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Abstract

In this paper we consider aggregation technique to reduce the complexity of large-scale traffic network.
In particular, we consider the city of Grenoble and show that, by clustering adjacent sections based on
a similarity of speed condition, it is possible to cut down the complexity of the network without loosing
crucial and intrinsic information. To this end, we consider travel time computation as a metric of comparison
between the original graph and the reduced one: for each cluster we define four attributes (average speed,
primary and secondary length and heading) and show that, in case of an aggregation rate of 95%, these
attributes are sufficient in order to maintain the travel time error below the 25%.

Keywords: large scale traffic networks, travel time estimation, clustering and aggregation

1. Introduction

Large-scale traffic networks are of great interest nowadays due to the impact traffic has in our everyday
life, both economically and health-wise. City management are interested in understanding the evolution
of traffic and its patterns over the city in order to take decisions to design improved and more functional
infrastructure. However, monitoring the current state of a large scale traffic network is a demanding task.
The heterogeneity of available measures poses several question on how to merge different sources of infor-
mation coming from private and public sources. Furthermore, sparsity is an intrinsic issues related to large
scale systems: independently from the source we choose to rely on, we cannot expect the measurements
to be sufficiently dense to cover the full network in detail. In the past, the main focus of the research
on traffic systems has been the analysis of individual roads or small regions (R. Herring et al. | (2010);
A. Krause et al. | (2008); H. Liu and W. Ma | (2009)); |C. de Fabritiis et al. | (2008]), but less attention
has been given to approaches that are capable of giving a global perspective of the state of a large-scale
networks (Y. Han and F. Moutarde | (2012); |P.S. Castro et al. | (2012); H. Wang et al. | (2015)). For large
scale urban networks, managing real-time traffic information from thousands of links simultaneously is an
overwhelming task and extracting important and meaningful insights from this tangle of data can be even
more challenging. However, the study of theoretical models capable of capturing the macroscopic behavior
of traffic have been introduced many years ago (N. Geroliminis and C. F. Daganzo | (2007, 2012)); [H. Bar-
Gera and S. Ahn | (2010)); |C. Buisson and C. Ladier | (2009))) and nowadays continues to be a popular and
deeply studied research topic (Z. Zhang et al. | (2015); L. Leclercq and N. Geroliminis | (2013))). In recent
years more and more data are becoming available from new sources, such as smart phones, GPS navigators,
and their technological penetration allows to have an impressive amount of real-time traffic information, as
demonstrated by the Mobile Millennium Project (A. Bayen et al. | (2011))).

The main advantage of these new sources is that they do not require placing physical sensors over the
network, thus reducing costs related to installation and maintenance: in other words, each user becomes
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a moving sensor inside the network (see |C. Peng et al. | (2012), J.A. Deri et al. | (2016)), [B. Donovan
and D.B. Work | (2015))). However many data do not necessarily imply meaningful information, since their
interpretation, analysis, treatment and display becomes more and more challenging. From a city management
point of view, the availability of huge numbers of GPS traces can be used in a aggregated fashion to determine
macro-movements and origin/destination patterns of interest: these information become of great importance
in order to monitor and (if possible) adapt the traffic infrastructure to the traffic evolution. To this end, one
could consider the possibility to simplify the complexity of the problem by performing an aggregation over
the traffic network. A recent research |C. Lopez et al. | (2017} 2018)), performed on the city of Amsterdam,
showed that thanks to network clustering, the traffic pattern of the entire city can be synthesized in only
four features composed by only nine clusters. On one hand one could consider a static partition, based on
geographic structure of the network (see H. Etemadnia et al. | (2014); [Y. Li and N. Geroliminis | (2012);
K. An et al. | (2018)): on the other hand, to capture the dynamic evolution of the network, the natural
approach is to apply the clusterization in real-time (see [M. Saeedmanesh and N. Geroliminis | (2017)). A
static partition allows to consider and describe the evolution of precise areas of interest, for instance crucial
origin/destination zones inside the network. With a dynamic partition a certain point of interest might
belong to different cluster in different moments of the day: thus the interest shifts on the evolution of the
clusters and their impact/meaning in the network status. Depending on the problem at hand, the two
approaches could lead, in terms of performance, to completely different results: if a traffic network presents
a regular evolution which repeats daily/weakly following a distinctive pattern, a static analysis/partition
of the traffic network will guarantee reliable results. However, if a traffic network has a highly variable
evolution, which might depend on different parameters (such as weather, traffic accidents etc etc), a dynamic
aggregation allows to be reactive to this variability and to follow the particular evolution in real time.

