016) [117] optimizes symbolic execution in order to obtain more than one angelic

value, being called together called“angelic forest”, in order to synthesize multipoint

patches.
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• Qlose: Program Repair with Quantitative Objectives (2016) [102] tries to min-

imize the semantic impact of the repair, by minimizing the number of inputs for which

there is a behavioral change using the Sketch synthesis system.

• Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs
(2016) [149] addresses two classes of bugs: buggy if conditions and missing precondi-

tions. Initial paper: ``Automatic Repair of Buggy If Conditions and Missing Precondi-

tions with SMT'' [63].

• Automatic Repair of Infinite Loops (2015) [88] describes a patch generation sys-

tem for infinite loops.

• Relifix: Automated Repair of Software Regressions (2015) [99] defines 8 repair
templates that are specific to regression bugs.

• Repairing Programs with Semantic Code Search (2015) [86] repairs programs

with snippets that can be semantically indexed and queried in SMT.

• Staged Program Repair with Condition Synthesis (2015) [91] combines condi-

tion repair à la Nopol and repair templates à la PAR.

• DirectFix: Looking for Simple Program Repairs (2015) [93] demonstrates that,

under strong assumptions, we can state the repair problem as aMaximumSatisfiability

(MaxSAT), where the smallest patch is the one that satisfies the most constraints.

• Minthint: Automated Synthesis of Repair Hints (2014) [66] hints to change the
RHS of a single assignment statement based on data collected with concolic execution.

• Diagnosis and Emergency Patch Generation for Integer Overflow Exploits
(2014) [77] does automatic repair of integer overflow with three repair operators: tak-

ing an error branch before the overflow happens, taking an error branch after the over-

flow has happened, and forced program stop.

• Automatic Patch Generation Learned From Human-Written Patches (2013)
[51] defines 10 repair templates for fixing bugs such as (add null pointer check, etc).

• SemFix: Program Repair via Semantic Analysis (2013) [58] combines symbolic

execution and component-based synthesis to fix boolean and integer expressions in C

programs.

• Evolving Patches for Software Repair (2011) [31] describes pyEdb, a mutation

based repair approach with two mutation operators (relational operator change and

name switch) in Python.

• On the Automation of Fixing Software Bugs (2008) [11] defines 7mutation oper-

ators based on abstract syntax tree modification in a prototype implementation called

Jaff, that handles a subset of Java. Journal version is ``Evolutionary Repair of Faulty

Software'' [32]. Another version is ``A Novel Co-evolutionary Approach to Automatic

Software Bug Fixing'' [12].

• Automatically Finding Patches Using Genetic Programming (2009) [21] is

the seminal paper of the field, introducing GenProg, with its sister papers A Genetic
Programming Approach to Automated Software Repair [18], GenProg: a
Generic Method for Automatic Software Repair [42], Automatic Program
Repair with Evolutionary Computation [30].

• BugFix: a Learning-based Tool to Assist Developers in Fixing Bugs (2009)
[19] suggests a bug fix action using association rules based on features on the suspicious

statement.
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1.2 Using Crashes
• Exception-Driven Fault Localization for Automated Program Repair (2022,

🝧) Ginelli et al. [385] describe a template based repair technique where templates are

associated to specific Java exceptions.

• Beyond Tests: Program Vulnerability Repair via Crash Constraint Ex-
traction Gao (2021, 🕸) Gao et al. [341] use sanitizers to obtain clean crashes and

fix conditional expressions (if, loops) to avoid the crash. The prototype tool is called

ExtractFix, and is available as Docker image on gaoxiang9430/extractfix.

• Crash-avoiding program repair (2019,¤) Gao et al. [230] repair crashes in C code

with three operators (assigments, if-condition, precondition) using implicit oracles and

fuzzing to discard incorrect patches.

• Repairing crashes in Android apps (2018) [202] defines 8 repair operators tailored
for Android crashes.

• Production-Driven Patch Generation (2016) [125] proposes to use shadow appli-

cations and shadow traffic to make regression testing in production.

• Fixing Recurring Crash Bugs via Analyzing Q&A Sites (2016) [82] repairs

exception bugs based on potential solutions found on Stackoverflow.

• Automatic Repair of Infinite Loops (2015) [88] repairs infinite loops with the same

repair concept as Nopol.

• CLOTHO: Saving Programs from Malformed Strings and Incorrect String
Handling (2016) [80] is a system that generates simple catch blocks to handle certain

runtime exceptions related to string manipulation in Java.

• Automatic Error Elimination by Horizontal Code Transfer Across Multi-
ple Applications (2015) [114] transfers check-exit pairs between two applications to
avoid crashes due to out of bounds access, integer overflow, and divide by zero errors.

For null dereferences (null pointer exceptions):

• NPEX: Repairing Java Null Pointer Exceptions without Tests (2022, 🝧) Lee
et al. [389] devise a bespoke symbolic execution technique to avoid incorrect patches

when repairing null pointer exceptions in Java without tests. The system is evaluated

on 119 NPEs and available on Github.

• VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Deref-
erences (2019): VFix [276] ranks patches for null pointers based on congested places:

those places in the data-flow graph that maximize the likelihood of fixing many NPEs

at once.

• Automatic Inference of Code Transforms for Patch Generation (2017): Long

et al. [131] infers repair schemas from past commits for Java's NullPointerException

and OutOfBoundsException.

• Dynamic Patch Generation for Null Pointer Exceptions Using Metapro-
gramming (2017) [126] introduces the idea of exploring the repair search space with

a meta-program and realizes it for crashing null pointer exceptions.

1.3 Using a Reference Implementation / Feedback Generation
In this section, many papers are in the context of automated feedback generation for stu-
dents, where a reference solution to a programming exercise exists.
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• FAPR: Fast and Accurate Program Repair for Introductory Programming
Courses (2021, 🕸) Lu et al.'s technique [352] consists of generating ameaningful high

level feedback based on a low-level token edit script.

• Re-factoring based Program Repair applied to Programming Assignments
(2019, 🞱) [235] is a feedback generation technique based on the idea of generating

equivalent refactored programs so as to find a correct program which has the same

control flow structure as the buggy student Python program under consideration.

• Dynamic Neural Program Embedding for Program Repair (2018): Wang et

al. [144] compute an embedding on program traces in order to predict the kind of bug

in student's programs from a MOOC.

• Automated Clustering and Program Repair for Introductory Programming
Assignments (2016): Gulwani et al.'s technique [106] modifies, inserts, and deletes

statements in student's programs while preserving the control-flow.

• Semantic program repair using a reference implementation (2018): Mechtaev

et al. [191] use a reference implementation and a parameterized test to generate a

patch that changes an expression with primitive values.

• Neuro-symbolic program corrector for introductory programming assign-
ments (2018): Bhatia et al. [161] combinetoken sequence learning and Sketch to repair

MOOC student submissions in Python. Extension of [101].

• Automatic Diagnosis and Correction of Logical Errors for Functional Pro-
gramming Assignments (2018): Lee et al. [181] present a system for automati-

cally generating feedback on logical errors in functional programming assignments in

OCaml.

• Automated Feedback Generation for Introductory Programming Assign-
ments (2013): Singh et al. [60] generate feedback for student programs based on a

reference implementation, using Sketch as an intermediate languages to search for

patches.

• Automated Error Localization and Correction for Imperative Programs
(2011): Könighofer and Bleam's algorithm [36] fixes the the right-hand side (RHS) of

assignments by using the reference implementation as specification and driving the

synthesis with a meta-program and SMT solving. "Repair with On-the-fly Program

Analysis" is an extension of this work.

1.4 Using Contracts
The contracts can be invariants or runtime assertions, they can be manually written or
mined.

• Input Test Suites for Program Repair: A Novel Construction Method
Based on Metamorphic Relations (2020, 🝤) Jiang et al. [303] define metamor-

phic relations for the Siemens benchmark and execute Angelix, CETI, and GenProg to

fix the Siemens faults accordingly.

• Program Repair at Arbitrary Fault Depth (2019,¤) Khaireddine et al. [238] mod-

ifies the patch validation step of Astor/jGenProg [257] to use an absolute correctness

formula and a strict relative correctness relation.

• A Metamorphic Testing Approach for Supporting Program Repair with-
out the Need for a Test Oracle (2016) Jiang et al. [109] have proposed to use

metamorphic relations as repair oracle.
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• Generating Fixes From Object Behavior Anomalies (2009) [16] Dallmeier et

al. infer an object usage model from executions, and then generates a fix with two

repair operators (addition and removal of method calls) so that failing runs match the

inferred correct behavior.

