
HAL Id: hal-01955283
https://hal.science/hal-01955283

Preprint submitted on 2 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Usage of Registers in BSPlib (Preprint)
Arvid Jakobsson, Frederic Dabrowski, Wadoud Bousdira

To cite this version:
Arvid Jakobsson, Frederic Dabrowski, Wadoud Bousdira. Safe Usage of Registers in BSPlib (Preprint).
2019. �hal-01955283�

https://hal.science/hal-01955283
https://hal.archives-ouvertes.fr

Safe Usage of Registers in BSPlib (Preprint)
Extended Abstract

Arvid Jakobsson
∗

Huawei France Research Center

Boulogne-Billancourt, France

arvid.jakobsson@huawei.com

Frédéric Dabrowski

Univ. Orléans, INSA Centre,

Val de Loire, LIFO EA 4022

Orléans, France

frederic.dabrowski@univ-orleans.fr

Wadoud Bousdira

Univ. Orléans, INSA Centre,

Val de Loire, LIFO EA 4022

Orléans, France

wadoud.bousdira@univ-orleans.fr

ABSTRACT

Bulk Synchronous Parallel (BSP) is a simple but powerful high-

level model for parallel computation. Using BSPlib, programmers

can write BSP programs in the general purpose language C. Direct

Remote Memory Access (DRMA) communication in BSPlib is en-

abled using registrations: associations between the local memories

of all processes in the BSP computation. However, the semantics

of registration is non-trivial and ambiguously specified and thus

its faulty usage is a potential source of errors. We give a formal

semantics of BSPlib with which we characterize correct registration.

Anticipating a static analysis, we give a simplified programming

model that guarantees correct registration usage, drawing upon

previous work on textual alignment.

CCS CONCEPTS

• Computing methodologies → Parallel programming lan-

guages; • Theory of computation → Logic and verification;

Operational semantics;

KEYWORDS

Parallel programming, Bulk Synchronous Parallelism, Static Analy-

sis, Communication

ACM Reference Format:

Arvid Jakobsson, Frédéric Dabrowski, and Wadoud Bousdira. 2019. Safe

Usage of Registers in BSPlib (Preprint): Extended Abstract. In The 34th
ACM/SIGAPP Symposium on Applied Computing (SAC ’19), April 8–12, 2019,
Limassol, Cyprus. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3297280.3297421

1 INTRODUCTION

Parallel architectures are known to be hard to program. Having

a simple but realistic model of parallelism reduces difficulty. The

model should allow the user to predict both behaviour and perfor-

mance of parallel programs. The Bulk Synchronous Parallel-model

(BSP) [13] has these qualities along with practical and efficient

implementations.

BSP can either be implemented in a dedicated, parallel language,
as done in BSML [2], or by extending a general purpose language as

the BSPlib [8] library does for C. There are many advantages to the

latter approach: no need to learn a new language and parallelism

can be added to existing applications.

∗
Also with LIFO, l’Université d’Orléans

SAC ’19, April 8–12, 2019, Limassol, Cyprus
2019. ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00

https://doi.org/10.1145/3297280.3297421

However, errors are easily introduced if the host language per-

mits writing programs that are invalid in the underlying parallel

model, such as non-participation in collective synchronization [1].

We argue that static analysis can and should be used to detect such

errors, and thus bridge the gap between parallel languages and

library embeddings of parallelism. As a step in this direction, we

study how to prevent invalid register usage in BSPlib.

A BSPlib registration is an association between p memory ad-

dresses, one per process, allowing one process to reference memory

objects on remote processes without knowing their address, thus

enablingDirect Remote Memory Access (DRMA). At synchronization,

the BSPlib runtime uses the registrations to route communication.

Unfortunately, the BSPlib interface for manipulating registrations

is informally defined with subtle corner cases that may provoke

dynamic errors.

Other less error-prone schemes for DRMA exist. In the BSP par-

adigm, Yzelman et al. [14] use a communication container class to

turn regular objects into distributed data structures. MPI [9] uses

window objects to allow a process to reference remote memory.

Like BSPlib registrations, windows act as handles and are created

and removed collectively. Unlike registrations, windows can be re-

moved in any order. In OpenSHMEM [4], DRMAoperations are only

allowed on “symmetric” objects that the runtime system ensures

have the same relative address in each process.

Our first contribution is BSPlite, a formalization of BSPlib with

registration, with which we characterize correct register usage. Tes-

son et al. [12] also formalize BSPlib, but do not consider registration.

Gava et al. [7] formalize Paderborn’s BSPlib [3], but their modeliza-

tion of registration is simplified. To our knowledge, ours is the first

formalization capturing the idiosyncrasies of BSPlib registration.

Our second contribution is a characterization of a subset of

correct programs based on textual alignment [5]. With respect to

previous work, the notion of textual alignment is generalized to all

collective operations, and in a restricted sense to memory location,

which requires an instrumentation of the semantics of programs

which is slightly more complex. Our final goal (future work) is a

static analysis that enforces this model and thus correct registra-

tion. We believe this is the first work towards static verification
of BSPlib registration. Previous work, like BSP-Why [6], enables

the user to prove the correctness of their program, including regis-

trations. However, the user must do so manually, whereas we aim

for full automation, and it is unclear if BSP-Why’s modelization of

registration is true to the BSPlib standard.

The article proceeds as follows: Section 2 introduces BSP, BSPlib

and registration. Section 3 describes our BSPlib formalization and

the instrumentation with which we then define correct registration

https://doi.org/10.1145/3297280.3297421
https://doi.org/10.1145/3297280.3297421
https://doi.org/10.1145/3297280.3297421

SAC ’19, April 8–12, 2019, Limassol, Cyprus Arvid Jakobsson, Frédéric Dabrowski, and Wadoud Bousdira

Barrier

Local computation Communication Next superstep

Figure 1: A BSP superstep with p = 4

bsp_begin(int p) Start parallel section with p processes

bsp_end() End parallel section

bsp_pid() Return process ID

bsp_nprocs() Return total number of processes p

bsp_push_reg(void *adr, int len) Request creation of registration

bsp_pop_reg(void *adr) Request removal of registration

bsp_put(int pid, void *src, Request remote memory write

void *dst, int offs, int len)

bsp_sync() Synchronize and end superstep

Table 1: Subset of BSPlib primitives

(Section 4). In Section 5, we describe our simplified programming

model for registers and prove it implies correct registration.

2 BSP & BSPLIB

The Bulk Synchronous Parallel (BSP) model is both a high-level

model for reasoning about parallel computers and computations,

and a practical programming method as implemented in Apache

Hama [11], BSML [2] and BSPlib [8].

In BSP-as-a-model, parallel architectures are abstracted to p
processor-memory pairs, pairwise connected by a network and gov-

erned by a synchronization unit. A BSP computation is a sequence

of supersteps, each composed of three phases: isolated computation

in each process, collective communication, and barrier synchro-

nization (see Fig. 1). BSP also includes a model for reasoning on the

cost of parallel computations, which we do not detail further here.