From a general perspective, the goal of the clustering is to reduce the complexity of an original graph
while respecting a certain predefined criterion for the nodes state/edge value (S. Fortunato | (2010); [F. D.
Malliarosa and M. Vazirgiannisa | (2013))). It is common knowledge that there is no single best strategy for
graph clustering, which justifies the variety of existing approaches. Moreover, most quality indixes for graph
clustering have turned out to be NP-hard to optimize and rather resilient to effective approximations (see|G.
Ausiello et al. |(2002))). The research for clusters can be a demanding task from a computational point of view
and this constraint becomes more and more evident as the size of the network increases. Solutions have been
proposed in the literature in order to deal with networks of big size (see for instance|D. Delling et al. | (2009))
but they often depend on the particular metric used to evaluate the clustering procedure and in general they
are still computationally heavy. Some popular metrics often chosen are coverage (namely the fraction of
intra-cluster edges, to be minimized) [U. Brandes et al. |(2005)), performance (namely the fraction of correctly
placed vertex pairs, to be maximized) |S. M. van Dongen | (2000)), inter-cluster conductance (namely the
thickest bottleneck created by the definition of clusters) R. Kannan et al. | (2004) and modularity (namely
the coverage ratio between a clustering and the same with randomly rearranged edges, to be minimized) M.
E. J. Newman and M. E. J. Newman and M. Girvan |(2004). For all these metrics however, the optimization
problem is NP-hard and thus not feasible in a real-time implementation. Thus, if the aggregation has to be
performed in a time window compatible with a real time application, simpler criteria and procedure needs
to be defined.

1.1. Objective of this paper and Structure

In this paper we investigate and propose an aggregation based analysis of large traffic networks in view
of evaluating travel times between areas of interest inside the urban network of Grenoble. In particular,
by aggregating roads which belongs to similar categories (highways, national roads, urban roads) and have
stmilar speed (up to a certain cut-off), we will show that it is possible to reduce drastically the complexity of
the network while introducing an acceptable error in the travel time calculation. The information and results
we obtain are of great interest to understand the macroscopic evolution of a large-scale traffic network and to
evaluate the average time that users spend in transiting between different areas along the day. In particular
we will focus on the duality of our approach: on one hand aggregation allows to simplify the complexity of
representation and calculation over the network. On the other hand, reduction in the granularity affects the
precision in evaluating the state of the network.



The error introduced will be calculated for multi-origin multi-destination path, namely given an aggre-
gation, we will show that the travel time calculated between two clusters is consistent with the average of all
the possible path between these two clusters in the original graph. We will show that this error grows (non-
linearly) with the aggregation rate and thus a suitable compromise between the reduction of complexity and
the error introduced must be found. Furthermore, we show that in the aggregated graph, typical congestion
patterns (over a daily and weekly base) can be easily reconstructed and defined. The latter leaves open the
possibility to define travel time estimation based on historic data by matching the present condition with a
set of typical pre-defined patterns.

The interest for dynamic aggregations is particularly motivated by traffic networks which show erratic
and fragile behaviors which frequently diverge from a nominal behavior. In our case study, an analysis of
the data available showed that the definition of recurrent traffic patterns in crucial parts of the city is a
very difficult task. As it will be explained in the following section, the structure of the Grenoble network is
not redundant and, due to the presence of mountain ranges around city, it lacks for highway rings. These
limitations translates into a highly fragile network which easily (and ultimately unpredictably) leads to high
congestion risks.

The paper is structured as follows. In Section 2, we introduce the basic and practical information about
data and map we use in order to describe the Grenoble traffic network. In Section 3, we describe in details
the aggregation technique we developed and the attributes which describe the clusters: these parameters
play a fundamental role in the calculation of travel times, since they allow to reduce the complexity while
preserving some of the physical properties of the real network. Then, in Section 4 we show results and
comparisons between travel times calculated over the original detailed graph and the aggregated graph: in
particular we will consider two aggregation rates, one that keeps the travel time error small, the other which
simplifies drastically the complexity of the graph.
4
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Figure 1: Map of the city of Grenoble and main arteries: in orange the highways entering/exiting the city, in
yellow the most important urban roads. On the right, the daily pollution concentration over the Grenoble area.