• Automated Fixing of Programs with Contracts (2010, journal version in 2014

[78]) [29], uses four repair templates that consist of a snippet and an empty condi-

tional expression to be synthesized, and relies on Eiffel contacts (pre-conditions, post-

conditions, invariants) to detect and provide the fix ingredients. ``Code-Based Auto-

mated Program Fixing'' [39] is an extension of this work where patches don't have to

only use argumentless boolean methods in the patch.

• Constraint-Based Program Debugging Using Data Structure Repair (2011)
[38] translates runtime data structure repair à la Demsky as source code fix suggestion.

• Specification-based Program Repair Using SAT (2011) [33] uses Alloy to repairs

assignments and conditionals bugs.

1.5 Data-driven repair approaches
1.5.1 Data-driven Patch Generation

• Defect Identification, Categorization, and Repair: Better Together (2022,
🝧) Ni et al. [390] train the a single system 1) to classify lines among one of 16 defect

patterns and 2) to generate the fix with a decoder, experimenting on ManySStuBs4J.

• GLAD: Neural Predicate Synthesis to Repair Omission Faults (2022, 🝧) Kang
and Yoo [387] train a GRU-based system to generate if conditions at certain locations

in order to early-return, guard existing code or add clauses to existing conditions.

• Fix Bugs with Transformer through a Neural-Symbolic Edit Grammar (2022,
🝧) Hu et al.'s experiments on CodeXBlue [386] indicate that predicting the edit se-

quence according to an edit grammar is more effective than predicting the whole fixed

code, confirming [335].

• M3V: Multi-modal Multi-view Context Embedding for Repair Operator
Prediction (2022, 🝧) Xu et al. [396] devise a graph-based neural approach to pre-

dict one repair operator among 4 standard ones for NullPointerException and 3 for

OutOfBoundsException.

• Can We Automatically Fix Bugs by Learning Edit Operations (2022, 🝧) Con-
nor et al. [383] present a series of negative experimental results on using edit operations

as output to neural program repair.

• GrasP: Graph-to-Sequence Learning for Automated Program Repair (2021,
🝧) Tang et al. [368] design a graph based representation for generating Java patches

with a graph-to-sequence neural architecture from IBM (IBM/Graph2Seq).

• A Controlled Experiment of Different Code Representations for Learning-
Based Bug Repair (2021, 🕸) Namavar et al. [354] compare the ability of 10 token-

based representations and 4 AST based representations for repairing swapped argu-

ments, wrong binary operator, and wrong binary operands, showing a relative advan-

tage for token-based pre-order pretty-print of original code (AST4).

• A Syntax-Guided Edit Decoder for Neural Program Repair (2021, 🕸) Zhu

et al. [380] propose a decoder architecture for neural program repair that 1) generates

edits (and not full sequences) 2) generates placeholders for handling rare identifiers

(instead of subtokenization or copy [224]).
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• Grammar-Based Patches Generation for Automated Program Repair (2021,
🕸) Tang et al. [369] proposes a neural architecture combining a token encoder and

a grammar encoder, and experiment with the code changes of Tufano's BFP dataset

[205].

• CURE: Code-Aware Neural Machine Translation for Automatic Program
Repair (2021, 🕸) Jiang et al. [344] propose a subword tokenization technique and

a specific beam search to improve the compilation rate of patches from NMT-based

repair.

• A Software-Repair Robot Based on Continual Learning (2021, 🕸) Baudry et

al [329] uses continual learning on top of the stream of continuous integration builds,

refining the patch generation ML model when new builds arrive.

• Synthesize, Execute and Debug: Learning to Repair for Neural Program
(2020, 🝤) Gupta et al. [299] embed execution traces in order for a so-called neural

debugger to predict an edit sequence to repair Karel programs.

• DLFix: Context-based Code Transformation Learning for Automated Pro-
gram Repair (2020, 🝤) Li et al. [307] use tree-based recurrent neural networks to

generate patches.

• CoCoNuT: Combining Context-Aware Neural Translation Models using
Ensemble for Program Repair (2020, ⍾) Lutellier et al. [252, 310] propose a num-

ber of design changes to SequenceR [224] (fully convolutional layers, multi-attention,

multi-model prediction).

• Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Pro-
grams (2020, ⁜) Dinella et ak. [293] predict the changes to be made to the AST of

Javascript bug-fix commits with a graph-based neural network.

• A Study of Pyramid Structure for Code Correction (2020, ⁜) Huang et al. .[302]

propose a better encoder for seq2seq and apply it to two benchmarks of programs with

static warnings: Juliet and Java SARD.

• Learning the Relation between Code Features and Code Transforms with
Structured Prediction (2019, ⍾) Yu et al. [279] predict the code transformations

that must be applied to fix a bug using structured prediction with conditional random

fields.

• SequenceR: Sequence-to-Sequence Learning for End-to-End Program Re-
pair (2018) Chen et al. [224] deploy sequence-to-sequence learning over 35578 diffs

from the CodRep dataset [162] and show that the system, called Sequencer, is able to

perfectly predict the fixed line for 950/4711 testing cases and 14 bugs in Defects4J.

• Learning to Repair Software Vulnerabilities with Generative Adversarial
Networks (2018, 🞱) [170] generates noisy data by removing source code tokens, this

data being used to train a sequence to sequence model.

• Learning to Generate Corrective Patches using Neural Machine Translation
(2019) [172] trains a neural sequence-to-sequence model over 35,137 single statement

diffs from 5 open-source Java projects and applies it to 233 testing tasks.

• Search, Align, and Repair: Data-Driven Feedback Generation for Introduc-
tory Programming Exercises (2018): Wang et al. [210] use advancedASTmatching

and differencing to provide a small diff to MOOC students based on a pool of correct

solutions.

• Semantic Code Repair using Neuro-Symbolic Transformation Networks
(2017) Delvin et al. [124] synthesize errors in Python programs according to 4mutation

operators and show that an LSTM-based architecture can fix the synthetic errors.
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• History Driven Program Repair (2016) [110]uses the commit history to select the

most likely patch from classical mutation-based repair (incl. Genprog and Par): the

mutations that appear the most frequently in the history are ranked first.

• Prophet: Automatic Patch Generation via Learning From Successful Patches
(2016) [114] selects the SPR generated patch that resembles the most to past human

patches.

• sk_p: a neural program corrector for MOOCs (2016) Pu et al. [119] use a

recurrent neural network to predict corrections in small student programs written in

Pyton.

1.5.2 Inference of Fix Patterns / Templates

• Expanding Fix Patterns to Enable Automatic Program Repair (2021, 🝧)

Nowack et al. [360] cluster Defects4J patches to group them by fix pattern.

• Type error feedback via analytic program repair (2020, ⍾) Sakkas et al. [315] in-
fer fix templates in OCaml for repairing type system errors in programs from students

in an introductory programming course.

• DevReplay: Automatic Repair with Editable Fix Pattern (2020, ⍾) Ueda et

aL; [317] abstracts over commits by extracting matching and replacement regular ex-

pressions, in order to be able to apply the same code change again later.

• FixMiner: Mining Relevant Fix Patterns for Automated Program Repair
(2020, ⍾) Koyuncu et al. [305] define a novel data structure for representing and clus-

tering edit scripts, finding 14 full patterns automatically in a dataset of 11,416 patches.

• Phoenix: Automated Data-driven Synthesis of Repairs for Static Analysis
Violations (2019,Ω) Bavishi et al. [221] represent warning-fixing changes in a DSL

representing the AST edit script, then cluster those changes into patterns.

• Getafix: Learning to Fix Bugs Automatically (2019) [265] infers repair templates

for null pointer bugs detected with the static analysis tool Infer.

• Shaping Program Repair Space with Existing Patches and Similar Code
(2018) [176] selects the most similar repair ingredients that are also instances of bug fix

patterns mined over past commits.

2 Program Repair of Static Errors
2.1 Static Warnings

• TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer
(2021, 🕸) Berabi et al. [331] train and evaluate a T5 transformer to repair ESLint

errors in Javascript.

• Sorald: Automatic Patch Suggestions for SonarQube Static Analysis Vi-
olations (2021, 🕸) Etemadi et al. [339] present a system to repair SonarJava static

analysis warnings based on AST level metaprogramming with Spoon [96].

• Automatic Integer Error Repair by Proper-Type Inference (2021, 🕸) Cheng

et al. [225] write a static analysis for C integer errors based on type inference, and use

four fix patterns to repair the violations.