For BSP-as-a-programming-method, we focus on BSPlib. BSPlib

is a library specification with several implementations for direct-

mode BSP programming in C. It is characterized by a small but

highly composable set of 20 primitives. The subset relevant here

is summarized in Table 1. BSPlib programs follow Single Program,
Multiple Data (SPMD) style. Formally, their execution can be seen

as the parallel composition of p copies of the same program P ,
behaving differently as a function of the process identifier taken as

argument: P(0) ∥ P(1) ∥ · · · ∥ P(p − 1).

BPSlib registrations. BSPlib processes typically use DRMA for

(buffered) communication, enabled by the bsp_put primitive. BSPlib

registrations allow a process to write to a remote memory area us-

ing a local address as a handle. A registration is an association

between p addresses
1
, one per process. Collectively calling the

functions bsp_push_reg and bsp_pop_reg requests the addition

removal of a registration, respectively. A registration can be seen

as a p-vector of addresses ⟨li ⟩i , where li is the argument of process

i to bsp_push_reg. Registration and communication requests are

1
For simplicity, we ignore the extent of each memory area, which may vary per process.

1 bsp_begin(bsp_nprocs ());

2 bsp_push_reg (&x,sizeof(x));
3 bsp_sync ();

4 if (bsp_pid () == 0)

5 for (i = 0; i < bsp_nprocs (); i++)

6 bsp_put(i, &y, &x, 0, sizeof(y));
7 bsp_pop_reg (&x);

8 bsp_sync ();

9 // at this point , x is unregistered and contains

10 // the value of y from process 0

11 bsp_end ();

Figure 2: An example BSPlib program using registration

executed at synchronization, and their effect is visible in the follow-

ing superstep. Synchronization occurs when processes collectively

call bsp_sync().
The BSPlib program in Fig. 2 uses registration to broadcast pro-

cess 0’s value of y into x of every other process. In the first super-

step, a registration is created containing x’s address in each process

(Line 2). The registration becomes available in the next superstep.

There, process 0 requests the transmission sizeof(y) bytes from
its memory starting at &y into the memory area containing x of

each process i at offset 0 (Line 4-6). The deregistration at Line 7 is

safe, since it takes effect in the next superstep.

Intuitively, the rules for registration are the following:

(a) A registration ⟨li ⟩i is created when all processes call

bsp_push_reg(li) in the same superstep, and becomes avail-

able in the next superstep.

(b) Registration requests must be compatible: the order of all

pushes must be the same on all processes, and for the pops

likewise. However, it does not matter how requests are in-

terleaved within one superstep.

(c) A process can choose not to participate in a registration by

passing NULL to bsp_push_reg.
(d) The same address can be registered multiple times. Only the

last registration of an address in the registration sequence is

active. The motivation is modularity: to allow addresses to

be reused for communication in different parts of the code,

possibly unbeknownst to each other.

(e) The last registration ⟨li ⟩i is removed when all processes

call bsp_pop_reg(li), and becomes unavailable in the next

superstep. A dynamic error occurs if the last pushed li is not
at the same level in the registration sequence of all processes.

The running examples in Fig. 3, written in BSPlite (detailed in

Section 2), illustrate these rules. In Example 1, execution proceeds

without error. In the second superstep, the most recently pushed

y is removed. In Example 2, the program attempts to remove x,
but it is not yet registered and so an error is produced (rule (e)).

In Example 3, a dynamic error occurs since the pop in the second

superstep attempts to remove at different levels in the registration

sequence (rule (e)). Example 4 is a simplified version of real BSPlib

code, illustrating how the situation of Example 3 can be reproduced

by dynamic allocation as malloc may return NULL [10, p. 143]. In
Example 5, a dynamic error occurs when only process 1 pushes

(rule (c)). Example 6 illustrates that the interleaving of requests

in one superstep is irrelevant (rule (b)). In the next section we

formalize these intuitions.

Safe Usage of Registers in BSPlib (Preprint) SAC ’19, April 8–12, 2019, Limassol, Cyprus

BSPlite Program Pid [Registrations || Push / pop requests] at synchronization

(1)

[push &y]; [push &z]; [push &y]; [push &x];

[sync]; [pop &y]; [sync]
0/1 yzyx → yzyx y → yzx

(2) [push &x]; [pop &x]; [sync] 0/1 xx → Ω

(3)

[p := &y]; if [pid = 0] then [q := &y] else [q := &x];

[push p]; [push q]; [sync]; [pop p]; [sync]

0 yy

yx
→

yy y

yx y
→ Ω

1

(4)

[p := malloc pid]; [q := malloc pid];

[push p]; [push q]; [sync]; [pop p]; [sync]

0 N N

l1l2
→

N N N

l1l2 l1
→ Ω

1

(5)

if [pid = 0] then [x := 0] else [push &x];

[sync]

0

x
→ Ω

1

(6)

[push &y]; [sync]; if [pid = 0] then ([pop &y]; [push &x])

else ([push &x]; [pop &y]); [sync]

0 y

y
→

y yx

y xy
→

x

x
1

Figure 3: For each running example an execution with p = 2 is given depicting the registration sequence and requests before

each synchronization. Here, x is the location of variable x , li is the ith address returned by malloc and N is NULL. The symbol Ω
indicates a registration error. Labels are omitted for legibility.

AExp, e ::= n | e1 opa e2 | pe

|&x | nprocs | pid

PExp, pe ::= x | ∗ e

BExp, b ::= true | false

| e1 opr e2 | b1 opb b2 | not b

Cmd, c ::= c1; c2
| if [b]ℓ then c1 else c2
| while [b]ℓ do c1
| [pe := e]ℓ | [pe := malloc e]ℓ

| [free e]ℓ | [sync]ℓ | [push e]ℓ

| [pop e]ℓ | [put e1 e2 e3 e4 e5]ℓ

x ∈ Var,n ∈ N,opr ∈ {=, <},opb ∈ {&&, | |},opa ∈ {+,−, ∗}

Figure 4: Syntax of BSPlite with registers

3 BSPLITE WITH REGISTERS

This section presents our first contribution: BSPlite, a formalization

of BSPlib with registration. BSPlite is a labelled WHILE-language

with pointers, dynamic allocation and parallel primitives (Fig. 4).

Arithmetic expressions are standard, and contain constants, arith-

metic operations, pointer expressions and the address-of operator.

Two special expressions, nprocs and pid model bsp_nprocs and
bsp_pid respectively. A pointer expression is either a variable or

the dereferencement of an arithmetic expression. Boolean expres-

sions are standard and not detailed further.

In addition to standard sequence, conditional, loops and assign-

ments, commands also include dynamic allocation (malloc, whose
argument indicates desired allocation size) and deallocation (free).
The parallel primitives sync, push, pop and put model their BSPlib

counterpart. We assume that labels ℓ are unique.

3.1 Local Semantics

BSPlite has a two-level semantics: a local, small-step, semantics

for the computation phase, and a global, big-step semantics for the

superstep structure.