1.2. Problem setting

Situated in the south-east of France close to the Alps, Grenoble is the 16th largest city in France with a
population of the agglomeration of 451.000 people. The geometry of the city itself is strictly related to the
geography of the surrounding mountains: the Chartreuse range on the north, the Vercors range on the west
and the Belledonne range on the east determines the alcove in which Grenoble lies. Due to these physical
constraints, the urban network of the city can be seen as star-connection, where the urban network as the
center and the three arms as the highways from/to Lyon (north-west), Chambery (north-east) and Gap
(south).



As shown in Figure [1} these three fundamental entry/exit points are connected to each other only by
the south-ring N-87 and the urban network. This critical and fragile connection is one of the main reason
of the sensitivity of the network, which places the city as the seventh most congested in France with an
average of more than 45 hours per year spent in traffic (source TomTom). Due to its strategic importance,
the N-87 has been the target of the project Grenoble Traffic Lab (GTL), started back in 2009 and became
operative in 2013, an innovative online platform which collects data coming from a sensor network (130
magnetometers positioned over a stretch of 10 km) and allows to have a detailed and granular monitoring
of the traffic condition of one-direction of the N-87 (see |C. Canudas de Wit et al. | (2014)). Being GTL a
successful experience, in the context of the ERC-Project ScaleFree-Back (C. Canudas de Wit | (2015])), the
aim is to extend a similar approach to the full scale of the city of Grenoble. There are several reasons of
interest in monitoring the status of the traffic network on a city-scale. From the traffic management point
of view, it allows to understand the dynamics of traffic, the critical points of the networks, the impact of
special events over the normal behavior of the network. At the same time, the status and evolution of the
city traffic allow to plan modification in the network infrastructure with the aim to reduce the hours spent
by users in traffic jam and incidentally, reduce the pollution. With respect to this last aspect, the city of
Grenoble presents again an unfortunate morphology due to the surrounding mountains which limit the air
circulation. In the last decade, the city has recorded at least 20 days of pollution peak per year (days in
which the pollution level overpass the limits imposed by the EU).

For economical but also practical reasons, it would not be possible to place a dense network of sensor such
as the one on the N-87 over a city network. However, as already mentioned, there are nowadays different
sources of information which we can exploit to monitor and reconstruct the state of the network. We think
in particular to GPS traces from mobiles and cars and the information we are able to retrieve from them.
It comes without saying that the number of data available is potentially immense. This is not necessarily
a positive aspect since on one hand the availability of information implies robustness but at the same time
requires a thorough analysis and manipulation to be exploited and interpreted.

In order to obtain a sufficiently dense and reliable data set, we rely on speed measurements obtained
by TomTom. They indeed provide a really granular information with more than twenty thousand sections
spanning the urban network. This implies that computation and analysis of these information can be really
complex and costly if not opportunely set. Furthermore, despite covering the main arteries of the network,
there are several areas where no data is available. Thus it could be of interest, when possible, to infer
something about these areas even though a direct measurement is not available. More in general, this paper
and the approach presented here are motivated by the possibility to reduce the need of detailed information
about a large scale urban network while keeping the error of approximation as small as possible.

2. Architecture of the platform

To monitor large-scale traffic networks, many ingredients have to come into place and different part of
the architecture need to be thoroughly defined. As mentioned before, we acquire speed data from TomTom
and thus the first step is to retrieve them and make them available for computation. To this end, beside the
data itself, the map-graph plays a fundamental role both in displaying and allowing computation over the
traffic network. In this section we present these two main features of the architecture: first we introduce
data specifications and details, then we explain how the map is obtained and the conversion/manipulation
are performed in order to represent TomTom data over a graph structure.