• Automated Code Repair to Ensure Spatial Memory Safety (2021, 🕸) Klieber

et al. [347] add checks to repair warning by the verification tool Symbiotic, using an ad

hoc intermediate representation that can be transformed from and back to the AST.
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• C-3PR: A Bot for Fixing Static Analysis Violations via Pull Requests (2020,
⁜) C-3PR [288] integrates ESLint, TSLint and Sonar-WalkMod into a bot that makes

pull-requests on Github for style issues and static analysis warnings.

• SAVER: Scalable, Precise, and Safe Memory-Error Repair (2020, ⁜) Hong et
al. [301] propose a novel technique to patch statically foundmemory leak, double-free,

and use-after-free errors in C programs based on so-called object flow graphs.

• Automated Repair of Resource Leaks in Android Applications (2020, ⁜) Bhatt
et al. [285] repair Android-specific static analysis warnings with a fix template.

• IntRepair: Informed Repairing of Integer Overflows (2019, ⍾) Muntean et

al. [263] use 4 repair patterns to statically repair integer overflows found with static

analysis.

• Automatically Generating Fix Suggestions in Response to Static Code
Analysis Warnings (2019,Ω) Marcilio et al. [254] fix 11 Sonarqube warnings with

fixing rules implemented in the Rascal metaprogramming system.

• Avatar: Fixing Semantic Bugs with Fix Patterns of Static Analysis Vi-
olations (2019) Liu et al. [245] fixe 7 FindBugs warnings with carefully selected fix

patterns.

• Neural Program Repair by Jointly Learning to Localize and Repair (2019)
Vasic et al.'s [208] does joint detection and repair of variable-misuse bugs instead of

Allamanis et al's technique of detection followed by enumeration.

• Static Automated Program Repair for Heap Properties (2018) [203] repairs

static warnings for potential null dereferences found by the static analysis tool Infer.

• MemFix: static analysis-based repair of memory deallocation errors for C
(2018) [180] quantitatively improves over [83] and is able to handle real open-source

programs.

• Automatically Diagnosing and Repairing Error Handling Bugs in C (2017)

Tian et al. [141] repair three static warnings related to error handling with the cor-

responding template ("Incorrect/Missing Error Propagation", "Incorrect/Missing Error

Checks", "Incorrect/Missing Resource Release")

• IntPTI: Automatic Integer Error Repair With Proper-Type Inference (2017)
[123] statically detect integer overflows, applies 3 transformations (sanity check, ex-

plicit type casting and declared type change) before proposing the change to the de-

veloper.

• Sound and complete mutation-based program repair (2016,¤) [120] Rothenberg
and Grumberg apply standard mutation operators not to the program under repair

but to a constraint-based, SSA representation of C programs in order to fix statically

detected errors. repo

• Enhancing automated program repair with deductive verification (2016, ⁜)

Le at al. [112] repair static warnings found with HIP/SLEEK with Genprog-like muta-

tions.

• Safe Memory-leak Fixing for C Programs (2015) [83] proposes an approach that
consists of statically detecting and fixing memory leaks by inserting a deallocation

statement.

• Automated Generation of Buffer Overflows Quick Fixes Using Symbolic
Execution and SMT (2015) [94] uses parametrized templates to fix buffer overflow,

where the actual parameter is found with symbolic execution and SMT.
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• Sound Input Filter Generation for Integer Overflow Errors (2014) [68] uses a
static analysis specific to integer arithmetic that detects integer overflows, and repair

them by inferring a filter that simply deny the input.

• Automatic Repair of Overflowing Expressions with Abstract Interpretation
(2013) [56] statically detects arithmetic overflow and suggest fixes as re-ordering of the

arithmetic operations

• Modular and Verified Automatic Program Repair (2012) [44] proposes a repair
approach for a set of fault class identified statically (e.g. off-by-one errors),with a

specific repair operators per fault class (for example adding a precondition).

• Fix-it: An Extensible Code Auto-Fix Component in Review Bot [48] (2013)
is an approach to automatically fix static warnings with AST transformation based on

XQuery (US Patent by the same author US9146712B2).

• Combining dynamic slicing and mutation operators for ESL correction
(2012,¤) Repinski et al. [46] revisit the work of [23] with different mutation operators.

• A Formal Approach to Fixing Bugs (2011) [35] fixes Findbugs-like bugs with

Coccinelle-like templates using a transformation language called Tran. Similar work

by the same authors ``Towards the Automated Correction of Bugs''.

• Automatic Error Correction of Java Programs (2010) [25] generates a meta-

program that integrates all possible mutations according to a mutation operator, and

the successful mutations are identified using symbolic execution.

• Using Mutation to Automatically Suggest Fixes for Faulty Programs (2010)
Debroy and Wong [23] propose to use standard mutations from the mutation test-

ing literature to fix programs: replacement of an arithmetic, relational, logical, in-

crement/decrement, or assignment operator by another operator from the same class;

decision negation in an if or while statement.

• Proof-directed Debugging and Repair (2006) [5] uses an Isabel proof-based oracle
on on ML programs: when the proof fails, the counter-example of the proof drives

a repair approach based on repair templates (replacing one method call by another,

adding code).

• Patches As Better Bug Reports (2006)Weimer [8] uses a safety policy of the form

of a typestate property to detect and repair the control-flow graph of a method with a

patch.

2.2 Bug reports
• iFixR: bug report driven program repair (2019,Ω) Koyuncu et al. [241] show that

bug reports can be used for fault localization using information retrieval techniques
and combine this with template based repair.

• R2Fix: Automatically Generating Bug Fixes From Bug Reports (2013) [55]
takes as oracle a manually written bug report, which is used to extract the actual value
of a template parameter.

2.3 Compiler Errors - Syntax Errors
• Break-It-Fix-It: Unsupervised Learning for Program Repair (2021, 🕸) Ya-

sunaga and Liang [375] present a self-supervised training loop based on exercising and

improving a `breaker' and a `fixer' simultaneously, inspired by backtranslation, in or-

der to fix syntax errors in Python and C.
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• Self-Supervised Bug Detection and Repair (2021,🕸)Allamanis et al. [327] devise

a self-supervised loop to detect and repair four kinds of bugs ("Variable Misuse", "Ar-

gument Swapping", "Wrong operator", "Wrong literal"), with experiments in Python.

• SYNFIX: Automatically Fixing Syntax Errors using Compiler Diagnostics
(2021,🕸) Ahmed et al.'s system [326], Synfix, uses a Roberta-basedmodel to fix syntax

errors in Java.

• GGF: A Graph-based Method for Programming Language Syntax Error
Correction (2020, ⍾)Wu et al. [319] uses the AST information in a neural architecture

to improve the state-of-the-art on the DeepFix dataset.

• Graph-based Self-Supervised Program Repair from Diagnostic Feedback
(2020, ⍾) Yasunaga and Liang [322] generate training data for compiler error repair,

with a self-supervised procedure based on corrupting programs, claim to improve the

state-the-art on the Deepfix dataset.

• Automatic Repair and Type Binding of Undeclared Variables using Neural
Networks (2019,Ω) Mohan et al. [260] train a system based on LSTM to repair 1059

student C programs with undeclared variable errors.

• DeepDelta Learning to Repair Compilation Errors (2019,Ω) Mesbah et al. [258]

fix Java compilation errors by training a NMTmodel to predict the AST diff expressed

in a textual manner.

• SampleFix: Learning to Correct Programs by Sampling Diverse Fixes
(2019,Ω) Hajipour et al. [233] repair syntax errors with a conditional variational au-

toencoder with a technique to sample diverse solutions.

• Deep Reinforcement Learning for Syntactic Error Repair in Student Pro-
grams (2018) [169] uses reinforcement learning to improve the performance of Deep-

Fix [128] on the same dataset.

• Reducing Cascading Parsing Errors Through Fast Error Recovery (2018,¤)

[164] Diekmann and Tratt finds repair sequences for syntax errors, withminimum cost

and acceptable time, by extending [1].

• Syntax and sensibility: Using language models to detect and correct syn-
tax errors (2018): Santos' approach [196] repairs syntax errors (one character edits)

with n-gram and LSTM, with an evaluation on 1,715,312 before-and-after pairs of the

BlackBox dataset.

• Compilation error repair: for the student programs, from the student pro-
grams (2018): Ahmed et al. [156] improve over DeepFix [128] on a dataset containing

a total of 16985 (source, target) line pairs.

• DeepFix: Fixing Common C Language Errors by Deep Learning (2017):

Gupta et al. [128] use a language model for repairing syntactic compilation errors

• Automated correction for syntax errors in programming assignments using
recurrent neural networks (2016): Bhatia [101] set up recurrent neural networks to
fix Python syntax errors in 14000 student submissions from a MOOC.

