T. Abenius, Lassoshooting: L1 Regularized Regression (Lasso) Solver Using the Cyclic Coordinate Descent algorithm aka Lasso Shooting, p.15, 2012.

H. Akaike, Information Theory and an Extension of Maximum Likelihood Principle, Paper presented at 2nd International Symposium on Information Theory, pp.267-81, 1973.

F. R. Bach, Bolasso: Model Consistent Lasso Estimation through the Bootstrap, Paper presented at 25th International Conference on Machine Learning, pp.33-40, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00271289

K. Balasubramanian, B. Sriperumbudur, and G. Lebanon, Ultrahigh dimensional feature screening via rkhs embeddings, Artificial Intelligence and Statistics, vol.31, pp.126-160, 2013.

R. Baranowski, P. Breheny, and I. Turner, rbvs: Ranking-Based Variable Selection, p.15, 2015.

R. Baranowski, Y. Chen, and P. Fryzlewicz, Ranking-based variable selection for high-dimensional data, Statistica Sinica, 2018.

P. J. Bickel, W. R. Friedrich-götze, and . Van-zwet, Resampling Fewer Than n Observations: Gains, Losses, and Remedies for Losses, pp.267-97, 2012.

A. L. Blum and P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelligence, vol.97, pp.245-71, 1997.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, vol.3, pp.1-122, 2011.

H. J. Breaux, On Stepwise Multiple Linear Regression, 1967.

P. Breheny and J. Huang, Penalized methods for bi-level variable selection, Statistics and Its Interface, vol.2, p.369, 2009.

P. Breheny and J. Huang, Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection, Annals of Applied Statistics, vol.5, pp.232-53, 2011.

P. Breheny and J. Huang, Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors, Statistics and Computing, vol.25, pp.173-87, 2015.

L. Breiman and J. H. Friedman, Estimating optimal transformations for multiple regression and correlation, Journal of the American statistical Association, vol.80, pp.580-98, 1985.

L. Breiman and L. Breiman, Better subset regression using the nonnegative garrote, Machine Learning, vol.37, pp.5-32, 1995.

J. L. Castle, A. Jurgen, D. F. Doornik, and . Hendry, Evaluating automatic model selection, Journal of Time Series Econometrics, vol.3, 2011.

J. L. Castle and D. F. Hendry, A low-dimension portmanteau test for non-linearity, Journal of Econometrics, vol.158, pp.231-276, 2010.

G. C. Cawley and N. L. Talbot, On over-fitting in model selection and subsequent selection bias in performance evaluation, Journal of Machine Learning Research, vol.11, pp.2079-107, 2010.

X. Chen and M. Xie, A split-and-conquer approach for analysis of extraordinarily large data, Statistica Sinica, vol.24, pp.1655-84, 2014.

. Cheng, . Guang, H. Hao, Z. Zhang, and . Shang, Sparse and efficient estimation for partial spline models with increasing dimension, Annals of the Institute of Statistical Mathematics, vol.67, pp.93-127, 2015.

N. Choi, W. Hee, J. Li, and . Zhu, Variable selection with the strong heredity constraint and its oracle property, Journal of the American Statistical Association, vol.105, pp.354-64, 2010.

Y. Ding, S. Tang, S. G. Liao, J. Jia, S. Oesterreich et al., Bias correction for selecting the minimal-error classifier from many machine learning models, Bioinformatics, vol.30, pp.3152-58, 2014.

J. A. Doornik, Econometric Model Selection with More Variables Than Observations, 2009.

J. De-rooi and P. Eilers, Deconvolution of pulse trains with the L0 penalty, Analytica Chimica Acta, vol.705, pp.218-244, 2011.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression, The Annals of Statistics, vol.32, pp.407-99, 2004.