2.1. Data specification and acquisition

We acquire data through a HT'TP GET request sent from a white-listed IP using a secure API key. In
response we receive a Protocol Buffers - .proto - file. Protocol buffer serializes structured data, as XML
does, while producing smaller file and achieving faster reading/writing operations. This allows to transfer
and archive a high volume of data in a faster and easier way. A raw data file, in our case a file around 67
Kb, can be seen as a time stamp and a list of samples. Each sample is made of four fields:



Figure 2: Urban network with TomTom traffic data: the different colors represent the different category of roads.
In particular, we identify four road categories FRC defined by TomTom: red corresponds to FRCO roads, orange to
FRCI1, blue to FRC2 and light-blue to FRC3-FRCA4.

e Location of Interest: a road stretch and its direction, whose location is encoded using OpenLR
representation, a standard for encoding, transmitting and decoding geographical locations developed
by TomTom since 2009

e Road Category: an attribute of importance of the road on a range from FRCO to FRC7 where FRCO
stands for the larger roads and FRCT7 for the smaller ones. Typically the can be classified as:
- FRCO-FRCI1 represents highways and freeways
- FRCO2 represents the most important urban and extra-urban arteries
- FRC03-FRCO04 represents the smaller and less important roads in the traffic network
- FRCO05-FRCO7 represents even less important roads, but information on these class are not avail-

able for the Grenoble network

e Travel Time: current travel time in seconds along the location of interest, computed using speed-data
measured on the road and aggregated over a time window of 1 up to 2 minutes (the time required
from TomTom to acquire and process raw data)

e Average Speed: current average speed in km/h, based on the current travel time and the length of
the stretch



e Calculated Data Quality: confidence value from 0% to 100%, that depends on large number of
factors, between which: the freshness of the measurements, the volume of the measurements and the
deviation between the measurements and the historical records.
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Figure 3: Schematic of the confidence value classification along time for FRCO-FRC2 roads in a typical urban
network area.

In France, TomTom guarantees a confidence value greater than 50% which as expected (see Figure [3]
source TomTom) is much larger during the day, when more vehicles can provide measurements while it
decreases drastically during the night. In particular, during the day, 80% of the data have a confidence
value of more than 90% which in other words means that during the crucial moments of the day, TomTom
provides highly reliable information. In the Grenoble area, travel time and speed data are available for roads
between FRCO and FRC4. They cover around 550 km which represents more than 50% of the roads in the
FRCO0-FRCA4 class and in a general perspective 20% of the total road network. To validate the correctness
of their aggregated measurements, TomTom has performed a posteriori experiments to quantify its data
reliability using TISA QBench Calculations methodology and for FRC0O and FRC1 roads TomTom claims
an excellent score above 80%.

With respect to data of the FRCO category, thanks to the GTL project we could further validate the
confidence parameter given by TomTom: in particular we compared TomTom profile of velocities with the
one we obtain from our ground-sensors over the whole length of the N-87. The results are reported in
Figure [d] and clearly confirms that TomTom is highly reliable in high category roads. The small positive
bias and the slight delay (in the order of 1 minute) are totally compatible with the case of study: indeed
GTL frequency of update (15 sec) is much smaller than the one of TomTom and, thanks to the 130 physical
sensors in place, the granularity is much higher. Nevertheless, TomTom recovers perfectly the traffic trends
and evolution and on a larger scale confirms the possibility to use aggregated information.

2.2. Map and and its conversion

In order to accurately represents Grenoble road network we also need a detailed road map. With this
respect, TomTom provides two Shapefiles, one relative to the sections and one to the intersections of the
whole urban network. A Shapefile is a geospatial data format that allows to describe vector features such
as points, lines or polygons. Each feature can hold attributes used to describe it. In our file the roads are
represented by lines with their extremities as intersections. Roads have several attributes such as length,
number of lanes, maximum allowed speed, road name and many more. From this Shapefile we construct a
first graph where intersections are nodes and stretch of roads are edges (about 49000 nodes and 98000 edges,

6
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Figure 4: Daily difference between ground truth travel time and TomTom reported travel time.

Figure . This graph is directed therefore between two nodes each direction is represented by an individual
edge.

In this framework, the speed measurements will be assigned as weight of the edges. To perform this
assignment it is necessary to match the locations where TomTom is providing data to the edges of the
graph representing the road network. The representation of the road network we just described is easy
to understand, graphically convenient and also natural to define paths. On the other hand, in view of
performing an aggregation based on speed measurements, it would be much easier to consider a graph where
the attribute of speed is referred to the nodes rather than to the edges. To this end, in the following we
consider the line graph obtained from the canonical graph, namely the graph where stretches of roads become
nodes and intersections become edges. The procedure to transform a road traffic network to its associated
line graph is summarized in Figure 6 for the simple case of one intersection (Figure @A)

The classic representation (Figure [6]B) is composed by a node (red) with two directed and two bidirec-
tional edges (6 edges), going to four other intersections (blue). The conversion to the line graph produces
a new graph with 6 nodes and 11 edges (Figure @C) In terms of representation, the latter is clearly less
compact but much easier to manipulate and to use to perform aggregation. More specifically given a graph
G = {N, M} with n nodes, m edges and vertex i out-degrees d;, the associated line graph G;, = {V,&}
contains v = m nodes and e edges with

n
e= % Z d? —m (1)
i=1

In general, the passage to the line graph considers each section as a node and each intersection as a set of
edges: this set of edges is directed and has to respect the physical interconnection between sections.

