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RANDOM FORESTS FOR TIME-DEPENDENT PROCESSES

Benjamin Goehry1

Abstract. Random forests were introduced by Breiman in 2001. We are interested in the theoretical study of
both the random forest-random input and a simplified version of the random forest: the centred random forest. Let
((X1,Y1) , . . . , (Xn,Yn)) be random variables. Under the independent and identically distributed hypothesis, Biau
studied the simplified version and got rate of convergence in the sparse case. Biau, Scornet and Vert proved the con-
sistency of the original algorithm when the regression model follows an additive model and that X ∼ Unif (0, 1)p .

However we are commonly faced to applications where the i.i.d hypothesis is not satisfied for example when dealing
with time series. We extend the previous results to the case where observations are weakly dependent.

.

1. Introduction

Random forests were introduced in 2001 by Breiman in [4] and are since then extremely successful as a regression
and classification method. The popularity comes from the wide range of applications in which they are used and the
accuracy they offer in high-dimensional problems. They are also easy to implement, can be easily parallelizable and
require only few parameters tuning. We can cite as successful applications: chemo-informatics [19], ecology [6, 14], 3D
object recognition [17], time series prediction [8, 10, 13]. Often used as benchmark because of efficient and fast results,
random forests have become a must-have tool.

Basically a random forest is a collection of random trees which are constructed independently of each others. In order
to construct a random forest we then have only to explain how to grow one random tree. One tree is constructed recursively
based on some criterion.

There are different ways to introduce this randomness. In the variant of random forests which is the most commonly
used in practice: random forest-random input (RF-RI), the first step is to choose αn points among the n points we have,
with or without replacement. On these αn selected points we then construct a tree using the CART criterion: at each node
we look for the best split (the direction and the location on that direction) which minimises the variance but instead of
considering the criterion on all the directions, we restrict the minimisation at each node to a random subset of size mtry.

Suppose we have a stationary random sequence (Xt,Yt)t∈Z ∈ [0, 1]p × R such that

Yt = f (Xt) + εt

and E [εt |Xt] = 0. The purpose of random forests is to estimate the regression function

∀x ∈ [0, 1]p , f (x) = E [Yt |Xt = x] .

In the statistical context we only observe a training sampleDn = ((X1,Y1), . . . , (Xn,Yn) .
The RF-RI is highly difficult to analyse due to the high-dependency between data and construction. The only theoretical

result we are aware of is the establishment of consistency when the (Xi,Yi)1≤i≤n are i.i.d by [16] i.e.E
[
fn(X) − f (X)

]2
→ 0
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as n → +∞ where f̂n denotes the RF-RI estimator. Note that this result relies on heavy hypotheses: it is true for trees
where points are selected without replacement and the regression function is an additive model where X ∼ U(0, 1)p.

Later on, many variants have been considered which are easier to analyse from a theoretical point of view: the purely
random forests’s family. The RF-RI is based on the CART criterion which is heavily data-dependent. The purely random
forests are based on criteria which are independent of the data. The variant we will analyse later on is called centred forest
which was introduced by [5]. The first difference is that there is no re-sampling step. We then construct recursively a tree
as follows. At each node, a coordinate is chosen uniformly or according to some probability independent of the data and
the split is performed in the middle of the cell along the selected coordinate. Under the hypothesis that (Xi,Yi)1≤i≤n are
i.i.d [2] proved that this procedure adapts to sparsity by giving a rate of convergence which depends on the number of
strong features. This kind variant and others have been preferred for statistical analysis but we shall note that even though
simpler they offer new perspectives that seem really interesting in practice as well. We refer to [3] for a complete survey
on random forests.

The previous results that we cited for the centred random forest as well as the result of consistency for the RF-RI of [16]
are proven under the condition that the observations are independent and identically distributed. However in applications
it is very common to have dependent data instead of independent one such as time series.

Many algorithms were already studied in the case of weakly dependent observations. The general problem of one-step
ahead predicting of time series was considered by [12] when the time series satisfies β−mixing and stationary condition,
establishing consistency and rates of convergence for a certain class of functions which complexity and memory are
determined by the data and minimising the structural risk. The consistency of the SVM algorithm was studied by [18]
under α−mixing and not necessarily stationary processes. The consistency and the rate of convergence of boosting are
studied in [11] when the observations are β−mixing.

Our contribution is the extension of [2]’s result of rate of convergence as well as the the extension of [16]’s result on
the consistency of the RF-RI in the case where the observations are weakly dependent. We will first consider the centred
forest, easier to analyse and will ease the introduction of weakly dependent data. We denote f̂n the regression function
estimator. We will compute the convergence rates for this specific random forest model that is, at which rate, depending
on n, p and assumptions over the model, does the following holds:

E

[
f̂n(X) − f (X)

]2
−→

n→+∞
0.

This will also prove the consistency under mild hypotheses.
In the case of the RF-RI, the goal is also to prove consistency in the same form as in the simpler case but this time

without the computation of the rate of convergence.
The paper is organised as follows: we will first introduce the models studied. We follow with the notion of dependence.

We can then present the result we are interested in: the convergence rates and consistency under weak dependence. The
proofs are given at the end for ease of readability.

2. Models

We will first introduce the RF-RI and then the simpler model to see the main differences. Before going into the specific
algorithms, let us first state some notations and remarks.

A random forest (either RF-RI or simpler models) is a collection of M random trees. We denote for the j-th tree,
the predicted value at the point x, f̂n

(
x; Θ j;Dn

)
where (Θ1, . . . ,ΘM) are independent and identically distributed as Θ and

independent of Dn. The random variable Θ will be defined later on depending on the variant. The j−th tree is defined as
follows:

f̂n
(
x; Θ j;Dn

)
=

∑
i∈Dn(Θ j)

1Xi∈An(x;Θ j;Dn)Yi

Nn

(
x; Θ j;Dn

)
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where Dn

(
Θ j

)
is the data-set which can be dependent on the random variable Θ j for example if re-sampling or sub-

sampling is used to construct the tree j. The cell containing the point x is denoted An(x,Θ j,Dn) and Nn

(
x; Θ j;Dn

)
=

#
{
Xi ∈ An(x,Θ j,Dn)

}
.

In the regression case we aggregate the predictions by taking the average in the following way to get the random forest
estimator:

f̂M,n (x; Θ1, . . . ,ΘM;Dn) =
1
M

M∑
j=1

f̂n
(
x,Θ j,Dn

)
.

2.1. Random forest - random input

We begin by introducing the variant of random forests which is the most commonly used in practice: random forest-
random input (RF-RI). We denote:

• αn ∈ ~1, . . . , n� the number of sampled data points in each tree;
• mtry ∈ ~1, . . . , p� the pre-selected number of directions for splitting;
• τn ∈ ~1, . . . , αn� the number of leaves in each tree.