C. Epprecht, D. Guegan, Á. Veiga, and J. Correa-da-rosa, Variable Selection and Forecasting via Automated Methods for Linear Models: Lasso/adalasso and Autometrics. Documents de travail du Centre d'Economie de la Sorbonne, vol.80, 2013.
URL : https://hal.archives-ouvertes.fr/halshs-00917797

M. Eugster, T. Hothorn-;-hannah, I. Frick, O. S. Kondofersky, C. Kuehnle et al., hgam: High-Dimensional Additive Modelling. R Package Version 0.1-2, p.15, 2013.

J. Fan, Y. Feng, and R. Song, Nonparametric independence screening in sparse ultra-high-dimensional additive models, Journal of the American Statistical Association, vol.106, pp.544-57, 2011.

J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, vol.96, pp.1348-60, 2001.

J. Fan and J. Lv, Sure independence screening for ultrahigh dimensional feature space, Journal of the Royal Statistical Society: Series B, vol.70, pp.849-911, 2008.

J. Fan and J. Lv, A selective overview of variable selection in high dimensional feature space, Statistica Sinica, vol.20, p.101, 2010.

J. Fan and J. Lv, Sure Independence Screening. R Package Version, p.15, 2010.

J. Fan, R. Samworth, and Y. Wu, Ultrahigh dimensional feature selection: Beyond the linear model, Journal of Machine Learning Research, vol.10, pp.2013-2051, 2009.

J. Fan and W. Zhang, Statistical methods with varying coefficient models, Statistics and Its Interface, vol.1, p.179, 2008.

P. L. Flom and D. L. Cassell, Stopping Stepwise: Why Stepwise and Similar Selection Methods Are Bad, and What You Should Use. Paper presented at NorthEast SAS Users Group Inc 20th Annual Conference, 2007.

I. Frank and J. H. Friedman, A statistical view of some chemometrics regression tools, Technometrics, vol.35, pp.109-144, 1993.

J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, vol.33, issue.1, 2010.

J. H. Friedman, Multivariate adaptive regression splines, The Annals of Statistics, vol.19, pp.1-67, 1991.

W. J. Fu, Penalized regressions: The bridge versus the lasso, Journal of Computational and Graphical Statistics, vol.7, pp.397-416, 1998.

P. Hall and H. Miller, Using generalized correlation to effect variable selection in very high dimensional problems, Journal of Computational and Graphical Statistics, vol.18, pp.533-50, 2009.

E. J. Hannan and B. G. Quinn, The determination of the order of an autoregression, Journal of the Royal Statistical Society. Series B, vol.41, pp.190-95, 1979.

T. Hastie and B. Efron, Lars: Least Angle Regression, Lasso and Forward Stagewise. R Package Version 1.2, p.15, 2013.

D. F. Hendry and J. Richard, , 1987.

A. E. Hoerl and R. W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, vol.12, pp.55-67, 1970.

B. Hofner and T. Hothorn, Stabs: Stability Selection with Error Control. R Package Version 0.6-3, p.15, 2017.

T. Hu and Y. Xia, Adaptive semi-varying coefficient model selection, Statistica Sinica, vol.22, pp.575-99, 2012.

J. Huang, P. Breheny, and S. Ma, A selective review of group selection in high-dimensional models, Statistical Science, vol.27, 2012.

J. Huang, S. Ma, H. Xie, and C. Zhang, A group bridge approach for variable selection, Biometrika, vol.96, pp.339-55, 2009.

C. M. Hurvich and C. Tsai, Regression and time series model selection in small samples, Biometrika, vol.76, pp.297-307, 1989.

C. M. Hurvich and C. Tsai, The impact of model selection on inference in linear regression, The American Statistician, vol.44, pp.214-231, 1990.

A. Jovi?, K. Brki?, and N. Bogunovi?, A Review of Feature Selection Methods with Applications, 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp.1200-1205, 2015.