3 Empirical Studies for Program Repair
• A Comparative Study of Automatic Program Repair Techniques for Se-

curity Vulnerabilities (2022, 🝧) Pinconschi et al. [361] compare 10 program repair

tools for C on the DARPA Cyber Grand Challenge benchmark of 250 vulnerabilities in

C/C++ showing that AE and GenProg clearly yield more patches.
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• Estimating the Potential of Program Repair Search Spaces with Commit
Analysis (2022, 🝧) Etemadi et al. [384] estimate the applicability of program repair

by measuring the proportion of real-world commits that lie in known repair search

spaces.

• Where were the repair ingredients for Defects4j bugs? (2021, 🕸) Yang et al.

[374] study the origin of repair ingredients for redundancy-based repair and suggest

that some repair ingredients may be found in test case code.

• Evaluating Automatic Program Repair Capabilities to Repair API Misuses
(2020, 🕸) Kechagia et al. [345] compare 14 Java test-suite-based repair tools on 101

API misusage bugs. The repair tools generate patches for 28% of API misuses, 25%

of the generated patches are semantically correct, TBAR has the highest number of

plausible and correct patches.

• A Comprehensive Study of Code-removal Patches in Automated Program
Repair (2020, 🕸) Ginelli et al. [298] studies code-removal patches by Astor/jKali and

finds that their presence clearly indicates test weaknesses.

• On the Impact of Flaky Tests in Automated Program Repair (2021, 🕸) Qin

et al. [363] identify environment-dependent tests in Defects4J and show that their

presence impact repair results.

• Understanding the Non-Repairability Factors of Automated Program Re-
pair Techniques (2020, 🝤) Lin et al. [308] study the experimental logs shared in open

science replication packages from program repair research, and find that the research

prototypes suffer from important limitations.

• Longitudinal Analysis of the Applicability of Program Repair on Past Com-
mits (2020, 🝤) Etemadi et al. [296] use AST analysis to identify past commits that

could potentially have been generated by program repair tools, because the corre-

sponding code changes lie in the search space of known repair approaches.

• Patching as Translation: the Data and the Metaphor (2020, 🝤) Ding et al.

[294] discuss to what extent the usage of neural machine translation is appropriate for

program repair.

• Quality of Automated Program Repair on Real-World Defects (2020, 🝤)Mot-

wani et al. [311] implement the algorithms of GenProg, Par and TrpAutoRepair for

Java in a tool called JarFly, and study its effectiveness on Defects4J.

• Empirical Analysis of 1-edit Degree Patches in Syntax-Based Automatic
Program Repair (2020, ⍾) Dziurzanski et al. [295] exhaustively explore the search

space on 1-edit patches (i.e. one-liners) of Arja for Defects4J, and show that much

fewer tests can be executed for one-liners.

• How Effective is Automated Program Repair for Industrial Software (2020,

⁜) Noda et al. [313] discusses the repair results (8 patches) of proprietary repair tool

Elixir on 20 single-statements bugs from Fujitsu products.

• On the Efficiency of Test Suite based Program Repair (2020, ⁜) Liu et al. [309]
show that incorrect fault-localization significantly increases the chances of producing

overfitting patches.

• A manual inspection of Defects4J bugs and its implications for automatic
program repair (2019, 🞱) Jiang et al. [237] classify 50 Defects4J bugs with respect to

the fault localization and repair stragegy used.

• Repairnator patches programs automatically (2019,Ω) Monperrus et al. [262]

report that program repair can be human-competitive: 5 generated patches have been

synthesized faster than the human developer, and accepted and merged in the code

base.
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• The effectiveness of context-based change application on automatic pro-
gram repair (2019,Ω) Kim et al. [240] show that it is valuable to select ingredients

with similar AST context in generate-and-validate program repair. Idea related to

[212].

• How Different Is It Between Machine-Generated and Developer-Provided
Patches (2019,¤) [271] Wang et al. asked 27 undergraduate students whether APR

patches for Defects4J are correct, are located at the same position and consist of the

same modification kind (132/177 patches are at the same location, with the same mod-

ification).

• Empirical Review of Java Program Repair Tools: A Large-Scale Experi-
ment on 2,141 Bugs and 23,551 Repair Attempts (2019,¤) Durieux et al. [229]

run the same set of repair tools over different benchmarks and show that research is

likely overfitting to Defects4J.

• Human-competitive Patches in Automatic Program Repair with Repair-
nator (2018) [193] shows that the state of the art techniques in 2018 can produce a

valuable patch faster than human developers.

• Attention Please: Consider Mockito when Evaluating Newly Released Au-
tomated Program Repair Techniques (2018) [211] discusses the characteristics of
the Mockito bugs in Defects4J and the performance of SimFix, CapGen and Nopol on

repairing them.

• The Remarkable Role of Similarity in Redundancy-based Program Repair
(2018) [163] describes an original experiment showing that the use of similarity can

reduce the search space of program repair by 99.35%, under certain assumptions.

• LSRepair: Live Search of Fix Ingredients for Automated Program Repair
(2018) [183] compares three kinds of similarity (similar method signature, method em-

bedding similarity using CNN, semantic similarity based on code-search) in the context

of generate-and-validate program repair.

• A Novel Fitness Function for Automated Program Repair Based on Source
Code Checkpoints (2018) [199] uses instrumentation in order to have a fitness func-

tion that has less plateaus than with only test case outcomes.

• A Comprehensive Study of Automatic Program Repair on the QuixBugs
Benchmark (2018) [215] is the first report on doing automatic repair on the Quixbugs

benchmark, using the Astor and Nopol tools [130].

• Comparing Line and AST Granularity Level for Program Repair using
PyGGI (2018) [158] claims that AST analysis in a GenProg-like approach is overall

faster than line-based analysis.

• Comparing Developer-Provided to User-Provided Tests for Fault Localiza-
tion and Automated Program Repair (2018) [177] studies whether the results of
fault localization change if one removes the failing test case provided in the commit

(experiments on Defects4J).

• The Impacts of Techniques, Programs and Tests on Automated Program
Repair: An Empirical Study (2017) Kong et al. [129] compare GenProg, RSRepair,

AE and Kali on the Siemens benchmark.

• Better test cases for better automated program repair (2017) Yang et al. [151]
use fuzz testing to generate new test cases, and employ implicit oracles (absence of

crash and memory-safety) to enhance validity checking of automatically-generated

patches in C.
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• An empirical analysis of the influence of fault space on search-based au-
tomated program repair (2017) [145] shows that GenProg finds more patches (incl.

correct ones) if one assumes better fault localization.

• A correlation study between automated program repair and test-suite met-
rics (2017) [153] sets up a protocol based on held-out tests to show that the better the

coverage, the better the repair.

• Do automated program repair techniques repair hard and important bugs?
(2017) [135] suggests that the considered state-of-the-art repair techniques only repair

simple bugs according to collected bug metadata.

• An Empirical Investigation into Learning Bug-Fixing Patches in the Wild
via Neural Machine Translation (2018) Tufano et al. [205] usemachine translation

on Java methods that are smaller than 50 tokens with abstracted token sequences (the

corresponding journal paper is [206]).

• Towards reusing hints from past fixes - An exploratory study on thousands
of real samples (2018) [218] confirms the results of [70] regarding redundancy-based

repair based on the novel usage delta dependency graphs.

• Mining Repair Model for Exception-Related Bug (2018) [217] studies the most

common repair actions per exception type.

• Common Statement Kind Changes to Inform Automatic Program Repair
(2018) Soto et al. [198] replicates the study of [92] on the MSR Challenge dataset.

• A feasibility study of using automated program repair for introductory pro-
gramming assignments (2017) [152] studies the application ofGenProg, AE,Angelix,
and Prophet to 661 programs written by the students taking an introductory program-

ming course.

• Empirical Study on Synthesis Engines for Semantics-Based Program Repair
(2016) [111] compares 5 synthesis engines implemented on top of Angelix showing that

they do not have the same performance, and that Angelix’s Partial MaxSMT-based

synthesis engine is the best on the considered benchmark, IntroClass.

• Sorting and Transforming Program Repair Ingredients via Deep Learning
Code Similarities (2016) [146] uses deep learning to match donor methods that are

similar to the buggy method under repair.

• Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the
Defects4J Dataset (2016) [133] is the first experiment ever on evaluating automatic

repair on the Defects4J dataset (with Nopol, jGenProg and jKali) showing the great

problem of overfitting.

• Improved Crossover Operators for Genetic Programming for Program Re-
pair (2016) [118] proposes new crossover operators for Genprog, that decouple fix lo-

cation, repair type, and repair ingredient. The corresponding journal paper is [194].