The random forest is then computed as detailed in algorithm 1.

input : ((X1,Y1), . . . , (Xn,Yn))
parameters: M, αn, mtry

for 1 to M do
Select αn ≤ n points (with or without replacement);
Construct a tree :

• At each node, select a random subset of mtry directions
• Select the best split using CART criterion

end
output : Classification: majority vote.

Regression: empirical mean of the M trees
Algorithm 1: Random forest - random input

The CART criterion is defined as follows. Let CA be the set of all possible cuts in the cell A. For any ( j, z) ∈ CA, the
CART-split criterion takes the form

Ln( j, z) =
1

Nn(A)

n∑
i=1,Xi∈A

(Yi − ȲA)2 −
1

Nn(A)

n∑
i=1,Xi∈A

(Yi − ȲAL − ȲAR )2,

with Xi =
(
X(1)

i , . . . , X(p)
i

)
, AL =

{
x ∈ A, x( j) < z

}
, AR =

{
x ∈ A, x( j) ≥ z

}
and ȲA (resp. ȲAL , ȲAR ) is the average of the Yi’s

belonging to A (resp. AL, AR).

2.2. Centred forest

We will now explicit the construction of centred forest introduced by [5] and more precisely, we will explicit the
construction of one random tree by the definition of a random forest.

We need to keep in mind that all nodes of the trees are associated with rectangular cells such that at each step of the
construction of the tree, the collection of the cells forms a partition of [0, 1]p. The root of the tree is then [0, 1]p itself.
The centred forest algorithm is detailed in algorithm 2.
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Data: ((X1,Y1), . . . , (Xn,Yn))
initialization : τn ≥ 2;
while i ≤

⌈
log2 τn

⌉
times with τn ≥ 2 do

At each node, a coordinate j ∈ ~1, . . . , d� is chosen with probability pn, j ∈ (0, 1) such that
∑d

j=1 pn, j = 1;
The split is done in the middle of the chosen side once the direction chosen.

end
Algorithm 2: Centred random forest

We note that τn ≥ 2 is a fixed deterministic parameter which may depend on n and that each tree has exactly 2dlog2 τne ≈

τn nodes.
Each random trees then output the average over all Yi for which the corresponding Xi fall into the same cell of the

random partition. Adapting the previous notations we can write the random tree as,

f̂tree,n(X,Θ j,Dn) =

n∑
i=1

1Xi∈An(X,Θ)Yi

Nn(X,Θ)
1En(X,Θ)

where En(X,Θ) the event defined by {Nn(X,Θ) , 0} . We will use the following notation in the case of centred random
forest,

Wn,i(X,Θ) =
1Xi∈An(X,Θ)∑n

k=1 1Xk∈An(X,Θ)
1En(X,Θ) ∀i ∈ ~1, . . . n�.

To ease the analysis we define the random forest regression estimate by taking the expectation over Θ:

f̂n(X,Dn) = EΘ

[
f̂tree,n(X,Θ,Dn)

]
and will omit the dependency onDn and denote f̂n(X) := f̂n(X,Dn).

3. Dependency

We recall the notion of weak dependence. We refer to [15] and [7] for more details about dependent processes. In this
paper we will only consider the notion of β−mixing. Let (Wt)t∈Z B (Xt,Yt)t∈Z.

Definition 3.1 (β-mixing process). Let σl = σ(W l
1) and σ′l+m = σ(W∞l+m) be the sigma-algebras of events generated by the

random variables W l
1 = (W1, . . .Wl) and W∞l+m = (Wl+m,Wl+m+1, . . .). The β-mixing coefficient is given by

βm = sup
l≥1

E

 sup
B∈σ′l+m

|P(B|σl) − P(B)|


where the expectation is taken with respect to σl.

A stochastic process is said to be absolutely regular, or β-mixed, if

lim
m→∞

βm = 0.

The most common β−mixing coefficient are known as the algebraic and exponential mixing defined as follows,

H(m)
{

Algebraic mixing: βm = O(m−r) for r > 0
Exponential mixing: βm = O(exp(−bmk)) for b, k > 0.

Notice that the exponential mixing hypothesis is stronger than algebraic mixing.
The β−mixing processes arise in many examples as Markov chains. They are also interesting in the theoretical setting

since we can almost work on them as if we were in an independent setting using the following lemma from [20] which
link the dependent process to an independent process up to a term linear in β.
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Remark: We explicit the construction of [20] but we note that [1] proved a similar coupling lemma in which they
worked with a random variable X in some Polish space.

We divide the sequence (Wi)1≤i≤n into 2µn blocks each of size an. We assume that n = 2µnan and so consider that there
is no remainder terms. We then define for 1 ≤ i ≤ µn,

H j = {i : 2( j − 1)an + 1 ≤ i ≤ (2 j − 1)an}

and

T j = {i : (2 j − 1)an + 1 ≤ i ≤ 2 jan} .

We denote

W ( j) =
{
Wi, i ∈ H j

}
and

W ′( j) =
{
Wi, i ∈ T j

}
.

We then denote the sequence of H-blocks Wan =
(
W ( j)

)
1≤ j≤µn

. We construct a sequence of independently distributed

blocks Ξan =
(
Ξ( j)

)
1≤ j≤µn

where Ξ( j) =
{
ξi, i ∈ H j

}
and such that ∀ j ∈ ~1, . . . , n�,

W ( j) (d)
= Ξ( j).

We construct in the same way a sequence of T -blocks. Figure 1 illustrates this construction.

W1 W2 W3 W4 . . . Wn−3 Wn−2 Wn−1 Wn

E1 E2 E3 E4 . . . En−3 En−2 En−1 En

Ξan

2µn

such that n = 2µnan.

Figure 1. Construction of the new independent sequence Ξ.

Lemma 3.2 ( [20]). Let the distributions of Wan and Ξan be Q and Q̃ respectively. Then for any measurable function u on
Ranµn with bound m,

|EQu(Wan ) −EQ̃u(Ξan )| ≤ mµnβan .

We first state the result on centred forest to ease the introduction of results with dependency.



6

4. Results on centred random forest

We first analyse the convergence rates of the random forest model in the β-mixing context and the consistency will
follow from it.

We analyse the centred random forest in a sparse framework; in most applications the true dimension is always smaller
than p. We will assume that the regression function only depends on a nonempty subset S of the p features. We use the
letter S to denote the cardinal of S. Based on this assumption we have,

f (X) = E [Y |XS]

where XS =
{
X(i), i ∈ S

}
. Let us introduce f ∗ : [0, 1]S → R that is the section of f corresponding to S. We then have

f (X) = f ∗ (XS) .

We also need the following hypotheses to state the results:
• H(d): Given a data setDn = ((X1,Y1) , . . . , (Xn,Yn)) with stationary β−mixing (Xi,Yi) ∈ [0, 1]p × R;
• H(e): the errors εi := Yi − f (Xi) are bounded such that ∀i ∈ ~1, . . . , n�, |εi| ≤ M.