Values are either naturals or locations (see Fig. 5). A location

is a base address-offset pair. We distinguish the special location N
modelling NULL, defined as (bN, 0) where bN is a distinguished base

address. The semantics is parameterized by a global, fixed envi-

ronment σ mapping local variables to unique, non-null locations.

l ∈ Loc = Base × N

Val, v ::= n | l

σ ∈ Env = Var→ Loc

H ∈ Heap = Loc ↪→ Val

H0 ∈ Heap such that

∀l ∈ Loc.H0 l is defined if ∃x ∈ Var.σ x = l , H0 l = undef oth.

RReq, r ::= push l | pop l

CReq, c ::= put j vs l n

st = (H, rs, cs) ∈ State = Heap × RReq∗ × CReq∗

LocalConf , γ ::= ⟨c, st⟩ | st

Figure 5: Domain of local semantics

Heaps are partial functions from (allocated) locations to values.

The initial heap H0 allocates the location of all local variables. A

subset of the standard semantics of arithmetic, boolean and pointer

expressions is given in Fig. 6. For lack of space we do not give all

the cases. We restrict pointer arithmetic to the pointer’s base: we

assume that invalid pointer usage is precluded by a pre-analysis.

The local semantics operates over configurations that consist of

an (optional) continuation, a heap, a list of registration requests and

a list of communication requests to execute at the next synchro-

nization. Registration requests contain only the concerned location,

while put-requests contain the target process id, the list of values

to transmit, the location referring to a register in the source process

and an offset into this register.

3.1.1 Local Instrumentation. The semantics is instrumented to

capture the trace of actions taken by the program. Actions are of

type push!, pop! or sync!, and are generated by the corresponding

commands. The instrumentation has no impact on execution: it

only serves as a base for the definitions in Sections 4 and 5.

Each action stores the path [5] taken to reach the current pro-

gram point. Intuitively, the path at a program point encodes the

SAC ’19, April 8–12, 2019, Limassol, Cyprus Arvid Jakobsson, Frédéric Dabrowski, and Wadoud Bousdira

AJ · Kpi : AExp→ (Heap ↪→ Val)

AJnKpi H = n

AJnprocsKpi H = p

AJpidKpi H = i

AJpeKpi H = H (PJpeKpi H)
AJ&xKpi H = σ x

· · ·

PJ · Kpi : PExp→ (Heap ↪→ Loc)

PJxKpi H = σ x

PJ∗eKpi H = l if AJeKpi H = l , undef oth.
BJ · Kpi : BExp→ (Heap ↪→ Bool)

· · ·

Figure 6: BSPlite expression semantics

while [b1]
1 do

(if [b2]
2 then

[...]3 else [...]4);

[...]5

1

2

3 4

5

1 (0, ϵ)

2 (1, [(L, 0)])

3 (1, [(L, 1), (L, 0)]) 4 (1, [(L, 1), (R, 0)])

5 (1, ϵ)

1 (1, [(L, 1)])

2 (1, [(L, 2), (L, 0)])

3 (1, [(L, 2), (L, 1), (L, 0)]) 4 (1, [(L, 2), (L, 1), (R, 0)])

1 (1, [(L, 2), (L, 1)])

a) Program and CFG b) Execution

Figure 7: Illustration of paths. Loop execution is visualized

as nested conditionals.

history of choices previously taken at control flow branches, trim-

ming choices of fully executed branches. Trimming ensures that

the path only contains choices relevant to the current position.

Formally, a path δ ∈ Path is a pair (k,w) where k is the count of

commands crossed on the outermost nesting level, andw is a list

of choices. A choice is a pair of type {L, R} × N, and denotes the

branch taken (L for true, R for false) and the count of commands

crossed on the nesting level after that choice.

Consider the program depicted in Fig. 7 and its execution. Like

illustrated, the execution’s loop iterations can be understood as

nested conditionals. Program points are decorated with their corre-

sponding path at execution. Each step increments the count on the

current level. Iterations of loop 1 also add a choice to the path, all

of which are trimmed when leaving the loop for point 5. Similarly,

the inner conditional 2 adds a choice that is trimmed after leaving

the branches to program point 1. The choices made at conditional 2

is irrelevant to how loop 1 is reached, and choices at loop 1 is

irrelevant to how point 5 is reached.

⊕ : Path × N→ Path

(k0, ϵ) ⊕ n = (k0 + n, ϵ)

(k0,w ++ [(ch,k)]) ⊕ n = (k0,w ++ [(ch,k + n)])

⊙ : Path × (N × {L, R}) → Path

(k0,w) ⊙ (ch,k) = (k0,w ++ [(ch,k)])

trim : Lab × (Lab∗ × Path) → (Lab∗ × Path)

trim ℓ (ℓ : η, (k0,w ++ [(ch,k)])) = trim ℓ (η, (k0,w))

trim ℓ (η,δ) = (η,δ)

Figure 8: Operators and functions on paths andnesting stack

Unlike a big-step semantics, once the small-step semantics enters

a branch, there is no memory of the encompassing structure, and

we can no longer discern when the conditional’s body ends and thus

when to trim the path. To remedy, we keep a nesting stack η. For
each partially executed conditional, a label in the stack indicates

the program point at which the corresponding choice must be

trimmed from the path. Introducing artificial commands denoting

the branch’s end would solve the same problem, but pollute the

syntax.

Actions push! and pop! store the concerned location and its

source: the memory object from whence it was obtained. This is

either a local variable, an instance of dynamic allocation denoted by

its path or unknown (for communicated pointers and integer values).

To track the source of pointers during execution, we introduce a

shadow store o, called origin, that associates heap locations with its

content’s source such that if H l = l ′ then the source of l ′ is o l .

Src, s ::= x | δ | unknown

o ∈ Origin = Loc→ Src

Action, a ::= push!δ (l , s) | pop!δ (l , s) | sync!δ

InstrState, I ::= ⟨δ ,η,o⟩

For actions, we also define the projection πpath that gives their

path, along with πoffs and πsrc that give the offset and source of

the location (if any). Finally, steps are instrumented with a nesting
flag. The flag indicates when execution enters a branch (e = ■) and

otherwise (e = □).

3.1.2 Local Rules. A reduction step from configuration γ to γ ′

is a judgement parameterized by the number of processes p and

local process id i ∈ P = {0, ...,p − 1} and written i,p ⊢1 γ ; I →α
γ ′; I ′,as, e where α ∈ {ι,κ} is the termination type. When α = ι,
local computation is suspended and requesting synchronization.

Any continuation in γ ′ is executed in the next superstep. When

α = κ the continuation is the next step of local computation in

the same superstep. The initial and final instrumentation states are

given by I and I ′, the list as is either a singleton action or empty

(written ϵ) and e is the nesting flag.