• An Analysis of Patch Plausibility and Correctness for Generate-And-Validate
Patch Generation Systems (2015) [97] shows that most Genprog patches simply re-

move code and consequently that the overfitting problem is huge.

• The Strength of Random Search on Automated Program Repair (2014) [73]
shows that there the search in Genprog is actually not guided by the fitness function,

it's random search.

• Do the Fix Ingredients Already Exist? An Empirical Inquiry into the Re-
dundancy Assumptions of Program Repair Approaches (2014) [70] shows that
a significant proportion of commits in open-source projects (3%-22%) are composed of

existing code.
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• Mining Software Repair Models for Reasoning on the Search Space of Auto-
mated Program Fixing (2013) [92] computes the prevalence of each repair actiona

dn explores the imbalance between possible repair actions at the AST level, showing

its significant impact on the search.

• A Systematic Study of Automated Program Repair: Fixing 55 Out of 105
Bugs for $8 Each (2012) [41] has famously claimed that 52% of bugs (55/105) of bugs

can be fixed by Genprog, a ratio being undermined by the benchmark selection biases

and by overfitting.

• Automated Program Repair Through the Evolution of Assembly Code
(2010) [27] shows the feasibilty of Genprog-like repair on binary x86 code and Java

bytecode.

• Designing Better Fitness Functions for Automated Program Repair (2010)
[24] explores the design space of fitness functions of Genprog.

3.1 Human Study on APR
• Let’s Talk With Developers, Not About Developers: A Review of Auto-

matic Program Repair Research (2022, 🝧) Winter et al. [395] analyze published

APR papers wrt to human factors and advocate for more APR research involving de-

velopers.

• Trust Enhancement Issues in Program Repair (2022, 🝧) Noller et al. [391] collect
qualitative feedback about APR from 103 developers, suggesting that developers are

willing to provide additional inputs in order to increase trust in automatically gener-

ated patches.

• Program Repair: Automated vs. Manual (2022, 🝧) Zhang et al. [399] ask 20

graduate students to repair 8 Defects4J bugs and discuss the results, suggesting that

incorrect patches may be misleading for humans.

• How to trust auto-generated code patches? A developer survey and em-
pirical assessment of existing program repair tools (2021, 🕸) Noller et al. [359]

ask 35 questions to 100 developers about APR and suggest that trust in APR patches

would increase by presenting additional artifacts (in particular generated test cases).

• Would You Fix This Code for Me? Effects of Repair Source and Comment-
ing on Trust in Code Repair (2020, ⍾) Alarcon et al. [281] asked 51 programmers

about their opinion on 5 GenProg patches on ManyBugs where the controlled variable

is the identity of the patch author (Bill vs GenProg): the subbjects trust human-being

Bill more than bot GenProg.

• Trust in Automated Software Repair (2019,Ω) Tyler et al. [269] ask 24 students

and 24 professionals to assess 5 GenProg patches and show novice programmers are

more accepting generating.

• Characterizing Developer Use of Automatically Generated Patches (2019,Ω)
Cambronero et al. [222] performs a user study consisting of giving 5 patches on 2

bugs to 12 developers, incl. one being correct to see how developers leverage generated

patches.

• Automatically Generated Patches As Debugging Aids: a Human Study
(2014) [76] asks to 95 participants to fix bugs with either fault localization or machine-

generated patches from PAR.

• A Human Study of Patch Maintainability (2012) [40] conducted a study of

Genprog patches based on 150 participants and 32 real-world defects, showing that

machine-generated patches are slightly less maintainable than human-written ones.
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4 Domain-Specific Repair
4.1 Test Repair

• GUI-Guided Test Script Repair for Mobile Apps (2020, 🝤) Pan et al. [314]

repair Android GUI test scripts by changing test UI locators or UI events, based on

image and OCR analysis of GUI screenshots.

• iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky
Tests (2019,Ω) Shi et al. [266] analyze and repair the test bugs related to test execution
ordering.

• Intent-Preserving Test Repair (2019,¤) Li et al. [244] repair Java tests that do

not compile after evolution by ranking the candidate solutions according to an intent

similarity score computed from path conditions.

• Visual web test repair (2018) [200] repairs broken Selenium tests by changing the

incorrect locator, the locator being inferred by comparing visual renderings (ie images).

• Waterfall: An incremental approach for repairing record-replay tests of
web applications (2016) [107] repairs DOM locators in Selenium tests.

• Repairing Selenium Test Cases: an Industrial Case Study about Web Page
Element Localization (2013) [54] do test repair in the context of Selenium tests,

which are tests for web applications with HTML output.

• ReAssert: Suggesting Repairs for Broken Unit Tests (2009) [17] addresses

the dual problem of test-suite based repair: changing the tests instead of fixing the

application.

• Automatically Repairing Event Sequence-based GUI Test Suites for Re-
gression Testing (2008) [13] does test repair on GUI test models. ``SITAR: GUI Test

Script Repair'' [84] extends this work by considering manually scripted test cases.

4.2 Automated Repair of Concurrency errors
• Automatic Detection, Validation and Repair of Race Conditions in Interrupt-

Driven Embedded Software (2022, 🝧) Yu et al. [323] suggest strategies `Add locks'
(AL) or `Interrupt disable and enable (IDE)' after a combination of static analysis and

symbolic execution in oder to repair race condition problems related to hardware in-

terrupts.

• HIPPODROME: Data Race Repair using Static Analysis Summaries (2021,
🕸) Hippodrome [337] repairs data races identified by RacerD, Facebook's static con-

currency analyser for Java, by changing mutexes of Java synchronized blocks.

• HangFix: automatically fixing software hang bugs for production cloud
systems (2020, 🝤) He et al. [300] propose four automatic patching strategies that are

specific to software hang bugs in cloud systems such as Hadoop.

• DFix: automatically fixing timing bugs in distributed systems (2019,¤) Li et al.
[243] fix atomicity violations, order violations, and fault-timing bugs with rollbacking

side-effect operations.

• Understanding and Generating High Quality Patches for Concurrency bugs
(2016) Liu et al. [113] have proposed a tool called HFix whose repair operator is to add

thread-join instructions.

• Automatic Repair for Multi-threaded Programs with Deadlock/Livelock
Using Maximum Satisfiability (2014) Lin et al. [67] insert locks by encoding the

problem as a satisfiability one.
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• Axis: Automatically Fixing Atomicity Violations Through Solving Con-
trol Constraints (2012) [43] addresses the problem of violation fixing as a constraint

solving problem using the Petri net model.

• Automated Atomicity-violation Fixing (2011) [34] is about AFix, whose repair

model consists of putting instructions into critical regions.

4.3 Automated Repair of Build Scripts
• Shipwright: A Human-in-the-Loop System for Dockerfile Repair (2021, 🕸)

Henkel et al.[343] designs 13 rules for making automated repairs to Dockerfiles which

cannot successfully build, in a data-driven manner.

• Styler: Learning Formatting Conventions to Repair Checkstyle Errors (2019)
Madeiral et al. [249] propose to automatically repair Checkstyle formatting errors that

break the build.

• History-driven build failure fixing: how far are we? (2019,Ω) You et al. [251]

show that a simple approach works better than HireBuild [171] on a new dataset of

102 reproducible Gradle build failures.

• HireBuild: an automatic approach to history-driven repair of build scripts
(2018) [171] mines and apply build-fix patterns in Gradle, and apply them based on log

similarity.

4.4 Repair for the Web
• Usability and Aesthetics: Better Together for Automated Repair of Web

Pages (2021, 🝧) Le-Cong et al. [336] design a meta-heuristic algorithm that evolves

buggy web pages to optimize both usability and aesthetics.

• Automated Repair of Cross-Site Scripting Vulnerabilities through Unit
Testing (2020, ⁜) Mohammadi et al. [259] automatically add calls to sanitizers to fix

statically found XSS vulerabilities.

• Fully Automated HTML and Javascript Rewriting for Constructing a Self-
healing Web Proxy (2018) [166] uses a proxy to intercept browser errors and repair

them with HTML and Javascript rewriting strategies.

• Automated repair of mobile friendly problems in web pages (2018) [187] ex-
plores the search space of CSS modifications to fix mobile problems such as font sizing

and extraneous spacing.

• Automated Repair of Internationalization Presentation Failures in Web
Pages Using Style Similarity Clustering and Search-Based Techniques (2018)
[188] fixes web rendering by changing the value of CSS properties

• Vejovis: Suggesting fixes for JavaScript faults (2014) [72] suggests fixes for DOM
errors based on fix patterns

• Fix Me Up: Repairing Access-Control Bugs in Web Applications. (2013) [61]
repairs access-control policies in web applications, using a static analysis and transfor-

mations tailored to this domain.