4.1. Convergence rates

We first decompose E
[
f̂n(X) − f (X)

]2
with the variance/bias decomposition:

E

[
f̂n(X) − f (X)

]2
= E

[
f̂n(X) − f̃n(X)

]2︸                 ︷︷                 ︸
Variance

+E
[
f̃n(X) − f (X)

]2︸                 ︷︷                 ︸
Bias

where

f̃n(X) =

n∑
i=1

EΘ

[
Wn,i(X,Θ)

]
f (Xi).

The first result concerns the variance, the second the bias.

Proposition 4.1. Under the hypotheses of stationary β−mixing data H(d), bounded errors H(e), assuming that X is
uniformly distributed on [0, 1]p and for all x ∈ [0, 1]p ,

σ2(x) = V [Y |X = x] ≤ σ2

for some positive constant σ2. Then, if pn, j = 1
S

(
1 + νn, j

)
for j ∈ S,

E

[
f̂n(X) − f̃n(X)

]2
≤Cσ2

(
S 2

S − 1

)S/2p

(1 + νn)
τna2

n

n(log τn)S/2p

+
a3

n

2n
M2 + 2βanµn

(
σ2 +

(
1 +

τ2
na3

n

4n

)
M2

)
where

C =
288
π

(
π log 2

16

)S/2p

and

1 + νn =
∏
j∈S

[(
1 + νn, j

)−1
(
1 −

νn, j

S − 1

)−1
]1/2p

.
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As noticed in [2], if a < pn, j < b for some constants a, n ∈ (0, 1) we have

1 + νn ≤

(
S − 1

S 2a (1 − b)

) S
2p

.

Proposition 4.2. Under the hypotheses of stationary β−mixing data H(d), assuming that X is uniformly distributed on
[0, 1]p and f ∗ is L-Lipschitz on [0, 1]p . Then, if pn, j = 1

S

(
1 + νn, j

)
for j ∈ S,

E

[
f̃n(X) − f (X)

]2
≤

2S L2an

τ
0,75

S log 2 (1+γn)
n

+ exp
(
−
µn

2τn

)
sup

x∈[0,1]p
f 2(x)

+ βanµn

2S L2 + sup
x∈[0,1]p

f 2(x)


where γn = min j νn, j.

The bias in the weakly dependent case only depends on the true dimension and not p which confirms the intuition and
the result in the independent case as noticed by [2].

Using the inequality z exp (−nz) ≤ 1
en for z ∈ (0, 1] and combining both previous convergence rates we get the following

result.

Theorem 4.3. Under the hypotheses of stationary β−mixing data H(d), bounded errors H(e) and assuming that X is
uniformly distributed on [0, 1]p and f ∗ is L-Lipschitz on [0, 1]p . Moreover, for all x ∈ [0, 1]p ,

σ2(x) = V [Y |X = x] ≤ σ2

for some positive constant σ2. Then, if pn, j = 1
S

(
1 + νn, j

)
for j ∈ S,

E

[
f̂n(X) − f (X)

]2
≤

2S L2an

τ
0,75

S log 2 (1+γn)
n

+ C1,n
a2

nτn

n
+

a3
nM2

2n
+ C2µnβan

with

C1,n = 4e−1 sup
x∈[0,1]p

f 2(x) + Cσ2
(

S 2

S − 1

)S/2p

(1 + νn) ,

C2 = 2
(
S L2 + σ2 +

(
1 +

τ2
na3

n

4n

)
M2

)
+ sup

x∈[0,1]p
f 2(x).

The first remark we make is about the assumption H(e). If we suppose furthermore that the errors (εi)1≤i≤n are inde-
pendent then all the terms with M in the previous rates disappear. This extended hypothesis is generally not true when
(Xi,Yi)1≤i≤n are β−mixed but it is supposed in some theoretical models as AR. The hypothesis X ∼ U(0, 1)p is only a con-
venience and can be easily extended to the case where X admits a Lebesgue density which is lower and upper bounded.

Under the hypothesis of algebraic mixing and thus exponential mixing H(m), the term depending on β is converging
to 0 when n tends to infinity.

By the construction of the blocks, n = 2µnan where an is the number of variables in each block and 2µn the total number
of blocks. Let us suppose that we are in the independent case hence βm = 0,∀m ≥ 0. We take blocks of length an = 1 and
so µn = n

2 . Plugging these into Propositions 4.1 and 4.2, we get exactly the same upper bound for the variance as [2]. In
the case of the bias, we have a term with exp

(
− n

4τn

)
instead of exp

(
− n

2τn

)
which is due to the necessary pre-processing to

use Lemma 3.2.
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4.2. Consistency

This latter theorem also implies consistency for the centred random forest under mild hypothesis,

Theorem 4.4. Under the hypotheses of stationary β−mixing data H(d), bounded errors H(e), algebraic mixing H(m),
assuming that X is uniformly distributed on [0, 1]p and f ∗ is L-Lipschitz on [0, 1]p . Moreover, for all x ∈ [0, 1]p ,

σ2(x) = V [Y |X = x] ≤ σ2

for some positive constant σ2. Then, if pn, j = 1
S

(
1 + νn, j

)
for j ∈ S, for a well chosen τn, µn, an, the centred random forest

model is consistent i.e.

E

[
f̂n(X) − f (X)

]2
−→
n→∞

0.

5. Result for the RF-RI

We introduced the algorithm in the first section and then the notion of weak dependence. To establish consistency of
the RF-RI we need a tool we detail in appendix A.

We need additionally the following hypotheses to prove the consistency of the RF-RI.
H(a): the response Y follows

Y =

p∑
j=1

f j(X( j))︸       ︷︷       ︸
f (X)

+ε

where X =
(
X(1), . . . , X(p)

)
is uniformly distributed over [0, 1]p, ε is an independent centred Gaussian noise with finite

variance σ2 > 0 and each component f j is continuous.
We can now state the result of consistency of random forests when the observations are weakly dependent.

Theorem 5.1. Given a data set Dn = {(X1,Y1) , . . . , (Xn,Yn)} with stationary ergodic β-mixing (Xi,Yi) ∈ [0, 1]p × R for
i ∈ ~1, . . . n�.

If

• H(a) is satisfied;
•

τn log(αn)9

µn
−→
n→∞

0;

• log (αn)4 µnβan −→n→∞
0.

Then RF-RI are consistent i.e.

E

[
f̂n(X) − f (X)

]2
−→
n→∞

0.

