Towards Scalable, Efficient and Privacy Preserving Machine Learning
Rania Talbi, Sara Bouchenak

To cite this version:
Rania Talbi, Sara Bouchenak. Towards Scalable, Efficient and Privacy Preserving Machine Learning, Middleware '18 Doctoral Symposium, Dec 2018, Rennes, France. hal-01956155
Towards Scalable, Efficient and Privacy Preserving Machine Learning
Rania Talbi, Sara Bouchenak
INSA Lyon, France
 firstname.lastname@insa-lyon.fr

Context and Motivation

- Context:
 - Company A: Central Supervision Authority
 - Company B: Local bank
 - Data Mining for fraud detection

- Motivation:
 - Minimize the computational costs incurred by privacy preservation.
 - Provide an end-to-end privacy preserving outsourced data classification service.
 - Enable a set of mutually untrusted data owners to have a global vision on the union of their data without breaching the privacy of each one of them.
 - Enable dynamic data model updates when new training data samples are available.

Objective

- Preliminary results:
 - Data Mining for fraud detection in a B2B network.
 - This dataset contains 1000 bank transactions with 9 attributes each.
 - We compare our work to the Cipheredm framework [8].

Related work

- Different ML algorithms
 - Classification [1]
 - Association Rule Mining [2]

- Different Privacy-preservation objectives
 - ML output protection [3]
 - Original data protection [3]

- Privacy Preservation techniques
 - Cryptographic techniques (SMC/HE, GC, OT)

- Different architectures
 - Distributed [4]
 - Outsourced [5]

Design principles

- Cryptographic based protection (data model, training data, classification queries and responses)
- Partial homomorphic encryption (PHE) based building blocks
- Combine PHE with cryptographic binding (DTPKC cryptosystem [6])
- We implemented the VDFT incremental decision tree learning algorithm [7]

- (1) Blind inputs
- (2) Partially or all decrypt blinded values
- (3) Decrypt blinded values
- (4) Run operation over blinded values

Naive approach: a combination of low level PP-building blocks
1st optimization: use inline building blocks
2nd optimization: Parallel computing

References