The rules (Fig. 9) are fairly standard, except handling of termina-

tion types, parallel primitives and instrumentation. Assignments

are allowed to allocated addresses (assign). Suspension is initiated

in sync. Dynamic allocation in malloc is handled by the predicate

fresh, whose definition is omitted. Intuitively, freshnH H ′ b holds

if H
′
is identical to H except that when n is positive, the locations

(b, 0)...(b,n − 1) are defined in the former and the base-address

Safe Usage of Registers in BSPlib (Preprint) SAC ’19, April 8–12, 2019, Limassol, Cyprus

i, p ⊢1 ⟨[sync]ℓ , st⟩; ⟨δ ,η,o⟩ →ι st; ⟨(δ ⊕ 1),η,o⟩, [sync!δ],□
sync

PJpeKpi H = l ∈ Dom(H) AJeKpi H = v H[l ← v] = H ′

i, p ⊢1 ⟨[pe := e]ℓ , (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
(H ′, rs, cs); ⟨(δ ⊕ 1),η,o[l ← srcpi (e,H,o)]⟩, ϵ,□

assign

PJpeKpi H = l ∈ Dom(H) fresh (AJeKpi H)H H
′ b

i, p ⊢1 ⟨[pe := malloc e]ℓ , (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
(H ′[l ← (b, 0)], rs, cs); ⟨(δ ⊕ 1),η,o[l ← δ]⟩, ϵ,□

malloc

AJeKpi H = (b, 0) ∈ Dom(H) b , bN ∄x ,σ x = (b, 0)

dealloc H b H ′

i, p ⊢1 ⟨[free e]ℓ , (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
(H ′, rs, cs); ⟨(δ ⊕ 1),η,o⟩, ϵ,□

free

i, p ⊢1 ⟨c1, st⟩; I →α st ′; ⟨δ ′′,η′′,o′⟩,as, e

(δ ′,η′) = trim init(c2) (δ ′′,η′′)
i, p ⊢1 ⟨c1; c2, st⟩; I →α ⟨c2, st ′⟩; ⟨δ ′,η′,o′⟩,as,□

seq_1

i, p ⊢1 ⟨c1, st⟩; I →α ⟨c′
1
, st ′⟩; ⟨δ ′,η′,o′⟩,as, e

η′′ = init(c2) : η′ if e = ■, η′ oth.

i, p ⊢1 ⟨c1; c2, st⟩; I →α ⟨c′
1
; c2, st ′⟩; ⟨δ ′,η′′,o′⟩,as,□

seq_2

BJbKpi H = tt

i, p ⊢1 ⟨if [b]ℓ then c1 else c2, (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
⟨c1, (H, rs, cs)⟩; ⟨(δ ⊕ 1) ⊙ (L, 0),η,o⟩, ϵ,■

if_tt

BJbKpi H = ff

i, p ⊢1 ⟨if [b]ℓ then c1 else c2, (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
⟨c2, (H, rs, cs)⟩; ⟨(δ ⊕ 1) ⊙ (R, 0),η,o⟩, ϵ,■

if_ff

BJbKpi H = tt

i, p ⊢1 ⟨while [b]ℓ do c1, (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
⟨c1; while [b]ℓ do c1, (H, rs, cs)⟩; ⟨(δ ⊕ 1) ⊙

(L, 0),η,o⟩, ϵ,■

wh_tt

BJbKpi H = ff

i, p ⊢1 ⟨while [b]ℓ do c1, (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
(H, rs, cs); ⟨(δ ⊕ 1),η,o⟩, ϵ,□

wh_ff

AJeKpi H = l rs ++ [push l] = rs′ s = srcpi (e,H,o)

i, p ⊢1 ⟨[push e]ℓ , (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
(H, rs′, cs); ⟨(δ ⊕ 1),η,o⟩, [push!δ (l , s)],□

push

AJeKpi H = l rs ++ [pop l] = rs′ s = srcpi (e,H,o)

i, p ⊢1 ⟨[pop e]ℓ , (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
(H, rs′, cs); ⟨(δ ⊕ 1),η,o⟩, [pop!δ (l , s)],□

pop

(AJe1K
p
i H, ...,AJe5K

p
i H) = (j, (b, offs), l , n1, n2)

vs = [H (b, offs + 0), . . . ,H (b, offs + (n2 − 1))]

i, p ⊢1 ⟨[put e1 e2 e3 e4 e5]ℓ , (H, rs, cs)⟩; ⟨δ ,η,o⟩ →κ
(H, rs, cs ++ [put j vs l n1]); ⟨(δ ⊕ 1),η,o⟩, ϵ,□

put

Figure 9: Local semantics of commands

b does not occur in H . If n = 0, then b = N. The new memory’s

content is undetermined. This memory can be deallocated by free
(rule free). Intuitively, the predicate dealloc H b H ′ holds if H and

H
′
are identical, except that all locations of base b is undefined in

the latter. The rules push, pop and put append register requests

and communication requests to the state.

Simple instructions are instrumented to increment the path using

the ⊕-operator, (e.g. rule sync). Conditionals increment and append

the appropriate choice using the ⊙-operator (e.g. rule if_tt). Con-

ditionals also set the nesting flag■. When the reduction of the first

component of a sequence sets this flag, the second component’s

label (as given by init) is pushed to the nesting stack (seq_2), as

a reminder to the trim-function to remove a choice once the first

component is fully reduced (seq_1). These operators and functions

are defined in Fig. 8, where ++ is list concatenation.

The src-function, whose definition is omitted for lack of space,

gives the source of arithmetic expressions that evaluates to loca-

tions. Intuitively, if the expression is the address-of operator, then

the name of the operand is given; if the expression is a pointer

expression, then the origin is consulted; etc. This function is used

when updating the origin at assignments and allocations (e.g. rule

assign), and consulted along with the path when generating actions

(e.g. rule push).

3.1.3 Multistep Relation. We write i,p ⊢ γ ; I →α γ ′; I ′,as if
there is a sequence of small-steps from γ such that γ ′ lacks a con-
tinuation or is suspended (see Fig. 10). Again, I and I ′ are the

sequence’s initial and final instrumentation. The actions are accu-

mulated in the list as .

3.2 Global Semantics

The global semantics calculates the BSP computation’s superstep

structure: it initiates local computation in each process, treats the

resulting communication and registration requests before executing

following supersteps.

The global semantics operates over global configurations consist-

ing of p-vectors of local configurations and a registration sequence:
a list of location p-vectors, each of which constitutes a registration

(Fig. 11). Registration sequences are manipulated by appending

new lists of registrations and by popping registrations (⊖-operator).

Pop returns a dynamic error (Ω) if the popped registrations is not

present in the sequence, or if the last appearance of each component

is not at the same position.

We formalize how global computation applies the registration

requests of a superstep to the registration sequence by the function

C (Fig. 12). It splits and transposes the list-vector into vector-lists

of registrations to remove (by applying C◦) and registrations to add

(by applying C•). If two components of the transposition’s operand

do not have the same length, then the result is undefined and thus

also C, following the intuition of rule (b) in Section 2.