Let us consider the independent case. If the (Xi,Yi)1≤i≤n are independent, βm = 0,∀m ≥ 0. Remember that αn = 2µnan

where αn is the number of sampled data points in each tree. Set an the length of each block to 1 and thus µn = αn
2 . We get

exactly the same result as in [16].
The first two conditions are quite the same as in the original theorem. Note that the additivity part in the hypothesis H(a)

is quite restrictive even though many applications are well simulated with such models. However we need X ∼ U (0, 1)p

which is way too restrictive in practice.
The third one is simply saying that the dependence between the data is not too long. We take the example of algebraic

mixing. In this case, βan ≤ Ca−r
n for some C, r > 0. Plugging this in the third hypothesis and using the fact that αn = 2µnan

leads to

log (αn)4 µnβan =
αn log (αn)4

2a1+r
n

.
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Now let us suppose for example that an = α1/2
n and we get

log (αn)4 µnβan =
log (αn)4

2α
r−1

2
n

−→
n→∞

0

for r > 1.

6. Proofs for centred forests

Proof of the variance rate, Proposition 4.1. We follow the proof given by [2]. Since the training sample is not indepen-
dent, we cannot get the same lines and results but the main ideas are, associate with Lemma 3.2, the same.

Remember that the random forest estimator is written

f̂n(X,Dn) = EΘ

[
f̂tree,n(X,Θ,Dn)

]
with

f̂tree,n(X,Θ,Dn) =

n∑
i=1

Wn,i(X,Θ)Yi.

Thus, the random forest estimator can be written

f̂tree,n(X) =

n∑
i=1

EΘ

[
Wn,i(X,Θ)

]
Yi.

We define also f̃n(X),

f̃n(X) =

n∑
i=1

EΘ

[
Wn,i(X,Θ)

]
f (Xi).

We can now begin the computation,

E

[
f̂n(X) − f̃n(X)

]2
= E

 n∑
i=1

EΘ

[
Wn,i(X,Θ)

]
(Yi − f (Xi))

2

(6.1)

= E

 n∑
i=1

E
2
Θ

[
Wn,i(X,Θ)

]
(Yi − f (Xi))2

 (6.2)

+E

 n∑
i=1

n∑
j=1, j,i

EΘ

[
Wn,i(X,Θ)Wn, j(X,Θ)

]
εiε j

 . (6.3)

We will first analyse the first term. We can upper-bound

E

 n∑
i=1

E
2
Θ

[
Wn,i(X,Θ)

]
σ2(Xi)

 ≤ σ2
E

 n∑
i=1

E
2
Θ

[
Wn,i(X,Θ)

] (by hypothesis on σ(X)).

The next step is to analyse the expectation of Wn,i. Since the data is not independent we cannot do exactly the same
as [2]. We need to rewrite the sum over n, decompose it in blocks and then use Lemma 3.2. We can then use a similar
argument as [2] which is, by introducing another random variable, to reveal a random binomial variable in the denominator.
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Let us first decompose the previous term:

E

 n∑
i=1

E
2
Θ

[
Wn,i(X,Θ)

] = E

 µn∑
j=1

∑
i∈H j

E
2
Θ

[
Wn,i(X,Θ)

] +E

 µn∑
j=1

∑
i∈T j

E
2
Θ

[
Wn,i(X,Θ)

]
= E

[
u(XH

an
)
]

+E
[
u(XT

an
)
]

where

u(XB
an

) =

µn∑
j=1

∑
i∈B j

E
2
Θ

[
Wn,i(X,Θ)

]
with B = H or T. We easily observe that ‖u‖ ≤ 1 by definition of Wn,i.

Let us begin with the first part of the right hand:

E

 µn∑
j=1

∑
i∈H j

E
2
Θ

[
Wn,i(X,Θ)

] ≤ E
 µn∑

j=1

∑
i∈H j

E
2
Θ

[
W̃n,i(X,Θ)

] + µnβan

with

W̃n,i(X,Θ) =
1ξi∈An(X,Θ)∑n

k=1 1ξk∈An(X,Θ)
1Ẽn(X,Θ)

and

Ẽn(X,Θ) =


n∑

j=1

ξ j ∈ An (X,Θ)

 .
We introduce Θ′ independent of Θ but with same distribution,

E

 µn∑
j=1

∑
i∈H j

E
2
Θ

[
W̃n,i(X,Θ)

] =

µn∑
j=1

E

∑
i∈H j

EΘ

[
W̃n,i(X,Θ)

]
EΘ′

[
W̃n,i(X,Θ′)

]
=

µn∑
j=1

E

∑
i∈H j

EΘ,Θ′

[
W̃n,i(X,Θ)W̃n,i(X,Θ′)

]
=

µn∑
j=1

EX,Θ,Θ′

∑
i∈H j

1ξi∈An(X,Θ)∩An(X,Θ′)(∑n
k=1 1ξk∈An(X,Θ)

) (∑n
k=1 1ξk∈An(X,Θ′)

)1Ẽn(X,Θ)1Ẽn(X,Θ′)

 .
To ease readability, we denote

FH j =
{{
ξi, i ∈ H j

}
∈ An(X,Θ) ∩ An(X,Θ′)

}
.

For a fixed j,

EX,Θ,Θ′

∑
i∈H j

1ξi∈An(X,Θ)∩An(X,Θ′)(∑n
k=1 1ξk∈An(X,Θ)

) (∑n
k=1 1ξk∈An(X,Θ′)

)1Ẽn(X,Θ)1Ẽn(X,Θ′)


≤ EX,Θ,Θ′

∑
i∈H j

1ξi∈An(X,Θ)∩An(X,Θ′)E

 1(
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ)

) (
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ′)

)
∣∣∣∣∣∣∣∣X,Θ,Θ′, FH j


 .

Let’s denote

fraction =
1(

an +
∑n

k=1,ξk<H j
1ξk∈An(X,Θ)

) (
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ′)

) .
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By independence of the blocks we get,

E

[
fraction |X,Θ,Θ′, FH j

]
= E

[
fraction |X,Θ,Θ′

]
.

Using now, Cauchy-Schwartz’s inequality, for a fixed j,

E
[

fraction
∣∣∣X,Θ,Θ′] ≤ E1/2

 1(
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ)

)2

∣∣∣∣∣∣∣∣∣X,Θ
E1/2

 1(
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ′)

)2

∣∣∣∣∣∣∣∣∣X,Θ′
 .

Using the fact (cf. [9]) that if Z is a random binomial variable of parameters (N, p) then,

E

[
1

1 + Z2

]
≤

3
(N + 1)(N + 2)p2 .

Since each blocks are independent and an ≥ 1,

E
1/2

 1(
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ)

)2

∣∣∣∣∣∣∣∣∣X,Θ
 ≤ E1/2

 1

1 +

(∑2µn−1
j̃=1

1ξ j̃∈An (X,Θ)

)2

∣∣∣∣∣∣∣∣∣∣∣X,Θ


where j̃ denotes one component of each block
(
H j

)
1≤ j≤µn

and
(
T j

)
1≤ j≤µn

. By independence of the blocks we get,

2µn−1∑
j̃=1

1ξ j̃∈An(X,Θ)
∼ Bin (2µn − 1,P(X ∈ An(X,Θ)|X,Θ)) .

