Towards Scalable, Efficient and Privacy Preserving Machine Learning
Rania Talbi, Sara Bouchenak

To cite this version:
Rania Talbi, Sara Bouchenak. Towards Scalable, Efficient and Privacy Preserving Machine Learning, Middleware ’18 Doctoral Symposium, Dec 2018, Rennes, France. <hal-01956155>
Towards Scalable, Efficient and Privacy Preserving Machine Learning
Rania Talbi, Sara Bouchenak
INSA Lyon, France
{firstname.lastname}@insa-lyon.fr

2018 ACM/IFIP International Middleware Conference, Doctoral Symposium,
December 10-14th 2018 – Rennes, France

Context and Motivation

- Minimize the computational costs incurred by privacy preservation.
- Provide an end-to-end privacy preserving outsourced data classification service.
- Enable a set of mutually untrusted data owners to have a global vision on the union of their data without breaching the privacy of each one of them.
- Enable dynamic data model updates when new training data samples are available.

Related work

- Different ML algorithms
 - Clustering [1]
 - Classification [2]
 - Association Rule Mining [3]
- Different Privacy-preservation objectives
 - ML output protection
 - Original data protection
- Privacy Preservation techniques
 - Cryptographic techniques (SMC/HIE, GC, OT)

Design principles

- Decent privacy and utility levels
- Efficient runtime
- Entirely outsourced ML computations over encrypted data

Objectives

- Central Supervision Authority
 - Data Mining for fraud detection
- Company
 - Local bank transactions of the company
- Classification Service Provider
 - Classification of training data

Preliminary results

- We have used a synthetic dataset for fraud detection in a B2B network.
- This dataset contains 1000 bank transactions with 9 attributes each.
- We compare our work to the Ciphermed framework [8].

References

Naive approach: a combination of low level PP-Mining Framework
1st optimization: use privacy preserving classification service over encrypted data
2nd optimization: Parallel computing