T. Ke, J. Jin, and J. Fan, Covariate assisted screening and estimation, The Annals of Statistics, vol.42, p.2202, 2014.

T. Ke and F. Yang, Covariate assisted variable ranking. arXiv, 2017.

Y. Kim, H. Choi, and H. Oh, Smoothly clipped absolute deviation on high dimensions, Journal of the American Statistical Association, vol.103, pp.1665-73, 2008.

M. Kowalski, Thresholding Rules and Iterative Shrinkage/Thresholding Algorithm: A Convergence Study, IEEE International Conference on Image Processing (ICIP), pp.4151-55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102810

J. Lafferty and L. Wasserman, Rodeo: Sparse, greedy nonparametric regression, The Annals of Statistics, vol.36, pp.28-63, 2008.

R. Li, L. Huang, and J. Dziak, VariableScreening: High-Dimensional Screening for, 2018.

, Semiparametric Longitudinal Regression. R Package Version 0.2.0, p.15, 2018.

R. Li and H. Liang, Variable selection in semiparametric regression modeling, The Annals of Statistics, vol.36, p.261, 2008.

R. Li, W. Zhong, and L. Zhu, Feature screening via distance correlation learning, Journal of the American Statistical Association, vol.107, pp.1129-1168, 2012.

H. Lian, H. Liang, and D. Ruppert, Separation of covariates into nonparametric and parametric parts in high-dimensional partially linear additive models, Statistica Sinica, vol.25, pp.591-607, 2015.

A. Liaw and M. Wiener, Classification and regression by randomforest, R News, vol.2, pp.18-22, 2002.

Y. Lin, H. Hao, and . Zhang, Component selection and smoothing in multivariate nonparametric regression, The Annals of Statistics, vol.34, pp.2272-97, 2006.

T. Liu, K. Lee, and H. Zhao, Ultrahigh dimensional feature selection via kernel canonical correlation analysis, 2016.

T. Lumley, Leaps: Regression Subset Selection. R Package Version 3, p.15, 2017.

C. L. Mallows, Some comments on cp. Technometrics, vol.15, pp.661-75, 1973.

W. H. Mcilhagga, Penalized: A matlab toolbox for fitting generalized linear models with penalties, Journal of Statistical Software, vol.72, 2016.

. Mehmood, K. H. Tahir, L. Liland, S. Snipen, and . Saebø, A review of variable selection methods in partial least squares regression, Chemometrics and Intelligent Laboratory Systems, vol.118, pp.62-69, 2012.

L. Meier, S. Van-de-geer, and P. Buhlmann, High-dimensional additive modeling, The Annals of Statistics, vol.37, pp.3779-821, 2009.

N. Meinshausen and P. Bühlmann, High-dimensional graphs and variable selection with the lasso, The Annals of Statistics, vol.34, pp.1436-62, 2006.

N. Meinshausen and P. Bühlmann, Stability selection, Journal of the Royal Statistical Society: Series B, vol.72, pp.417-73, 2010.

S. Milborrow, Earth: Multivariate Adaptive Regression Splines, p.15, 2018.

E. A. Nadaraya, On estimating regression, Theory of Probability & Its Applications, vol.9, pp.141-183, 1964.

X. Ni, H. Hao, D. Zhang, and . Zhang, Automatic model selection for partially linear models, Journal of Multivariate Analysis, vol.100, pp.2100-2111, 2009.

B. U. Park, E. Mammen, Y. K. Lee, and E. Lee, Varying coefficient regression models: a review and new developments, International Statistical Review, vol.83, pp.36-64, 2015.

F. Pretis, J. J. Reade, and G. Sucarrat, Automated general-to-specific (GETS) regression modeling and indicator saturation for outliers and structural breaks, Journal of Statistical Software, vol.86, pp.1-44, 2018.

P. Radchenko, M. Gareth, and . James, Variable selection using adaptive nonlinear interaction structures in high dimensions, Journal of the American Statistical Association, vol.105, pp.1541-53, 2010.

P. Ravikumar, H. Liu, J. Lafferty, and L. Wasserman, Spam: Sparse Additive Models. Paper presented at 20th International Conference on Neural Information Processing Systems, pp.1201-1209, 2006.