Since we suppose that the law is uniform on [0, 1]p and by the construction of the tree we get,

P (X ∈ An(X,Θ)|X,Θ) = 2−dlog2 τne.

The same is done for the conditional expectation with respect to X,Θ′. Thus,

EX,Θ,Θ′

∑
i∈H j

1ξi∈An(X,Θ)∩An(X,Θ′)E

 1(
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ)

) (
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ′)

)
∣∣∣∣∣∣∣∣X,Θ,Θ′, FH j




≤
3 × 22dlog2 τne

4µ2
n

EX,Θ,Θ′

∑
i∈H j

1ξi∈An(X,Θ)∩An(X,Θ′)


≤

12τ2
n

4µ2
n
EX,Θ,Θ′

∑
i∈H j

1ξi∈An(X,Θ)∩An(X,Θ′)


≤

3τ2
n

µ2
n

anP
(
ξ1 ∈ An (X,Θ) ∩ An

(
X,Θ′

))
.

The last inequality using the fact that even though dependent, they have the same distribution.
The rest is the same as [2]. After computations over H, we get,

E

 µn∑
j=1

∑
i∈H j

E
2
Θ

[
W̃n,i(X,Θ)

] ≤ C
(

S 2

S − 1

)S/2p

(1 + νn)
τnanµn

µ2
n(log τn)S/2p .
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We do the same over T .
We analyse now the second term of eq. (6.3). It is not equal to zero since (εi)1≤n are not independent. We use again the

link between dependent and independent process in the β−mixing case. We rewrite this second term over the H and T as
before:

E

 n∑
i=1

n∑
j=1, j,i

EΘ

[
Wn,i(X,Θ)Wn, j(X,Θ)

]
εiε j

 = E
[
w(XH

an
)
]

+E
[
w(XT

an
)
]

where

E

[
w(XB

an
)
]

= Eε

EX

 µn∑
i=1

µn∑
j=1

∑
k∈Bi

∑
l∈B j,l,k

εiε jEΘ[Wn,iWn, j]

∣∣∣∣∣∣∣∣ε1, . . . , εn




Using the hypothesis H(e), Cauchy-Schwartz and Jensen’s inequality it is easy to show that

w(Xan ) ≤ M2.

Using Lemma 3.2 we then have:

E

 n∑
i=1

n∑
j=1, j,i

EΘ

[
Wn,i(X,Θ)Wn, j(X,Θ)

]
εiε j

 = 2M2βanµn +E

 µn∑
i=1

µn∑
j=1

∑
k∈Bi

∑
l∈B j,l,k

ε̃iε̃ jW̃n,iW̃n, j

 .
It remains to analyse the last term. Since the blocks are independent of each others we have,

E

 µn∑
i=1

µn∑
j=1

∑
k∈Bi

∑
l∈B j,l,k

ε̃iε̃ jW̃n,iW̃n, j

 = E

 µn∑
i=1

∑
k∈Bi

∑
l∈Bi,l,k

ε̃iε̃ jW̃n,iW̃n, j


= µnE

∑
k∈B1

∑
l∈B1,l,k

ε̃iε̃ jW̃n,iW̃n, j


≤ M2µnE

∑
k∈B1

∑
l∈B1,l,k

W̃n,iW̃n, j

 .
Using a similar trick as before we get:

E

∑
k∈B1

∑
l∈B1,l,k

W̃n,iW̃n, j

 ≤ E

∑
k∈B1

∑
l∈B1,l,k

1ξk∈An(X,Θ)1ξl∈An(X,Θ)E

 1

1 +

(∑2µn−1
j̃=1

1ξ j̃∈An (X,Θ)

)2

∣∣∣∣∣∣∣∣∣∣∣X,Θ, FB1




≤ E

∑
k∈B1

∑
l∈B1,l,k

1ξk∈An(X,Θ)1ξl∈An(X,Θ)
22dlog2 τne

4µ2
n


≤

a2
n22dlog2 τne

4µ2
n
P (ξ1 ∈ An(X,Θ), ξ2 ∈ An(X,Θ))

≤
a2

n22dlog2 τne

4µ2
n

(
βan

2
+ P (ξ1 ∈ An(X,Θ))P (ξ2 ∈ An(X,Θ))

)
≤

a2
n

4µ2
n

(
1 +

τ2
nβan

2

)
.

Hence

E

 µn∑
i=1

µn∑
j=1

∑
k∈Bi

∑
l∈B j,l,k

ε̃iε̃ jW̃n,iW̃n, j

 ≤ a2
n

4µn

(
1 +

τ2
nβan

2

)
M2
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and

E

 n∑
i=1

n∑
j=1, j,i

EΘ

[
Wn,i(X,Θ)Wn, j(X,Θ)

]
εiε j

 ≤ a2
n

4µn
M2 + 2βanµn

(
M2 +

τ2
na2

n

8µn
M2

)
.

Combining both analyses we have,

E

[
f̂n(X) − f̃n(X)

]2
≤ Cσ2

(
S 2

S − 1

)S/2p

(1 + νn)
τna2

n

n(log τn)S/2p +
a2

n

4µn
M2 + 2βanµn

(
σ2 +

(
1 +

τ2
na2

n

8µn

)
M2

)
with

C =
288
π

(
π log 2

16

)S/2p

and

1 + νn =
∏
j∈S

[(
1 + νn, j

)−1
(
1 −

νn, j

S − 1

)−1
]1/2p

.

�

Proof of the bias term, Proposition 4.2. The start of the proof is the same as in [2] since it does not use the hypothesis of
independence between the points:

E

[
f̃n(X) − f (X)

]2
≤ E

 n∑
i=1

Wn,i(X,Θ) ( f (Xi) − f (X))

2

+ sup
x∈[0,1]d

f 2(x)P
(
Ec

n(X,Θ)
)

≤ E

 n∑
i=1

Wn,i(X,Θ)
(
f ∗(Xi,S) − f ∗(XS)

)2

 + sup
x∈[0,1]d

f 2(x)P
(
Ec

n(X,Θ)
)

(cf. [2])

≤ L2
E

 n∑
i=1

Wn,i(X,Θ)‖Xi − X‖2
S

 + sup
x∈[0,1]d

f 2(x)P
(
Ec

n(X,Θ)
)

where we get the last inequality using the hypothesis that f is L−Lipschitz. To go further in the analysis we have to use
Lemma 3.2 to get independent variables. We proceed similarly to the first proof:

E

 n∑
i=1

Wn,i(X,Θ)‖Xi − X‖2
S

 = E
[
v
(
XH

an

)]
+E

[
v
(
XT

an

)]
with

v
(
XB

an

)
=

µn∑
j=1

∑
i∈H j

Wn,i(X,Θ)‖Xi − X‖2
S

where B = H or T . We observe that,

‖v‖ ≤ sup
(x,y)∈[0,1]S×[0,1]S

‖x − y‖2
S
≤ S .