• Automated Repair of HTML Generation Errors in PHP Applications Using
String Constraint Solving (2012) [47] fixes incorrect opening/closing HTML tags in

PHP application by encoding the problem as string constraints.
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4.5 Repair of Software Models
• Transforming abstract to concrete repairs with a generative approach of

repair values (2021, 🕸)Kretschmer et al. [348] repair inconsistencies in UMLmodels.

• ARepair: a repair framework for Alloy (2019,¤) Wang et al. [270] describe a

generate-and-validate repair technique for Alloy models, with a test-based specifica-

tion based on AUnit.

• Range Fixes: Interactive Error Resolution for Software Configuration [100]

(2015) focuses on automatically repairing configuration errors in software product lines

• Towards Automated Inconsistency Handling in Design Models (2010) Silva
et al. [28] use Prolog to propose a repair plan that fixes inconsistencies in UML models

• Supporting Automatic Model Inconsistency Fixing [22] (2009) detects and fixes

inconsistencies in MOF and UML models

• Repairing Unsatisfiable Concepts in OWL Ontologies [7] (2006) states an au-

tomatic repair problem in the context of OWL ontologies.

• Consistency Management with Repair Actions [2] (2003) detects inconsistencies
in XML documents and proposes repair actions accordingly.

4.6 Repair of Security Vulnerabilities
• Example-Based Vulnerability Detection and Repair in Java Code (2022, 🝧)

Zhang et al. [400] devise an approach where security experts first define a dataset of

pairs of insecure/secure Java code (28 pairs in the experiment), and then an algorithm

extracts the matching and fixing transformation.

• Automatically Mitigating Vulnerabilities in x86 Binary Programs via Par-
tially Recompilable Decompilation (2022, 🝧) Under the assumption that no source

code is avilable, Reiter et al. [393] prove the feasibility of decompiling small chunks

of code (using Hex-Rays), running GenProg on them, recompiling and reinjecting the

fixed code in the binary to be executed.

• Neural Transfer Learning for Repairing Security Vulnerabilities in C Code
(2021, 🕸) Chen et al. [335] train a transformer on bug-fixing commits and fine-tune it

on real CVE vulnearbilities, proving that transfer learning happens between bug fixing

and vulnerability fixing (the previous iteration was [223]).

• Using Safety Properties to Generate Vulnerability Patches (2019,¤) Huang et
al. [236] generate check-and-error patches for buffer overflows, bad casts and integer

overflows triggered by exploits and fuzzing inputs.

• VuRLE - Automatic Vulnerability Detection and Repair by Learning from
Examples (2017) Ma et al. [132] learns systematic edits from examples and apply

them to fix vulnerabilities in Android applications.

• Cdrep: Automatic repair of cryptographic misuses in android applications
(2016, ⁜) Ma et al. [115] define 7 binary transformations for Dalvik bytecode to repair

7 cryptographic API misuses in Android.

• AutoPaG: Towards Automated Software Patch Generation with Source
Code Root Cause Identification and Repair (2007) [9] generates a source code

patch from an input that triggers an array overflow in C code, with failure-oblivious

repair operators (adding a modulo in the read expression and truncating data to be

written).

• Countering Network Worms Through Automatic Patch Generation (2005 [4]

detect buffer overflow vulnerabilities at runtime in production, then produce a source

code patch that skip the execution of the overflowing statement.
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4.7 Repair of Smart Contracts
• Elysium: Automagically Healing Vulnerable Smart Contracts Using Context-

Aware Patching (2021, 🝧) Torres et al. [370] improve over Smartshield and SGuard

by means of better code analysis and more automation.

• SGuard: Towards Fixing Vulnerable Smart Contracts Automatically (2021,

🝧) Nguyen et al. [355] repair reentrancy and arithmetic bugs in smart contracts, at

the source code level, with guarantees based on an operational semantics of Ethereum

opcodes.

• EVMPatch: Timely and automated patching of ethereum smart contracts
(2021, 🝧) Rodler et al. [366] design an end-to-end technique to binary patch, back-

test and deploy via delegation Ethereum smart contracts. The evaluation focuses on

integer overflow attacks.

• Smartshield: Automatic smart contract protection made easy (2021, 🝧) Zhang

et al. [325] propose a smart contract binary transformation for 3 pattern based prob-

lems (state change after external calls, missing checks for out-of-bound arithmetic op-

erations, and missing checks for failing external calls).

• Smart Contract Repair (2019, 🞱) Yu et al. [278] repair smart contracts in Ethereum

to minimize gas consumption.

4.8 Misc Repair Types
• PGPATCH: Policy-Guided Logic Bug Patching for Robotic Vehicles (2022,

🝧) Kim et al. [388] devise an end-to-end repair approach for robotic vehicle control

programs (ArduPilot and PX4) based on 5 repair templates.

• Automatic Repair for Network Programs (2022, 🝧) Shi et al [394] perform repair

of programs in Floodlight, an open-source SDN controller based on Java annotations,

using a domain-specific symbolic fault localization algorithm and enumerative syn-

thesis.

• CirFix: Automatically Repairing Defects in Hardware Design Code (2022,

🝧) Ahmad et al. [381] present a framework for automatically repairing defects in Ver-

ilog, based on a novel dataflow-based fault localization approach tailored for hardware

description languages.

• Automated Repair of Size-Based Inaccessibility Issues in Mobile Applica-
tions (2021, 🝧) Alotaibi et al. [328] develop an approach that automatically increases

the size of Android UI elements, chosen based on a multi-objective minimization func-

tion.

• Automatic repair of timestamp comparisons (2021, 🕸) Liva et al. [248] stat-

ically identify time comparison problems in programs and rewrite time comparison

expressions in a safe normal form.

• CRNRepair: Automated Program Repair of Chemical Reaction Networks
(2021,🕸)Mesecan et al. [353] bridge theGI frameworkPyGGI and theMatlab environ-

ment SimBiology to do original experiments on automated repair of chemical reaction

networks.

• Repairing serializability bugs in distributed database programs via auto-
mated schema refactoring (2021, 🕸) Rahmani et al. [364] target the problem of

repairing transaction serializability bugs in databases.

• TFix+: Self-configuring Hybrid Timeout Bug Fixing for Cloud Systems
(2021, 🕸) He et al. [342] propose a technique to automatically repair timeout bugs in

distributed systems such as Hadoop.
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• Automatic Software Merging using Automated Program Repair (2019) [275]
fixes merge conflicts with a search-based approach based on kGenProg.

• Efficient Automated Repair of High Floating-Point Errors in Numerical
Libraries (2019,¤) Yi et al. [277] for numerical functions (eg from GNU Scientific Li-

brary), identify small parts of the input domain that have high floating point instabil-

ity, and replace the original implementation by a better approximation.

• Towards Specification-Directed Program Repair (2018) [197] does program re-

pair for the educational programming language Karel, by training a neural net to pre-

dict the edit (keep, delete, insert or replace token).

• Automated model repair for Alloy (2018) [209] does repair for the Alloy language

with 11 mutation operators,

• Caramel: Detecting and fixing performance problems that have non-intrusive
fixes (2015) Nistor et al. [95] presents a technique to suggest addition of `break' state-
ment guarded by a synthesized condition.

• Automated Repair of High Inaccuracies in Numerical Programs (2017) Yi et
al. [154] use mathematically equivalent floating-point expressions that reduce inaccu-

racies found with random testing.

• Data-guided Repair of Selection Statements (2014) [64] repairs database selec-
tion statements in a specific data-oriented language (Abap fro SAP).

• A Framework for the Automatic Correction of Constraint Programs (2011)
[37] repairs constraint programs the repair consisting of declaratively removing or

adding new constraints.

4.9 SQL Repair
• SQLRepair: Identifying and Repairing Mistakes in Student-Authored SQL

Queries (2021, 🕸) Presler et al.'s SQLRepair [362] combine heuristics and a SMT-

based repair approach to fix SQL queries (tool at https://github.com/kpresler/
sqlrepair).

• Using Automated Fix Generation to Secure SQL Statements (2007) Thomas

et al. [10] describe an automatic transformation in Java for going from plain java SQL

to prepared statements.

5 Optimization & Integration
5.1 Driving the Search

• Multiplicative Weights Algorithms for Parallel Automated Software Repair
(2021, 🕸) Renzullo et al. [365] propose to use online learning based on multiplicative

weights update to efficiently find those combinations of mutations which repair a bug.