3.2.1 Global Rules. The global semantics of BSPlite programs

is given in Fig. 13. One global step by p processes from global

configuration Γ to Γ′, written p ⊢ Γ →α Γ′ ; A, assumes processes

have the same termination type α and that the registration sequence

is not in an erroneous state. When α = ι, indicating that all local

processes are requesting synchronization, the final configuration is

SAC ’19, April 8–12, 2019, Limassol, Cyprus Arvid Jakobsson, Frédéric Dabrowski, and Wadoud Bousdira

i, p ⊢1 ⟨c, st⟩; I →κ ⟨c′, st ′⟩; I ′′,as, e

i, p ⊢ ⟨c′, st ′⟩; I ′′ →α γ ; I ′,as ′

i, p ⊢ ⟨c, st⟩; I →α γ ; I ′, (as ++ as ′)
step

i, p ⊢1 ⟨c, st⟩; I →ι γ ; I
′,as, e

i, p ⊢ ⟨c, st⟩; I →ι γ ; I ′,as
susp

i, p ⊢1 ⟨c, st⟩; I →α st ′; I ′,as, e
i, p ⊢ ⟨c, st⟩; I →α st ′; I ′,as

stop

Figure 10: Local multi-step semantics of BSPlite commands

Rs = (Locp)∗ (Registration sequence)

⊖ : (Rs ∪ {Ω}) × Locp → (Rs ∪ {Ω})

st ⊖ ⟨xi ⟩i =


st1 ++ st2 if st = st1 ++ [⟨xi ⟩i] ++ st2 and

¬(∃i ∈ P,k ∈ N . πi (st2[k]) = xi)

Ω oth.

lookup : Rs × P × P × Loc ↪→ Loc

lookup st pid
1
pid

2
l1 = l2

if ∃st1, st2 . (st = st1 ++ [⟨xi ⟩i] ++ st2 and

xpid
1

= l1 and xpid
2

= l2 and ¬(∃k ∈ N . πpid
1

(st2[k])) = l1)

GlobalConf , Γ ::= LocalConfp × (Rs ∪ {Ω})

Figure 11: BSPlite domain of global semantics

(·)T : ∀A, (A∗)p ↪→ (Ap)∗
⟨xi : xsi ⟩

T
i = ⟨xi ⟩i : ⟨xsi ⟩

T
i

⟨ϵ⟩Ti = ϵ

C◦,C• : (Rs ∪ {Ω}) × (Locp)∗ → (Rs ∪ {Ω})

C◦ st [L1, ...,Ln] = (st ⊖ L1) ⊖ L2 ⊖ ... ⊖ Ln if st , Ω, Ω oth.

C• st Ls• = st ++ Ls• if st , Ω, Ω oth.

C : Rs × (RReq∗)p → (Rs ∪ {Ω})

C st ⟨rsi ⟩i = C• Ls ′• (C◦ st Ls
′
◦) if (Ls

′
◦,Ls

′
•) = (Ls

T
◦ ,Ls

T
•), Ω oth.

where Ls◦,Ls• = ⟨[l | pop l ∈ rsi]⟩i , ⟨[l | push l ∈ rsi]⟩i

Figure 12: The function C formalizes the effect of registra-

tion requests on a registration sequence.

obtained by executing and removing the obtained register requests

(by C) and communication requests (by D). The function πrs(γ)
retrieves the register requests from γ and reset(γ) returns γ with

register and communication requests removed. We do not detail D

further, but note that it uses lookup on the registration sequence

to route communication. The function CommI , whose definition
is omitted here, instruments communication so that the source

of overwritten pointers is set to unknown. The p-vector A collects

each process’s action trace. We finally define Reachp as the reflexive

closure of global steps.

Modelling the SPMD-nature of BSPlib, an initial global configu-

ration in BSPlite, Γc = (⟨⟨c, (H0, ϵ, ϵ)⟩; ⟨(0, ϵ), ϵ,o0⟩⟩i , ϵ), replicates
a continuation c , the initial heap, request lists and registration se-

quence. It is instrumented with an empty path, empty nesting stack

and initial origin o0 = (λl .unknown).
The trace vectors resulting from executing the running examples

with the instrumentation is given in Fig. 14.

Lemma 1. If Reachp (Γ, Γ′,A) then the same source s , unknown
never appears twice in the same component of A associated with two
locations of different base.

Proof. See Appendix A.1. □

We call such vectors consistent. Intuitively, the same location

may be allocated twice (e.g. N), but the path of each execution step

is unique and so also the source by extension. The semantics also

ensures that the source of each local variable x is always associated

with the fixed location of that variable, i.e. σ x .

4 INSTRUMENTATION & CORRECTNESS

To define correctnesswe reason directly on trace vectors.We impose

a slight restriction compared to the BSPlib standard. Consider an

execution of Example 4 where malloc returns N twice for both

processes (this could be caused by space constraints):

Process 0: N N
N N

→
N N N

N N N
→

N
N

Process 1:

There is no dynamic error, but arguably by “accident”: the popped

registration is probably not the one intended by the user and as

the originally considered execution shows, an error could occur.

We impose an additional source restriction. Whenever a register

is popped, then the location in the pop-request and the one in

the registration sequence must come from the same known source:
intuitively, the same local variable or same instance of dynamic

allocation. This restriction ensures that a correct execution stays

correct independently on the behaviour of malloc.

4.1 Correctness

Trace vectors can be seen as programs with actions as instructions.

We give a local semantics of traces as functions over a stack-like

state of locations, defining a local view of correctness, and then

a global semantics for trace vectors. Anticipating our simplified

programming model for guaranteeing for correctness, this will

enable a definition of global correctness from a local perspective.

4.1.1 Local Correctness. Local action trace semantics is defined

by A!J·K (Fig. 15) that symbolically executes the trace, tracks the

source of pushed locations, and verifies that each popped location

has been pushed and committed, and, by the source restriction,

with the same source used in the pop!-action. Local correctness
of as amounts to A!JasK = tt. A!J·K is defined by A!1 giving the

effect of one action on the state and A!ss giving the effect of all

actions of one superstep. Finally A!
′
gives the effect of the whole

trace. Any actions in the last superstep has no effect and so asi is
ignored by A!

′
. By extension, a trace vector is locally correct if

each component is.

4.1.2 Global Correctness. As the executions of Example 5 and 3

demonstrate, local correctness of a trace vector does not amount to

its global correctness. They must also make compatible sequences

of actions (unlike Example 5), and pops must occur at the same

level in the registration sequence (unlike Example 3).