Thus, using Lemma 3.2:

E

[
v(XH

an

]
≤ E

 µn∑
j=1

∑
i∈H j

W̃n,i(X,Θ)‖ξi − X‖2
S

 + Sµnβan .

We do the same over T.
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We now need to do a similar operation for the probability P
(
Ec

n(X,Θ)
)
. We recall that En is defined as En :={∑n

i=1 1Xi∈An(X,Θ) , 0
}
:

P
(
Ec

n(X,Θ)
)

= E
[
1∑n

i=1 1Xi∈An (X,Θ)=0

]
= E

[
1X1<An(X,Θ) . . .1Xn<An(X,Θ)

]
≤ E

[
w(XH

an
)
]

with

w(XH
an

) =

µn∏
j=1

∏
i∈H j

1Xi<An(X,Θ) ⇒ ‖w‖ ≤ 1.

Using Lemma 3.2,

E

[
w(XH

an
)
]
≤ P

[
∀ 1 ≤ j ≤ µn,∀i ∈ H j, ξi < An(X,Θ)

]
+ µnβan .

We get,

E

[
f̃n(X) − f (X)

]2
≤ L2

E

 n∑
i=1

W̃n,i(X,Θ)‖ξi − X‖2
S

 + sup
x∈[0,1]p

f 2(x)P
[
∀ 1 ≤ j ≤ µn,∀i ∈ H j, ξi < An(X,Θ)

]
+ µnβan

2S L2 + sup
x∈[0,1]p

f 2(x)
 .

We first analyse the term P
[
∀ 1 ≤ j ≤ µn,∀i ∈ H j, ξi < An(X,Θ)

]
,

P
[
∀ 1 ≤ j ≤ µn,∀i ∈ H j, ξi < An(X,Θ)

]
≤ P

[
∀ 1 ≤ j ≤ µn, pick ĩ ∈ H j, ξĩ < An(X,Θ)

]
where ĩ is an arbitrary index chosen in ~1, . . . , an�. Since the the blocks are independent, the terms in the probability are
independent. Furthermore, they have the same distribution. Thus,

P
[
∀1 ≤ j ≤ µn,∀i ∈ H j, ξi < An(X,Θ)

]
≤ Pµn

[
ξ1 < An(X,Θ)

]
=

(
1 − 2−dlog2 τne

)µn
(by construction of the tree)

≤ exp
(
−
µn

2τn

)
.

Thus,

E

[
f̃n(X) − f (X)

]2
≤ L2

E

 n∑
i=1

W̃n,i(X,Θ)‖ξi − X‖2
S

 + exp
(
−
µn

2τn

)
sup

x∈[0,1]d
f 2(x) + µnβan

2S L2 + sup
x∈[0,1]d

f 2(x)

 .
We denote

GB j =
{{
ξi, i ∈ B j

}
∈ An(X,Θ)

}
.

for B = H or T.
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Let us analyse the first term:

E

 n∑
i=1

W̃n,i(X,Θ)‖ξi − X‖2
S

 =

µn∑
j=1

E

∑
i∈H j

1ξi∈An(X,Θ)

Ñn(X,Θ)
1Ẽn(X,Θ)‖ξi − X‖2

S

 +

µn∑
j=1

E

∑
i∈T j

1ξi∈An(X,Θ)

Ñn(X,Θ)
1Ẽn(X,Θ)‖ξi − X‖2

S


≤

µn∑
j=1

E

∑
i∈H j

1ξi∈An(X,Θ)‖ξi − X‖2
S
E

 1(
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ)

)
∣∣∣∣∣∣∣∣X,Θ,GH j




+

µn∑
j=1

E

∑
i∈T j

1ξi∈An(X,Θ)‖ξi − X‖2
S
E

 1(
an +

∑n
k=1,ξk<T j

1ξk∈An(X,Θ)

)
∣∣∣∣∣∣∣∣X,Θ,GT j


 .

For a fixed j,

E

 1(
an +

∑n
k=1,ξk<H j

1ξk∈An(X,Θ)

)
∣∣∣∣∣∣∣∣X,Θ,GH j

 ≤ E
 1(

1 +
∑2µn−1

k̃=1
1ξk̃∈An(X,Θ)

)
∣∣∣∣∣∣∣∣X,Θ,GH j


where k̃ denotes one component of each block

(
H j

)
1≤ j≤µn

and
(
T j

)
1≤ j≤µn

. By independence of the blocks we have,

2µn−1∑
k̃=1

1ξk̃∈An(X,Θ) ∼ Bin(2µn − 1, 2−dlog2 τne)

using the same argument as in the proof "convergence rate for the variance". Using the following inequality(cf. [9]),

E

[
1

1 + Bin(N, p)

]
≤

1
(N + 1)p

,

This gives:

E

 n∑
i=1

W̃n,i(X,Θ)‖ξi − X‖2
S

 ≤ µn∑
j=1

E

∑
i∈H j

1ξi∈An(X,Θ)‖ξi − X‖2
S

2dlog2 τne

2µn


+

µn∑
j=1

E

∑
i∈T j

1ξi∈An(X,Θ)‖ξi − X‖2
S

2dlog2 τne

2µn


≤ τnE

∑
i∈H1

1ξi∈An(X,Θ)‖ξi − X‖2
S

 + τnE

∑
i∈T1

1ξi∈An(X,Θ)‖ξi − X‖2
S


≤ 2anτnE

[
1ξ1∈An(X,Θ) ‖ξ1 − X‖2

S

]
by stationarity.

The rest is the same as [2]. We get,

E

 n∑
i=1

W̃n,i(X,Θ)‖ξi − X‖2
S

 ≤ 2anS

τ
0.75

S log 2 (1+γn)
n

with γn = min j νn, j. We conclude,

E
[
f̃n(X) − f (X)

]2
≤

2S L2an

τ
0.75

S log 2 (1+γn)
n

+ exp
(
−
µn

2τn

)
sup

x∈[0,1]d
r2(x) + µnβan

2S L2 + sup
x∈[0,1]d

r2(x)

 .
�
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7. Proof of consistency of the RF-RI

The computation of the approximation error is the same as [16] since it does not require the independence of (Xi,Yi)1≤i≤n
but only that it is stationary and that (εi)1≤i≤n are independent.

The partition obtained with the random variable Θ and the data setDn is denoted by Pn(Dn,Θ). We let

Πn(Θ) = {P ((x1, y1) , . . . , (xn, yn) ,Θ) , (xi, yi) ∈ [0, 1]p × [0, 1]}

be the family of all achievable partitions with random parameter Θ. We let

M (Πn(Θ)) = max {Card(P,P ∈ Πn(Θ)}

be the maximal number of terminal nodes among all partitions in Πn(Θ).
Given a set zn

1 = {z1, . . . , zn} ⊂ [0, 1]p ,Γn

(
zn

1,Πn(Θ)
)

denotes the number of distinct partitions of zn
1 induced by elements

of Πn(Θ), that is, the number of different partitions
{
zn

1 ∩ A, A ∈ P
}

of zn
1, for P ∈ Πn(Θ). Consequently, the partitioning

number Γn (Πn(Θ)) is defined by

Γn (Πn(Θ)) = max
{
Γ
(
zn

1,Πn(Θ)
)
, z1, . . . , zn ∈ [0, 1]p

}
.