• Concolic Program Repair (2021, 🕸) Shariffdeen et al.'s technique [367] consists of

alternating patch enumeration, input synthesis and concolic execution on the synthe-

sized input to generate a small amount of patches.

• How Does Regression Test Selection Affect Program Repair? An Extensive
Study on 2 Million Patches (2021, 🕸) Lou et al. [351] claim that regression test

selection is useful for program repair, based on experiments on Defects4J.

• Self-Boosted Automated Program Repair (2021, 🕸) Benton et al. [330] con-

stantly re-order the patch candidate list to be verified wrt the test suite in order to

speed up the discovery of plausible patches.
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• Leveraging Program Invariants to Promote Population Diversity in Search-
Based Automatic Program Repair (2019) [226] explores the usege of learned in-

variants to improve the fitness function of generate-and-validate program repair, ex-

perimenting with genprog4java.

• A new word embedding approach to evaluate potential fixes for automated
program repair (2018) [157] computes source code line embeddings from word2vec

embeddings in order to calculate distances between patches.

5.2 Addressing the patch overfitting problem
• Identifying Incorrect Patches in Program Repair Based on Meaning of

Source Code (2022, 🝧) Phung et al. [392] order APR patches by their distance to the

method intention, where the method intention is inferred from the patched method

name and the distance is computed in an embedding space based on Code2Vec.

• Exploring Plausible Patches Using Source Code Embeddings in JavaScript
(2021, 🕸) Csuvik et al. [338] present experiments suggesting that the Doc2Vec embed-

ding of code is not useful for discarding overfitting patches.

• Exploring True Test Overfitting in Dynamic Automated Program Repair
using Formal Methods (2021, 🕸) Nilizadeh et al. [357] assess overfitting in APR

patches using ground truth reference programs equipped with formal specifications in

OpenJML, with an experiment on 30 small programs. Follow-up paper is [358].

• Neural Program Repair with Execution-based Backpropagation (2021,🕸) Ye

et al. [377] design and optimize a loss function that embeds the results of test execution

in order to avoid overfitting.

• Adversarial Patch Generation for Automatic Program Repair (2020, 🕸) Al-

hefdhi et al. [283] present preliminary results on using a patch discriminator to en-

courage a data-driven system to generate patches that look like human patches.

• Automated Patch Correctness Assessment: How Far are We? (2020, ⍾)Wang

et al. [318] compare different overfitting detection techniques from the literature and

find that dynamic techniques do not perform better than static techniques.

• Evaluating representation learning of code changes for predicting patch
correctness in program repair (2020, ⍾) Tien et al. [316] show that a purely syn-

tactic approach based on BERT-based embeddings associated with logistic regression

does not improve overfitting detection.

• Exploring the Differences between Plausible and Correct Patches at Fine-
Grained Level (2020, ⍾) Yang et al. [321] present a preliminary experiment on using

Daikon invariants to detect overfitting patches.

• Utilizing Source Code Embeddings to Identify Correct Patches (2020, ⍾) Csu-
vik et al. [292] propose to order likely patches by their distance to the buggy program

in an embedding space, and compare three such spaces.

• Automated Classification of Overfitting Patches with Statically Extracted
Code Features (2019, 🞱) Ye et al. [378] define features on code and train a machine

learning model to detect overfitting patches.

• Validation of Automatically Generated Patches: An Appetizer (2019, 🞱)

Ghanbari [231] proposes to use Daikon invariants to generate property-based tests that

can rank generated patches by likelihood.

• Automated Patch Assessment for Program Repair at Scale (2019, 🞱) Ye et

al. [376] studies the usage of test generation based on a ground truth patch to better

evaluate program repair research.

24



• Alleviating Patch Overfitting with Automatic Test Generation: A Study of
Feasibility and Effectiveness for the Nopol Repair System (2018) [216] shows

that using tests that are generated against the buggy version of the program under

repair poses a serious oracle problem.

• Identifying Patch Correctness in Test-Based Program Repair (2018) Xiong et
al. [214] analyze test execution traces to filter out incorrect overfitting patches.

• Overfitting in semantics-based automated program repair (2018) [179] com-

pares Angelix and variants of it on the IntroClass and CodeFlaws benchmarks showing

that 50-75% of patches are overfitting.

• Is the Cure Worse Than the Disease? Overfitting in Automated Program
Repair (2015) [98] is the first paper to name the overfitting problem.

5.3 Improvement of the Fault Localization Step
• Revisiting Test Cases to Boost Generate-and-Validate Program Repair

Zhang et al. [379] study how stacktraces can be be used to improve fault localiza-
tion in APR.

• On the effectiveness of unified debugging: An extensive study on 16 pro-
gram repair systems (2020, 🕸) Benton et al. [284] study the performance of a

new fault localization technique called UniDebug++, on 16 repair tools. On Defects4J,

UniDebug++ can localize over 20% more bugs at the Top-1 position.

• Automatically Repairing Programs Using Both Tests and Bug Reports
(2020, 🝤), Motwani andBrun [312] improve on the fault localization component of Sim-

Fix with a new technique that combines spectrum-based and bug-report based fault

localization.

• Can Automated Program Repair Refine Fault Localization (2019, 🞱) Lou et

al. [250] proposes a variant of mutation-based fault localization based on the PraPR

program repair tool.

• Restore: Retrospective fault localization enhancing automated program
repair (2020, 🝤), Xu et al. [320] design a two-phase fault-localization process for repair
and apply it to Jaid and SimFix.

• You Cannot Fix What You Cannot Find! An Investigation of Fault Local-
ization Bias in Benchmarking Automated Program Repair Systems (2019)

[247] shows that one third of bugs in the Defects4J benchmark cannot be localized,

hence cannot be repair with approach based on spectrum-based fault localization.

• An Empirical Study on the Effect of Dynamic Slicing on Automated Pro-
gram Repair Efficiency (2018) [168] replaces Ochiai in Nopol [149] by a dynamic

slicing approach based on Javasclicer.

• An Empirical Study on the Usage of Fault Localization in Automated Pro-
gram Repair[150] (2017) compares two variations of spectrum based fault localiza-

tion in Nopol [149].

5.4 Interactive Program Repair
“Interactive Program Repair” means asking questions to the developer about the expected
output of some expressions, in order to drive the search towards correct oatches.

• Automatic Program Repair as Semantic Suggestions - An Empirical Study
(2021, 🕸) Campos et al. [333] implement and evaluate mutation-based repair for

Javascript inside Visual Studio.
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• Interactive Patch Filtering as Debugging Aid (2020, ⁜) Liang et al. develop

an IDE plugin to present APR patches to developers in a debugging session and shows

how it helps fixing the bug at hand, in an experiment over 30 students and 85 Defects4J

bugs.

• Human-In-The-Loop Automatic Program Repair (2020, ⁜) Böhme et al. [286]

propose to ask a fixed number of yes/no questions to the user/developer about the ex-

pected behavior of the program under repair in order to reduce the risk of incorrect

patches.

• Interactive Testing and Repairing of Regular Expressions (2018) [159] proposes
an interactive technique to repair regular expressions, the developer being asked for

validation.

• At the End of Synthesis: Narrowing Program Candidates (2017) Shriver et al.
[139] identify inputs on which the behavior of two candidate patches differ, and show

them to the developers to ask about the preferred behavior.

5.5 Repair Speed
• Program Repair with Repeated Learning (2022, 🝧) Chen et al. [382] propose

a repair loop for generate-and-validate repair where a prioritization model is learned

on the fly. The prioritization model is a learning-to-rank version of XGBoost, using

17 code features extracted from the patch, and which is updated depending on the

compilation and test outcome (tool).

• Speeding up constraint-based program repair using a search-based tech-
nique (2022, 🝧) Yi et al. [397] replace Angelix' symbolic execution by Monte Carlo

sampling over paths in order to find angelic paths.

• Speedup automatic program repair using dynamic software updating: an
empirical study (2019) Guo et al. [232] apply generated patches using hotswapping

/ class reload in the JVM and report the presence of a speed-up.

• Fast and Precise On-the-fly Patch Validation for All (2020, 🝤) Chen and Zhang
[289] propose to only load the tentatively patched binary Java classes through hot-

swaping technology, in order to speed up validation with the test suite.

• Test-equivalence Analysis for Automatic Patch Generation [192] (2018) re-

duces the number of test executions in the repair loop by clustering candidate patches

according to their test behaviors.

• Improving performance of automatic program repair using learned heuris-
tics (2017) [138] uses 24 code features to identify line/expression pairs that are likely

to work together, i.e. to select good candidate ingredients in redundancy based ap-

proaches.