Safe Usage of Registers in BSPlib (Preprint) SAC ’19, April 8–12, 2019, Limassol, Cyprus

stΩ , Ω ∀i ∈ P . i, p ⊢ γi ; Ii →ι γ
′
i ; I
′
i ,asi D(⟨γ

′
i ⟩i , stΩ, ⟨γ

′′
i ⟩i) CommI ((⟨γ ′i ; I

′
i ⟩i , stΩ)) = ⟨I

′′
i ⟩i

p ⊢ (⟨γi ; Ii⟩i , stΩ) →ι (⟨reset(γ ′′i); I
′′
i ⟩i ,C(stΩ, ⟨πrs(γ

′
i)⟩i)) ; ⟨asi⟩i

stΩ , Ω ∀i ∈ P . i, p ⊢ γi ; Ii →κ γ ′i ; I
′
i ,asi

p ⊢ (⟨γi ; Ii⟩i , stΩ) →κ (⟨γ
′
i ; I
′
i ⟩i , stΩ) ; ⟨asi⟩i Reachp (Γ, Γ, ⟨ϵ⟩i)

Reachp (Γ, Γ
′′,A) p ⊢ Γ′′ →α Γ′ ; A′

Reachp (Γ, Γ′,A ++A′)

Figure 13: Global big-step semantics of BSPlite programs and the reachability relation

Program Action trace vector LC TA SA SF GC

Example 1

⟨ [push! (y,y), push! (z, z), push! (y,y), push! (x,x), sync!, pop! (y,y), sync!],

[push! (y,y), push! (z, z), push! (y,y), push! (x,x), sync!, pop! (y,y), sync!] ⟩

✓

✓
✓ ✓ ✓ ✓

Example 2

⟨ [push! (x,x), pop! (x,x), sync!],

[push! (x,x), pop! (x,x), sync!] ⟩

✗

✗
✓ ✓ ✗ ✗

Example 3

⟨ [push! (y,y), push! (y,y), sync!, pop! (y,y), sync!],

[push! (y,y), push! (x,x), sync!, pop! (y,y), sync!] ⟩

✓

✓
✓ ✗ ✗ ✗

Example 4

⟨ [push! (N , (0, ϵ)), push! (N , (1, ϵ)), sync!, pop! (N , (0, ϵ)), sync!],

[push! (l1, (0, ϵ)), push! (l2, (1, ϵ)), sync!, pop! (l1, (0, ϵ)), sync!] ⟩

✗

✓
✓ ✓ ✗ ✗

Example 5

⟨ [sync! (1, ϵ)],

[push! (1, [(R, 0)]) (x,x), sync! (1, ϵ)] ⟩

✓

✓
✗ ✗ ✗ ✗

Example 6

⟨ [push! (0, ϵ) (y,y), sync! (1, ϵ), pop! (2, [(L, 0)]) (y,y), push! (2, [(L, 1)]) (x,x), sync! (2, ϵ)],

[push! (0, ϵ) (y,y), sync! (1, ϵ), push! (2, [(R, 0)]) (x,x), pop! (2, [(R, 1)]) (y,y), sync! (2, ϵ)] ⟩

✓

✓
✗ ✗ ✗ ✓

Figure 14: Trace vectors resulting from executing running examples with p = 2. The right part of the table evaluates the traces’

local correctness (LC), the vector’s textual alignment (TA), source alignment (SA) and safety (SF), and global correctness (GC)

as defined in Sections 4 and 5. Here, x is the location of variable x and x its source and li is the ith address returned by malloc.
The action paths have been omitted in all examples but Example 5 and Example 6.

r ∈ Map = (Loc→ Src∗)

A!1J·K : Action→ Map ↪→ Map

A!1Jpop!δ (l , s)K r = r [l ← ss] if (r [l] = s ′ : ss) ∧ s ≃ s ′, undef oth.

A!1Jpush!δ (l , s)K r = r [l ← s : r [l]]

A!1Jsync!δK r = undef

A!ssJ·K : Action∗ → Map ↪→ Map

A!ssJasK r = fold A!1J·K as ′ r

where as ′ = [a | a = pop! _ _ ∈ as] ++ [a | a = push! _ _ ∈ as]

A!
′J·K : Action∗ ↪→ Map

A!
′JasK = fold A!ssJ·K [as1, . . . ,asn−1] (λl .ϵ)
where as1 ++ [sync!δ1] ++ . . . ++ [sync!δn−1] ++ asn = as

such that ∀1 ≤ i ≤ n, (sync! _) < asi

A!J·K : Action∗ → Bool

A!JasK = tt if A!
′JasK is defined, ff oth.

s1 ≃ s2 ⇔ unknown < {s1, s2} ∧ s1 = s2

fold f [a1, ...,an] r = (f an ◦ . . . ◦ f a1) r

Figure 15: Local correctness of an action trace

To capture these requirements, we abstract the effect of a trace

into a matching (see Fig. 16). The matching is one pair (k,ps) per
superstep, where k counts the total number of pushes at the end

of the superstep and ps is a list containing the index of each push

removed by a pop in the superstep.M! extends A! to index the

m ∈Matching = (N × N∗)∗

r ∈ MapI = Loc→ (N × Src)∗

M!1 : Action→ (N × N∗ ×MapI) ↪→ (N × N∗ ×MapI)

M!1Jpop!δ (l , s)K (k,ps, r) =
(k,k ′ : ps, r [l ← is]) if r [l] = (k ′, s ′) : is ∧ s ≃ s ′, undef oth.

M!1Jpush!δ (l , s)K (k,ps, r) = (k + 1,ps, r [l ← (k, s) : r [l]])
M!1Jsync!δK (k,ps, r) = undef

M!ss : Action∗ → (Matching ×MapI) ↪→ (Matching ×MapI)

M!ssJasK (m, r) = let k ′ = k ifm =m′ ++ [(k, _)], 0 oth. in

let (k ′′,ps, r ′) = foldM!1J·K as ′ (k ′, ϵ, r) in

(m ++ [(k ′′,ps)], r ′)

where as ′ = [a | a = pop! _ _ ∈ as] ++ [a | a = push! _ _ ∈ as]

M!
′
: Action∗ ↪→ (Matching ×MapI)

M!
′JasK = foldM!ssJ·K [as1, . . . ,asn−1] (ϵ, λl .ϵ)
where as1 ++ [sync!δ1] ++ . . . ++ [sync!δn−1] ++ asn = as

M! : (Action∗)p → Bool

M!J⟨asi ⟩i K=tt if ∃ms,∀i ∈ P.M!
′Jasi K(ϵ, λl .ϵ) = (ms, _), ff oth.

Figure 16: Global correctness of a trace vector

pushes added to the state, and to return the matching of locally

correct traces.We then define a trace vector as being globally correct

when each component has the same matching.

SAC ’19, April 8–12, 2019, Limassol, Cyprus Arvid Jakobsson, Frédéric Dabrowski, and Wadoud Bousdira

Before going further, we reconnect global correctness of traces

with the semantics of BSPlite, and confirm that programs with

correct traces do not have register errors:

Theorem 1. If Reachp (Γc , (⟨γi ; Ii ⟩i , stΩ),A) andM!JAK = tt then
stΩ , Ω.

Proof. See Appendix A.2. □

This characterization of correctness is independent of the un-

derlying language. However, we have yet to simplify the task of

writing correct programs. In the next section we define our simpli-

fied programming model that guarantees correctness.

5 SIMPLIFIED PROGRAMMING MODEL

Intuitively, the simplified programming model for registration im-

poses 3 conditions: (1) collective calls to sync, push and pop should
be textually aligned [5], i.e. originate from the same textual position

in each process; (2) the argument of collective calls to push and

pop should be source aligned, i.e., refer to the same memory object:

the same local variable or the same instance of dynamically allo-

cated memory in all processes; (3) the sequence of actions of each

process should be locally correct. These conditions in conjunction

guarantee global correctness.

