C. P. Henry and . Berbee, Random walks with stationary increments and renewal theory, vol.112, pp.1-223, 1979.

G. Biau, Analysis of a random forests model, Journal of Machine Learning Research, vol.13, pp.1063-1095, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00704947

G. Biau and E. Scornet, A random forest guided tour, Test, vol.25, issue.2, pp.197-227, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01221748

L. Breiman, Random forests. Machine learning, vol.45, pp.5-32, 2001.

L. Breiman, Consistency for a simple model of random forests, 2004.

D. Cutler, C. Thomas, K. H. Edwards, A. Beard, . Cutler et al., Random forests for classification in ecology, Ecology, vol.88, issue.11, pp.2783-2792, 2007.

J. Dedecker, P. Doukhan, G. Lang, L. Rafael, S. Louhichi et al., Weak dependence, Weak Dependence: With Examples and Applications, pp.9-20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00686031

A. Fischer, L. Montuelle, M. Mougeot, and D. Picard, Real-time wind power forecast, 2016.

L. Györfi, M. Kohler, A. Krzyzak, and H. Walk, A distribution-free theory of nonparametric regression, 2006.

N. Michael-j-kane, M. Price, P. Scotch, and . Rabinowitz, Comparison of arima and random forest time series models for prediction of avian influenza h5n1 outbreaks, BMC bioinformatics, vol.15, issue.1, p.276, 2014.

C. Aurelie, . Lozano, R. Sanjeev, R. E. Kulkarni, and . Schapire, Convergence and consistency of regularized boosting with weakly dependent observations, IEEE Transactions on Information Theory, vol.60, issue.1, pp.651-660, 2014.

R. Meir, Nonparametric time series prediction through adaptive model selection, Machine learning, vol.39, issue.1, pp.5-34, 2000.

D. Niu, D. Pu, and S. Dai, Ultra-short-term wind-power forecasting based on the weighted random forest optimized by the niche immune lion algorithm, Energies, vol.11, issue.5, pp.1-21, 2018.

M. Anantha, . Prasad, A. Louis-r-iverson, and . Liaw, Newer classification and regression tree techniques: bagging and random forests for ecological prediction, Ecosystems, vol.9, issue.2, pp.181-199, 2006.

E. Rio, Inequalities and limit theorems for weakly dependent sequences, 2013.
URL : https://hal.archives-ouvertes.fr/cel-00867106

E. Scornet, G. Biau, and J. Vert, Consistency of random forests, The Annals of Statistics, vol.43, issue.4, pp.1716-1741, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00990008

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio et al., Real-time human pose recognition in parts from single depth images, Communications of the ACM, vol.56, issue.1, pp.116-124, 2013.

I. Steinwart, D. Hush, and C. Scovel, Learning from dependent observations, Journal of Multivariate Analysis, vol.100, issue.1, pp.175-194, 2009.

V. Svetnik, A. Liaw, C. Tong, C. Culberson, R. P. Sheridan et al., Random forest: a classification and regression tool for compound classification and qsar modeling, Journal of chemical information and computer sciences, vol.43, issue.6, pp.1947-1958, 2003.

B. Yu, Rates of convergence for empirical processes of stationary mixing sequences. The Annals of Probability, pp.94-116, 1994.