Y. Saeys, I. Inza, and P. Larrañaga, A review of feature selection techniques in bioinformatics, Bioinformatics, vol.23, pp.2507-2524, 2007.

D. Saldana, Y. Franco, and . Feng, Sis: An R package for sure independence screening in ultrahigh-dimensional statistical models, Journal of Statistical Software, vol.83, pp.1-25, 2018.

C. Santos, D. F. Hendry, and S. Johansen, Automatic selection of indicators in a fully saturated regression, Computational Statistics, vol.23, pp.317-352, 2008.

G. Schwarz, Estimating the dimension of a model, The Annals of Statistics, vol.6, pp.461-64, 1978.

R. D. Shah and R. J. Samworth, Variable selection with error control: Another look at stability selection, Journal of the Royal Statistical Society: Series B, vol.75, pp.55-80, 2013.

E. W. Steyerberg, J. C. Marinus, J. Eijkemans, F. Dik, and . Habbema, Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis, Journal of Clinical Epidemiology, vol.52, pp.935-977, 1999.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B, vol.58, pp.267-88, 1996.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, Sparsity and smoothness via the fused lasso, Journal of the Royal Statistical Society: Series B, vol.67, pp.91-108, 2005.

. Ulbricht, lqa: Penalized Likelihood Inference for GLMs. R Package Version 1.0-3, p.15, 2012.

G. J. Van-den-burg, J. F. Patrick, A. Groenen, and . Alfons, Sparsestep: Approximating the counting norm for sparse regularization. arXiv, 2017.

S. Varma and R. Simon, Bias in error estimation when using cross-validation for model selection, Bioinformatics, vol.7, p.91, 2006.

H. Wang, Forward regression for ultra-high dimensional variable screening, Journal of the American Statistical Association, vol.104, pp.1512-1536, 2009.

H. Wang and Y. Xia, Shrinkage estimation of the varying coefficient model, Journal of the American Statistical Association, vol.104, pp.747-57, 2009.

L. Wang, G. Chen, and H. Li, Group scad regression analysis for microarray time course gene expression data, Bioinformatics, vol.23, pp.1486-94, 2007.

G. S. Watson, Smooth regression analysis, Sankhy?: The Indian Journal of Statistics, Series A, vol.26, pp.359-72, 1964.

S. Weisberg, Applied Linear Regression, vol.528, 2005.

C. Wen, W. Pan, M. Huang, and X. Wang, cdcsis: Conditional Distance Correlation and Its Related Feature Screening Method, p.15, 2014.

M. J. Whittingham, A. Philip, R. B. Stephens, R. P. Bradbury, and . Freckleton, Why do we still use stepwise modelling in ecology and behaviour, Journal of Animal Ecology, vol.75, pp.1182-89, 2006.

T. Wu, K. Tong, and . Lange, Coordinate descent algorithms for lasso penalized regression, The Annals of Applied Statistics, vol.2, pp.224-268, 2008.

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B, vol.68, pp.49-67, 2006.

C. Zhang, Penalized Linear Unbiased Selection, 2007.

C. Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, vol.38, pp.894-942, 2010.

. Zhang, H. Hao, and C. Lin, cosso: Fit Regularized Nonparametric Regression Models Using COSSO Penalty. R Package Version 2.1-1, p.15, 2013.

J. Zhang, Y. Liu, and Y. Wu, Correlation rank screening for ultrahigh-dimensional survival data, Computational Statistics & Data Analysis, vol.108, pp.121-153, 2017.

T. Zhao, X. Li, H. Liu, and K. Roeder, SAM: Sparse Additive Modelling. R Package Version 1.0.5. Available online, p.15, 2014.

H. Zou, The adaptive lasso and its oracle properties, Journal of the American Statistical Association, vol.101, pp.1418-1447, 2006.

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B, vol.67, pp.301-321, 2005.