Consider again the running examples. Example 2 is not locally

correct in any process, and hence disqualified. Due to the source re-

striction, Example 4 is not locally correct in process 0. In Example 3

the memory object referred to by q is not the same in each process,

and hence the second push is not source aligned. Examples 5 and 6

are not textually aligned. Only Example 1 follows the model. We

now formalize these notions using trace vectors.

Definition 1. A trace vector ⟨asi ⟩i is textually aligned if each

component has the same length and the same path at each position:

∀i, j ∈ P. |asi | = |asj | =m∧
∀0 ≤ k < m. πpath(asi [k]) = πpath(asj [k])

□

Definition 2. A textually aligned trace vector ⟨asi ⟩i is source
aligned if all components have the same (known) source and offset

at each position:

∀i, j ∈ P. ∀0 ≤ k < |asi |.asi [k] , sync! _⇒

πsrc(asi [k]) ≃ πsrc(asj [k]) ∧ πoffs(asi [k]) = πoffs(asj [k])

□

Definition 3. A consistent trace vector A that is textually aligned,

source aligned and locally correct is called safe. □

By extension, a program in our model is one that only produces

safe trace vectors. The trace vectors of the running examples are

evaluated against these conditions in Fig. 14. As expected, the intu-

itions given above are consistent with the formalization. Finally, we

prove that the programming model guarantees global correctness:

Theorem 2. If A is safe thenM!JAK = tt.

Proof. See Appendix A.3. □

This condition is inspired by observations of realistic and cor-

rect BSPlib code. We therefore argue that in addition to ensuring

correctness, the condition is sufficiently permissive and coherent

with the programmer’s intuition of correctness.

6 CONCLUSION

This article argues that static analysis can be used to combine

the benefits of writing parallel programs in a dedicated language,

whose semantics matches the underlying parallel model, with the

benefits of writing them in a more widely applicable general pur-

pose language extended with parallel libraries. To illustrate our

argument, we study errors caused by registration in BSPlib, a C

library enabling Bulk Synchronous Parallelism. Registration is used

to create associations between local and remote memory, but can

provoke errors if done incorrectly. We have formalized BSPlib with

registration, characterized correct executions and given a sufficient

condition for correctness strong enough to capture realistic pro-

grams. Our next step is to develop a static analysis targeting this

condition, and evaluate it on real-world BSPlib programs.

REFERENCES

[1] A. Aiken and D. Gay. 1998. Barrier Inference. In Proceedings of the 25th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’98). ACM, New York, NY, USA, 342–354. https://doi.org/10.1145/268946.

268974

[2] O. Ballereau, F. Loulergue, and G. Hains. 1999. High-level BSP Programming:

BSML and BSλ. In Proceedings of the first Scottish Functional Programming

Workshop (Technical Report), P. Trinder and G. Michaelson (Eds.). Heriot-Watt

University, Edinburgh, 43–52.

[3] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping. 2003. The Paderborn

University BSP (PUB) library. Parallel Comput. 29, 2 (Feb. 2003), 187–207. https:

//doi.org/10.1016/S0167-8191(02)00218-1

[4] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L. Smith. 2010.

Introducing OpenSHMEM: SHMEM for the PGAS community. In Proceedings

of the Fourth Conference on Partitioned Global Address Space Programming

Model. ACM, New York, NY, USA, 2. http://dl.acm.org/citation.cfm?id=2020375

[5] F. Dabrowski. 2018. Textual Alignment in SPMD Programs. In Proceedings of

the 33rd Annual ACM Symposium on Applied Computing (SAC ’18). ACM, New

York, NY, USA, 1046–1053. https://doi.org/10.1145/3167132.3167254

[6] J. Fortin and F. Gava. 2016. BSP-Why: A Tool for Deductive Verification

of BSP Algorithms with Subgroup Synchronisation. International Journal

of Parallel Programming 44, 3 (June 2016), 574–597. https://doi.org/10.1007/

s10766-015-0360-y

[7] F. Gava and J. Fortin. 2008. Formal Semantics of a Subset of the Pader-

born’s BSPlib. In Ninth International Conference on Parallel and Distributed

Computing, Applications and Technologies, 2008. PDCAT 2008. IEEE Press, Pis-

cataway, NJ, USA, 269–276. https://doi.org/10.1109/PDCAT.2008.43

[8] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,

T. Suel, T. Tsantilas, and R. H. Bisseling. 1998. BSPlib: The BSP Programming

Library. Parallel Comput. 24, 14 (Dec. 1998), 1947–1980. https://doi.org/10.1016/

S0167-8191(98)00093-3

[9] Message Passing Interface Forum. 2012. MPI: A Message-Passing Interface

Standard Version 3.0. http://www.mpi-forum.org/docs/mpi-3.0

[10] D. M. Ritchie, B. W. Kernighan, and M. E. Lesk. 1988. The C Programming

Language. Prentice Hall, Englewood Cliffs, NJ, USA.

[11] K. Siddique, Z. Akhtar, E. J. Yoon, Y. Jeong, D. Dasgupta, and Y. Kim. 2016. Apache

Hama: An emerging bulk synchronous parallel computing framework for big

data applications. IEEE Access 4 (2016), 8879–8887.

[12] J. Tesson and F. Loulergue. 2008. Formal Semantics of DRMA-Style Programming

in BSPlib. In Parallel Processing and Applied Mathematics, R. Wyrzykowski,

J. Dongarra, K. Karczewski, and J. Wasniewski (Eds.). Vol. 4967. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1122–1129. http://link.springer.com/10.1007/

978-3-540-68111-3_119

[13] L. G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun. ACM

33, 8 (Aug. 1990), 103–111. https://doi.org/10.1145/79173.79181

[14] A.N. Yzelman and Rob H. Bisseling. 2012. An object-oriented bulk synchronous

parallel library for multicore programming. Concurrency and Computation:

Practice and Experience 24, 5 (April 2012), 533–553. https://doi.org/10.1002/cpe.

1843

https://doi.org/10.1145/268946.268974
https://doi.org/10.1145/268946.268974
https://doi.org/10.1016/S0167-8191(02)00218-1
https://doi.org/10.1016/S0167-8191(02)00218-1
http://dl.acm.org/citation.cfm?id=2020375
https://doi.org/10.1145/3167132.3167254
https://doi.org/10.1007/s10766-015-0360-y
https://doi.org/10.1007/s10766-015-0360-y
https://doi.org/10.1109/PDCAT.2008.43
https://doi.org/10.1016/S0167-8191(98)00093-3
https://doi.org/10.1016/S0167-8191(98)00093-3
http://www.mpi-forum.org/docs/mpi-3.0
http://link.springer.com/10.1007/978-3-540-68111-3_119
http://link.springer.com/10.1007/978-3-540-68111-3_119
https://doi.org/10.1145/79173.79181
https://doi.org/10.1002/cpe.1843
https://doi.org/10.1002/cpe.1843

Safe Usage of Registers in BSPlib (Preprint) SAC ’19, April 8–12, 2019, Limassol, Cyprus

A PROOF SKETCHES

This section sketches the proofs of Lemma 1 and Theorems 1 and 2.