Let Gn(Θ) be the set of all functions g : [0, 1]p → R piecewise constant on each cell of the partition Pn(Θ). We define
as [16], Cn = ‖m‖∞ + σ

√
2 log (αn)2, hence eq. (A.1a) is verified.

Estimation error: The computation of the estimation error is very similar to [16] but we need to use a result from [12] to
introduce the mixing coefficient which follows from Lemma 3.2.

Theorem 7.1. Let Wt be a β-mixing stationary stochastic process, with |Yi| ≤ An and let Gn be a class of functions
g : Rp → R. Then, for any d ≥ 2,

P

 sup
g ∈ Gn(Θ)
‖g‖ ≤ An

∣∣∣∣∣∣∣∣1n
n∑

j=1

∣∣∣Y j − g(X j)
∣∣∣d −E [

Y − g(X)
]d

∣∣∣∣∣∣∣∣ > ε


≤ 8EN
(

ε

32d(2An)d−1 ,Gn(Θ), l1,n

)
exp

(
−

µnε
2

128(2An)2d

)
+ 2µnβan

where N
(
ν,G(Θ), l1,n

)
is the ν-covering number of Gn(Θ) w.r.t l1,n := 1

n
∑n

i=1| f (Xi) − g(Xi)|.

Using Theorem 7.1 we get,

P

 sup
g ∈ Gn(Θ)
‖g‖ ≤ Cn

∣∣∣∣∣∣∣ 1
αn

αn∑
i=1

|g(Xi) − Yi,L|
2 − E|g(X) − YL|

2

∣∣∣∣∣∣∣ > ε


≤ 8EN
(

ε

128Cn
,Gn(Θ), l1,n

)
exp

(
−

µnε
2

128(2Cn)4

)
+ 2µnβan

where αn = 2µαn aαn . For simplicity’s sake, we denote µn = µαn and an = aαn .
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Let us compute EN
(

ε
128CN

,Gn(Θ), l1,n
)

(cf. [9]),

N

(
ε

128Cn
,Gn(Θ), l1,n

)
≤ Γn(Πn(Θ))

3 3e(2Cn)
ε

128Cn

2M(Πn(Θ))

≤ Γn(Πn(Θ))

3 (
768eC2

n

ε

)2M(Πn(Θ))

≤ Γn(Πn(Θ))
[
1331eC2

n

ε

]2M(Πn(Θ))

.

Hence

EN

(
ε

128Cn
,Gn(Θ), l1,n

)
≤ Γn(Πn(Θ))

[
1331eC2

n

ε

]2M(Πn(Θ))

.

Going back to the probability computation

P

 sup
g ∈ Gn(Θ)
‖g‖ ≤ Cn

∣∣∣∣∣∣∣ 1
αn

αn∑
i=1

|g(Xi) − Yi|
2 − E|g(X) − Y |2

∣∣∣∣∣∣∣ > ε


≤ 2µnβan + 8 exp
(
−

µnε
2

2048C4
n

)
exp

(
2M(Πn(Θ)) log

(
1331eC2

n

ε

))
exp

(
log(Γn(Πn(Θ))

)
.

Since M(Πn(Θ)) ≤ τn and Γn(Πn(Θ)) ≤ (dαn)τn ,

2µnβan + 8 exp
− µNε

2

2048C4
N

 exp
(
2M(ΠN(Θ)) log

(
1331eC2

n

ε

))
exp

(
log(Γn(Πn(Θ))

)
≤ 2µnβan + 8 exp

(
−

µnε
2

2048C4
n

+ 2τn log
(

1331eC2
n

ε

)
+ τn log (dαn)

)
≤ 2µnβan + 8 exp

(
−
µn

C4
n

[
ε2

2048
−

2τnC4
n

µn
log

(
1331eC2

n

ε

)
−
τnC4

n

µn
log (dαn)

])
.

For n large enough,

P

 sup
g ∈ Gn(Θ)
‖g‖ ≤ Cn

∣∣∣∣∣∣∣ 1
αn

αn∑
i=1

|g(Xi) − Yi|
2 − E|g(X) − Y |2

∣∣∣∣∣∣∣ > ε
 ≤ 2µnβan + 8 exp

(
−
µn

C4
n
ηε,n

)

with

ηε,n =
ε2

2048
−

8σ4τn log (αn)8 log
(

2662eσ2 log(αn)4

ε

)
µn

−
4σ4τn log (αn)8 log (dαn)

µn

≤
ε2

2048
−

8σ4τn log (αn)8 log
(

2662eσ2 log(αn)4

ε

)
µn

−
4σ4τn log (dαn)9

µn
.

We can now show that eq. (A.1c) holds:

lim
n→∞

E

 sup
g∈TβnGn

∣∣∣∣∣∣∣1n
n∑

i=1

|g(Xi) − Yi,L|
2 −E

[
g(X) − YL

]2

∣∣∣∣∣∣∣
 = 0∀L > 0.
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We denote

I = sup
g∈TβnGn

∣∣∣∣∣∣∣1n
n∑

i=1

|g(Xi) − Yi,L|
2 −E

[
g(X) − YL

]2

∣∣∣∣∣∣∣ .
We observe that

I ≤ 2(Cn + L)2.

Thus for n large enough,

E {I} ≤ E {I1I>ε + I1I≤ε}

≤ ε + 2(Cn + L)2
(
2µnβan + 8 exp

(
−
µn

C4
n
ηε,n

))
= ε + 16(Cn + L)2 exp

(
−
µn

C4
n
ηε,n

)
+ 4(Cn + L)2µnβan .

Hence with the β−mixing condition,

lim
n→∞

E

 sup
g∈TβnGn

∣∣∣∣∣∣∣1n
n∑

i=1

|g(Xi) − Yi,L|
2 −E

[
g(X) − YL

]2

∣∣∣∣∣∣∣
 = 0∀L > 0.

Thus, according to appendix Theorem A.1,

lim
n→∞

E

(
Tβn f̂n(X,Θ) − f (X)

)2
= 0.

We only need to check if the non-truncated random forest estimate is consistent. This step is identical to [16].

Appendix A. Tool to establish consistency in stationary ergodic case

To get consistency results for random forests under β−mixing process, we follow [16]’s ideas. The result is stemming
from a general consistency theorem from [9]. We cannot use the latter theorem since we are not in an independent frame
thus we will need to adapt it first.