3. Clustering and aggregation technique

Once the line graph of the urban network is obtained, it is now possible to consider aggregation and
clustering techniques to reduce the network complexity. In this section, we first explain the aggregation
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Figure 6: From a road intersection to its representation in a line graph.

principle and how the clustering is performed. Then we introduce in details which attributes we assign to
each cluster and how to calculate them.

3.1. Clustering methodology

The principle of clustering strategy we introduce aims to achieve uniqueness in the clustering and at the
same time a simple realization since ultimately the goal of this application is to be feasible in a real-time
implementation. In words, two nodes belongs to the same cluster if a path exist between them such that
every edge of that path satisfies a given criterion. We implemented this clustering by removing from the
graph edges that do not satisfy the criterion. Then we compute weakly connected components of the graph,
and those weakly components will be our different clusters. We recall the definition of a weakly connected
component.
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Cut-Off for FRC0-FRC2

1 2 4 6 8 10

70% | 3% | 5% | 1% | 8% | 79%

5% | 8% | 81% | 82% | 83% | 84%

80% | 82% | 84% | 86% | 87% | 88%

82% | 85% | 87% | 88% | 89% | 90%

85% | 87% | 89% | 90% | 91% | 92%

Cut-Off for FRC3-FRC4
w

87% | 89% | 91% | 92% | 93% | 95%

Table 1: aggregation rate in percentage for different selection of the cut-off parameters: by columns the cut-off chosen for roads
with category FRCO-FRC2, by rows the cut-off chosen for roads with category FRC3-FRC4, both expressed in km/h.



Definition 1. A weakly connected component of a graph G = {N,M} is a mazximal subgraph G= {./V,M}
that is connected and such that there is no edge with a tail outside N' and the head in N

To perform the clustering over Grenoble traffic network represented by a line graph G, = {V,£}, we
choose a criterion based on the speed attribute associated to each section, namely each node. For every pair
of adjacent sections i-j, we define the weight of the associated edge e;; in the line-graph as

€ij = |Ui - ’Uj| (2)

where v; is the speed of node i. Then we say that an edge satisfies our criterion if the speeds difference of
the two ends node is less than a given cutoff &: formally, we define a new graph G4 = {V, A} (where we
delete edges that do not satisfy the condition) as

< =1
ay =4 W=7 3)

61j>ééaij:0

In order to preserve some of the intrinsic structure of the urban network, we have divided the roads in three
classes based on their functional road class:

e motorways and freeways (FRC0O and FRC1)
e important urban roads and national roads (FRC2)
e secondary roads (FRC3 to FRC4)

Based on these three groups, sections belonging to different classes can not belong to the same cluster.
Thus the cut-off is defined as a vector with a specific entry associated to each of these groups. As mentioned
before we perform the aggregation by condensing the weakly connected components of the graph into super-
nodes and thus obtaining a new graph Gy, = {N, A} where N is the number of nodes after the condensation
and A is the set of edges connecting the super-nodes. We can now formally define the aggregation rate as

NN
v @)

which measures the percentage of complexity reduction introduced by the clustering. The resulting graph
G, thus defines zones that are homogeneous in speed and importance. Clearly, the aggregation rate is a
function of the present state of the network, namely the speed measurements we retrieve: for the sake of
simplicity, in the rest of the paper we refer to the aggregation rate as the average of AR along the day. For
a fixed cut-offs combination, we observed that the average aggregation rate is constant between different
days while the variance might slightly change. To clarify this point, in Figure [7] we plot the evolution of
AR with cut-off €jo,5) = 2 and €[34) = 4. As it can be observed, the average value is really close to 81% (see
Table (1)) and varies between a max value 83% and a min value 78%.