While the full proofs have been developed, we do not include them

here due to their length and lack of time. Instead, we defer their

typesetting in a technical report to future work.

A.1 Proof Sketch For Lemma 1

We recall Lemma 1:

Lemma 1. If Reachp (Γ, Γ′,A) then the same source s , unknown
never appears twice in the same component of A associated with two
locations of different base.

Before proving this lemma, we show an auxiliary fact. Namely,

that the path of each local execution step is a “fresh” path that has

not appeared before. We formalize freshness by establishing a strict

order on paths with the intention that, δ1 < δ2 if δ1 is produced
“before” δ2 in the semantics and thus that δ2 is fresh. We then show,

by a standard rule induction on the local semantics, that the initial

and final path of each local step is strictly ordered.

The proof of Lemma 1 consists of showing that for each instru-

mented state H,o and as in a local execution there exists a partial

mapping ρ from sources to bases such that for each location-source

pair (l , s) where s , unknown and either

(1) (l , s) appears in as , or
(2) for some location l ′, H l ′ = l and o l = s , or
(3) for some variable x , s = x and l = σ x .

we have ρ s = πbase(l). We then say that the instrumented state is

ρ-consistent.
Clearly from (1) follows that each source that appears in as is

associated with at most one base, by the single-valuedness of ρ, as
Lemma 1 requires.

We first show that the initial state of a local process is ρ-consistent
with ρ being the empty map. We then show by rule induction on

the local semantics that an appropriate ρ ′ exists that preserves
ρ-consistent of the instrumented state.

• For all cases but malloc and malloc_nullwe take ρ ′ = ρ. In
the cases malloc and malloc_null we take ρ ′ = ρ[(δ , ℓ) ←
πbase(l

′)] where l ′ is the newly allocated location and δ the

current path.

Since the path is fresh, (δ , ℓ) cannot already be defined in ρ.
ρ ′-consistency of the new instrumented state follows by con-

sidering any (l , s) pair that occurs in the new instrumented

state.

• If a new action is added to the trace (rules push, pop and

sync) and it contains the location-source pair (l , s) then ρ s =
πbase(l) follows by the consistency of the instrumented state.

• For the case assign, we prove an additional fact: in a ρ-
consistent instrumented state, the source given by the src-
function for a location applied to ρ returns the base of that

same location. Using this fact, we show the instrumented

state resulting from the assignment ρ-consistent.
• Remaining cases are trivial.

To conclude, we show that ρ-consistency follows for multi-step

execution by standard rule induction. Then, that the concept can

be extended to global executions by showing the existence of p-

vectors of mappings ⟨ρi ⟩i such that the state of each processor i is

ρi -consistent. We show that all reachable global configurations are

⟨ρi ⟩i -consistent. The result follows.

A.2 Proof Sketch For Theorem 1

We recall Theorem 1:

Theorem 1. If Reachp (Γc , (⟨γi ; Ii ⟩i , stΩ),A) andM!JAK = tt then
stΩ , Ω.

The proof strategy consists of establishing a correspondence

between a p-vector of the maps in MapI thatM! acts on and the

registration sequences of Rs in the concrete semantics. In particular,

the correspondence consists of a function from a p-vector of MapI
to an element of Rs. Thus by definition, the correspondence only

holds when the registration sequence is not in the error state.

Trivially, the initial empty registration sequence and an vector

of empty maps correspond to each other.

Before considering reachable configurations, we establish an

auxiliary fact relatingM!ss and C. First, the former is defined for

action traces and the latter over vectors of lists of registration re-

quests. We define a function reqsToTrace from registration requests

to action traces in the obvious way.

We then show that if st and a vector of maps ⟨ri ⟩i correspond,
if ⟨rsi ⟩i is a vector of registration requests such as resulting from

the execution of one superstep, then the vector of maps that results

from applyingM!ss (reqsToTrace(rsi)) pointwise to ⟨ri ⟩i conserves
the correspondence with C st ⟨rsi ⟩i . This follows from a showing

similar relationship between C◦,C• andM!1 followed by standard

induction.

We then proceed by rule induction to show that all reachable

configurations preserve the correspondence between registration

sequence and the map-vector obtained by applyingM!
′
pointwise

to the reached the action vector. The reflection case of Reachp is

trivial. In the step case of Reachp we consider the termination type

α of the global step. In the case α = κ, then the correspondence triv-

ially holds. When α = ι we note that the action trace of each process
i is on the form asi = as ′i ++ [sync! _] such that as ′i does not contain
any synchronization actions, and that as ′i = reqsToTrace(rsi) where
rsi correspond to the list of register requests engendered by process
i and reqsToTrace, three facts which follows from a standard rule in-

duction on the local semantics. Preservation of the correspondence

now follows since it is preserved byM!ss and C.

As the correspondence is preserved by all reachable configu-

rations with an action vector for whichM! holds, and since the

correspondence by definition only holds if the registration sequence

of that configuration is no in the error state, we have the desired

result.

A.3 Proof Sketch For Theorem 2

We recall Theorem 2:

Theorem 2. If A is safe thenM!JAK = tt.

We first show that a trace that is locally correct also has a match-

ing, which is simple given the similarity of the functions A! and

M!.

It then suffices to show that that all pairs of action traces that

are ρ-consistent, textually aligned, source aligned and where both

traces have a matching actually have the same matching, implying

SAC ’19, April 8–12, 2019, Limassol, Cyprus Arvid Jakobsson, Frédéric Dabrowski, and Wadoud Bousdira

that all traces in the vector have the same matching and thus that

the vector is globally correct.

This is done by showing that two such traces are equivalent

modulo bases, and thus exactly equal if ρ of one trace is used to

substitute each source-(base-offset) pair (s, (b,o)) appearing in the

other with (s, (ρ s,o)). This follows from the definition of

(1) textual alignment: from which we know that the traces have

the same length and their action have pointwise the same

path. We can then show that two actions with the same path

from the same program must be the same type of action

(since they originate from the same instruction).

(2) source alignment: which ensures that the two actions at the

same position in the traces have the same source and the

same offset.

Hence, only bases differ between the traces.

From there we show that applied toM!, two such traces have the

same matching. Specifically, we show that a correspondence can

be established between two elements ofMapI that are in this way

equivalent modulo bases. Trivially, two emptyMapI are equivalent
modulo base. We then show thatM!1, applied to actions and maps

equivalent modulo bases return the same matching and new maps

that are also equivalent modulo bases. The result then follows from

by induction on the length of the trace.

	Abstract
	1 Introduction
	2 BSP & BSPlib
	3 BSPlite with Registers
	3.1 Local Semantics
	3.2 Global Semantics

	4 Instrumentation & Correctness
	4.1 Correctness

	5 simplified programming model
	6 Conclusion
	References
	A Proof Sketches
	A.1 Proof Sketch For prop:source-uniqueness
	A.2 Proof Sketch For prop:reach-and-match-then-not-err
	A.3 Proof Sketch For prop:c3suffcondissuff