• Leveraging program equivalence for adaptive program repair: Models and
first results [62] (2013) discards some repair candidates using program equivalent

checks typical from compilers.

• Efficient Automated Program Repair Through Fault-Recorded Testing Pri-
oritization [59] (2013) blends test suite prioritization and classical Genprog.

• More Efficient Automatic Repair of Large-scale Programs Using Weak Re-
compilation [45] (2012) creates an incremental compilation system that is dedicated

to program repair.
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5.6 Integration / UI / Tooling
• On the introduction of automatic program repair in Bloomberg (2021, 🕸)

Kirbas et al. [346] describe the integration of APR at Bloomberg, with a system based

on mining repair templates with anti-unification.

• E-APR: Mapping the Effectiveness of Automated Program Repair (2020,

⁜) Aleti and Martinez [282] present a meta-tool to predict the right repair tool to use

based on features of the buggy program.

• Visualizing Code Genealogy: How Code is Evolutionarily Fixed in Program
Repair (2019, 🞱) Tomida et al. [267] proposes a user-interface to visualize the search

happening in a generate-and-validate repair loop implemented in kGenProg.

• Towards s/engineer/bot: principles for program repair bots (2019,¤) van Ton-
der and Le Goues [268] discuss six principles for engineering repair bots related to syn-

tax, semantics and integration.

• SapFix: Automated End-to-End Repair at Scale (2019) [255] describes the

FaceBook implementation of automatic repair of null pointer exceptions found by the

fuzzing tool Sapienz.

• How to Design a Program Repair Bot? Insights from the Repairnator
Project (2018) [207] is the first ever blueprint architecture on using program repair in

continuous integration.

• Synergistic Debug-Repair of Heap Manipulations (2017, 🞱) Verma and Roy

[143] add advanced concepts in a proof-of-concept debugger on top ofGDB,which sup-

ports specifying desired states and patch generation via SMT-based repair constraints.

• Should fixing these failures be delegated to automated program repair?
(2015) Le et al. [89] perform automatic classification of successful and unsuccessful

cases in Genprog based on features from the Genprog search.

6 Position Papers
• Explainable Software Bot Contributions: Case Study of Automated Bug

Fixes (2019) Monperrus [261] claims that patches generated with automatic program
repair should come with a textual explanation.

• Beyond testing configurable systems: applying variational execution to au-
tomatic program repair and higher order mutation testing (2018) [213] sug-
gests using variational execution to find multi-location repair out of a meta-program
with all possible changes.

• Trusted software repair for system resiliency (2016) Weimer et al. [121]’s po-
sition paper is about detecting behavioral differences between patches using targeted
differential testing.

• When App Stores Listen to the Crowd to Fight Bugs in the Wild (2015)
[85] sets the vision of an App store that monitors and fixes bugs in production by
orchestrating the search over thousands of devices.

• A Critical Review of ”Automatic Patch Generation Learned from Human-
Written Patches”: Essay on the Problem Statement and the Evaluation of
Automatic Software Repair (2014) [71] states that program repair goes beyond
mimicking human patches, and that scientific evaluation in this research field must be
designed accordingly.
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• Two Flavors in Automated Software Repair: Rigid Repair and Plastic Re-
pair (2013) [57] is an early categorization of the field, later called as generate-and-
validate approaches versus semantic-based or synthesis-based approaches.

• Current Challenges in Automatic Software Repair (2013) [53] shows the vision
of C. Le Goues at the end of her seminal PhD thesis on GenProg.

7 Formal Approaches to Program Repair
• Automated Repair of Heap-Manipulating Programs using Deductive Syn-

thesis (2020, 🝤), Nguyen et al. [356] fix static warnings found with HIP/SLEEK (as

[112]) using constraint solving on top of the Songbird prover and deductive synthesis.

• Deductive Program Repair (2015) Kneuss et al. [87] do program repair for a "purely

functional subset of Scala", evaluated on seeded bugs on small programs.

• Cost-Aware Automatic Program Repair (2014) [74] repairs boolean programs

with assertions, by using the method of inductive assertions.

• Program Repair As Sound Optimization of Broken Programs (2009) [20] the-
oretically defines repair for an ad hoc formal language.

• Program Repair Suggestions From Graphical State-Transition Specifica-
tions (2008) [14] does theoretical repair using edit sequences on state machines.

• Repair of Boolean Programs with An Application to C (2006) [6] repairs a

specific class of programs called boolean programs: those that only contain boolean

variables.

• Program Repair As a Game (2005) [3] repair programs that are expressed in linear

temporal logics

8 Miscellaneous
8.1 Datasets & Benchmarks

• Is the Ground Truth Really Accurate? Dataset Purification for Automated
Program Repair (2021, 🕸) Yang et al. [373] use coverage and delta-debugging

to perform change minimization of benchmark bugs (minimized D4J patches are at

DehengYang/dataset_purification).

• Towards a Benchmark Set for Program Repair Based on Partial Fixes (2021,
🕸) Beyer et al. [332] curated 2204 benchmark tasks where the input is a partial fix

(data at https://gitlab.com/sosy-lab/software/partial-fix-benchmarks/).

• A critical review on the evaluation of automated program repair systems
(2020, 🝤) Liu et al. [350] discuss and consolidate 8 evaluation metrics for program

repair research, which cover different aspects of the problem space.

• Critical Review of BugSwarm for Fault Localization and Program Repair
(2019,¤) Durieux et al. [228] state desirable properties applying to benchmarks for

program repair and assess BugSwarm according to them, showing that a minority of

bugs are usable in this context.

• BugSwarm: Mining and Continuously Growing a Dataset of Reproducible
Failures and Fixes (2019) [227] uses Travis CI as [253] to collect 3,091 bugs and en-

caspulates them in a reproducible Docker image.
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• Bears: An Extensible Java Bug Benchmark for Automatic Program Repair
Studies (2018) Madeiral et al. [253] propose a new benchmark whose novelty is to be

based on continuous integration analysis (and not on past commits).

• DroidBugs: An Android Benchmark for Automated Program Repair (2018)
Azevedo et al. [160] gathers 13 bugs in Android apps. (code)

• Bugs.jar: a large-scale, diverse dataset of real-world Java bugs (2018) [195]
describes a dataset of 1,158 bugs and patches, over 8 open-source projects.

• Codeflaws: a programming competition benchmark for evaluating auto-
mated program repair tools (2017) Tan et al. [140] present a benchmark of 3902

defects in C, crawled from the Codeforces programming competition website.

• QuixBugs: a multi-lingual program repair benchmark set based on the
quixey challenge (2017) [130] is a benchmark of in simple programs bugs where each

bug is available in both Java and Python.

• The ManyBugs and IntroClass Benchmarks for Automated Repair of C
Programs (2015)ManyBugs [90] is the classical GenProg benchmark and has 185 bugs

in 9 C open-source programs. IntroClass is composed of small (10-20 LOC) student

programs, it has been translated to Java (IntroClassJava [104]).

• Defects4J: A Database of Existing Faults to Enable Controlled Testing
Studies for Java Programs (2014) Just et al. [65] presents the Defects4J benchmark,

extensively used in program repair research since the initial experiment by Durieux et

al. [81, 133].

8.2 Automatic Hardening
• Automatically Fixing C Buffer Overflows Using Program Transformations

(2014) [75] uses three program transformations dedicated to integer operations, and
shows that the approach scales to real programs.

• Program Transformations to Fix C Integers (2013) [49] proposes three program
transformations to fix common overflow problems with integer arithmetics in C code.

• A Source-to-source Transformation Tool for Error Fixing. (2013) [50] au-
tomatically adds a condition checks after all method calls with a source-to-source
transformation in C code.

8.3 Surveys
• Neural Program Repair: Systems, Challenges and Solutions (2022, 🝧) Zhong

et al. [401] surveys the works on using neural networks to generate patches (51 refer-

ences).

• A Survey on Automatic Bug Fixing (2020, 🝤), Cao et al. [287] summarize the

recent advances made since the previous surveys (113 references).

• Automated Program Repair (2019) Le Goues et al. [242] give a high-level view of

the field in Communications of the ACM (40 references).

• A Survey of Test Based Automatic Program Repair (2018) Liu et al. [185]

present 81 references, with the last ones from 2017.

• Automatic software repair: a Survey (2017) Gazzola et al.'s survey [127] at IEEE

TSE with 176 references.

• Automatic software repair: a Bibliography Monperrus [134] (first online, 2015,

journal version 2017) is the first ever survey of the field, with 197 references.
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