We introduce the operator T defined such that for all function u and real L,

TLu =

u when |u| ≤ L
L when |u| > L.

Following the definition of the operator T we denote,

WL = TLW

and
Wi,L = TLWi

for W = X or Y and the set
TLGn = {TLg, g ∈ Gn} .

We want to estimate the target function f as

E
[
f (X) − Y

]2
= inf

g
E

[
g(X) − Y

]2

where the infimum is taken over all measurable functions g : X → Y. The solution to this problem is the regression
function

f (x) = E [Y |X = x] .
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This can obviously not be possible to compute since (X,Y) is unknown. We choose a class of functions Gn which can
depend on the data. We then select an estimator f̂n which minimises the empirical L2 risk on this class i.e.

f̂n(·) = arg min
g∈Gn

1
n

n∑
j=1

∣∣∣g(X j) − Y j

∣∣∣2 .
We first introduce the general consistency theorem as known from [9] and used by [16]. From now on µ denotes the

distribution of X.

Theorem A.1. LetDn = {(X1,Y1), . . . (Xn,Yn)} i.i.d. Let Gn = G(Dn) be a class of functions g : X → Y, the estimator f̂n
and f defined as above. If

lim
n→∞

Cn = ∞, (A.1a)

lim
n→∞

E

{
inf

g∈Gn,‖g‖∞≤Cn

∫
|g(x) − f (x)|2 µ( dx)

}
= 0, (A.1b)

lim
n→∞

E

 sup
g∈TCnGn

∣∣∣∣∣∣∣1n
n∑

i=1

|g(Xi) − Yi,L|
2 −E

[
g(X) − YL

]2

∣∣∣∣∣∣∣
 = 0 ∀L > 0 (A.1c)

then

lim
n→∞

E

{∫
| f̂n(x) − f (x)|2µ( dx)

}
= 0.

We extend this theorem to dependent process. The only assumption we actually need is that the stochastic process is
stationary and ergodic. Before claiming the result, we remind the definition of stationarity and ergodicity. We will give
the definition under stationary assumption since we will only consider this case.

Definition A.2. The process (Wt)t∈Z is said to be stationary if ∀k ∈ N,∀ (t1, . . . , tk) ∈ Zkand ∀τ ∈ Z,

(
Wt1+τ, . . .Wtk+τ

)
=

(
Wt1 , . . .Wtk

)
in distribution.

Definition A.3. The process (Wt)t∈Z is said to be (mean-)ergodic if

1
T

∫ T

0
Wt dt

L2

−→
T→∞

E (Wt) .

Proposition A.4. Let (Xt,Yt)t∈Z be a stationary ergodic process and a data set Dn = {(X1,Y1) , . . . , (Xn,Yn)}. Let Gn =

G(Dn) be a class of functions g : X → Y, the estimator f̂n and f as before. Under eqs. (A.1a) to (A.1c),

lim
n→∞

E

{∫
| f̂n(x) − f (x)|2µ( dx)

}
= 0.

Proof. To prove this result, we follow te same line as [9]. Instead of using the large of law numbers for i.i.d variables we
use the law of large numbers for stationary ergodic processes.
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We write ∫
Rp
| f̂n(x) − f (x)|2µ( dx) = E

[
| f̂n(X) − Y |2

∣∣∣Dn

]
−E| f (X) − Y |2

=

((
E

[
| f̂n(X) − Y |2

∣∣∣Dn

])1/2
−

(
E| f (X) − Y |2

)1/2
)

×

((
E

[
| f̂n(X) − Y |2

∣∣∣Dn

])1/2
+

(
E| f (X) − Y |2

)1/2
)

=

((
E

[
| f̂n(X) − Y |2

∣∣∣Dn

])1/2
−

(
E| f (X) − Y |2

)1/2
)2

+ 2
(
E| f (X) − Y |2

)1/2
((
E

[
| f̂n(X) − Y |2

∣∣∣Dn

])1/2
−

(
E| f (X) − Y |2

)1/2
)2
.

It suffices to show

E

((
E

[
| f̂n(X) − Y |2

∣∣∣Dn

])1/2
−

(
E| f (X) − Y |2

)1/2
)2
−→
n→∞

0.

We rewrite this term,

E

((
E

[
| f̂n(X) − Y |2

∣∣∣Dn

])1/2
−

(
E| f (X) − Y |2

)1/2
)2

≤ 2E
((
E

[
| f̂n(X) − Y |2

∣∣∣Dn

])1/2
− inf

g∈Gn,‖g‖≤βn

(
E|g(X) − Y |2

)1/2
)

+ 2E
(

inf
g∈Gn,‖g‖≤βn

(
E|g(X) − Y |2

)1/2
−

(
E| f (X) − Y |2

)1/2
)
.

The last term can be bounded,

2E
(

inf
g∈Gn,‖g‖≤βn

(
E|g(X) − Y |2

)1/2
−

(
E| f (X) − Y |2

)1/2
)

≤ 2E
(

inf
g∈Gn,‖g‖≤βn

(
E|g(X) − f (X)|2

)1/2
)2

≤ 2E
(

inf
g∈Gn,‖g‖≤βn

E|g(X) − f (X)|2
)
−→
n→∞

0 by eq. (A.1b).

It remains to show that

2E
((
E

[
| f̂n(X) − Y |2

∣∣∣Dn

])1/2
− inf

g∈Gn,‖g‖≤βn

(
E|g(X) − Y |2

)1/2
)
−→
n→∞

0.

We can lower bound this term by

−E

 inf
g∈Gn,‖g‖≤βn

(∫
Rp
|g(x) − f (x)|2µ( dx)

)1/22

and upper bound it by

E

(
2
(
E|Y − YL|

2
)1/2

+ 2

1
n

n∑
j=1

|Yi − Yi,L|
2

1/2

+ 2 sup
g∈TβnGn

∣∣∣∣∣∣
1

n

n∑
j=1

|g(Xi) − Yi,L|
2

1/2

−
(
E|g(X) − Y |2

)1/2
∣∣∣∣∣∣
)2

. (A.2)
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Using the inequality: (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 ∀(a, b, c) ∈ R3 and (
√

a −
√

b)2 ≤ |a − b| we have

eq. (A.2) ≤ E
[

inf
G∈Gn,‖g‖≤βn

∫
Rp
|g(x) − f (x)|2µ( dx)

]
+ 6E

 sup
g∈TβnGn

∣∣∣∣∣∣1n
n∑

j=1

|g(Xi) − Yi,L|
2 −E|g(X) − Y |2

∣∣∣∣∣∣


+ 6E|Y − YL|
2 + 6E

1
n

n∑
j=1

|Yi − Yi,L|
2


−→
n→∞

12E|Y − YL|
2.

The last line using eqs. (A.1b) and (A.1c) and the strong law for stationary ergodic process.
We get the result letting L→ ∞.

�
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