In Table [1} we summarize some of the results obtained by setting different cut-off €jo.1}, €[2) and €3,y
for the three different classes of roads. In particular we show how the aggregation rate evolves in function
of how the cut-off are set. For a desired reduction of complexity, one can choose the opportune range of
cut-offs.

An interesting feature of the clustering procedure just defined is that G exhibits a tendency to scale-
free property. In fact, it is possible to observe that our clustering procedure based on speed similarity and
weakly connected components naturally creates hubs (that collects section homogeneous in importance and
speed) which represents the crucial areas inside the traffic network. We recall that a scale-free network is a
network whose degree distribution can be expressed, at least asymptotically, as a power low

AR =

Plk) « k™
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Degree distribution before/after clustering
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Figure 8: Degree distribution before and after the clustering: for an increasing AR, the degree distribution
approaches the scale free behavior up to a AR = 90% (grey to black plots).

where P(k) is the fraction of nodes in the network having k connections to other nodes and 2 < v < 3.
As shown in Figure for increasing cut-of (and as a consequence aggregation rate AR) the scale-free
distribution (in dash-dot red) is approximated better, up to a value around AR = 90%: the different degree
distribution move from light a grey to a black line. As a matter of fact, in the degree distribution of the
aggregated graph it is always possible to identify characteristic peaks, one around d = 4 and one around
d = 2: in particular it is possible to see that by aggregation, we reduce the number of nodes having degree
d = 4 and thanks to the hub-structure obtain a degree distribution which is centered around d = 2.

3.2. Clusters information

By clustering we obtain a reduction of complexity in terms of number of nodes. However, we still have
the possibility to define some cluster properties in such a way that the information of the original physical
graph are not all lost. The goal of defining these properties is to capture the essential property of the
physical nodes that belongs to a certain cluster and to use them to characterize the cluster. For instance,
once a cluster is defined, what is the state (in our case, speed) associated to this super-node? How can it
be defined from the original nodes that belongs to this super-node?

A 2 O\ B o9
L9 o ©
\oc/?/g;@ — eo, “° ?
& g O o o
P e o e
& [¢)

Figure 9: From a set of nodes to the cluster geometric representation.

The reason of using clusters and to introduce a set of properties is to forget the detailed physical
information of the original graph without loosing too much of its intrinsic properties. In our case, each node
has a huge number of properties between which we recall location in GPS coordinate, associated length,
associated speed, information about neighbors section and many many more. By clustering we mainly loose
the details of the topology of the graph (namely detailed path from a node to another), on the exact speed
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in a certain section (since each section now belongs to a cluster). As a matter of fact, for each cluster we
define four properties:

e the mean speed of a cluster: is the sum of the length of every section belonging to this cluster
divided by the sum of those sections’ travel time

e the center of gravity of a cluster: depends on the center of mass of each section belonging to this
cluster. Each section is considered as unitary mass point and thus the center of gravity coincides with
the geometric one.

e the principal direction of a cluster: is the angle between the horizontal axis and the direction
defined by the primary axis. The latter is provided by the linear regression of this cluster’s nodes
coordinates (see Figure [9))

e the lengths of a cluster: is a vector of two distances that defines the size of this cluster along it’s
principal direction and the perpendicular direction. They are obtained by computing the variance of
this cluster’s nodes coordinates along those two directions.

Figure 10: Geometric distance between two clusters, C, C, the angle between the center of masses is 6.

3.3. Calculation of travel time in the clustered graph

The definition of the last two properties is of great importance in order to simplify drastically the
complexity of the network while keeping the approximation error small. First of all, let us introduce a
metric to compare the original graph with the clusterized graph. Given two adjacent clusters, Cp, Ci we
define their geometric distance "% as the distance between their two center of gravity (see Figure ,

namely
Eh%k Ek*)h

Eh(_)k‘ _ 5
— (5)
with
ek = \/Cos(0 - @h)ﬁip +sin(0 — on) 0, (6)
Jheh _ \/Cos(g — )3, +sin(0 — 1) 3, (7)
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where 6 is the angle between the horizontal axes and the the line connecting the two center of gravity. Then,
we can compare the length of a path in the original graph with the clustered path and more in general the
length of all possible paths connecting nodes of two clusters with the clustered path length £*<*,

Definition 2. For each couple of adjacent clusters Cy,, Cy, consider all the nodes v; € Cp,, v; € C. For each
couple v;, v; consider, if it exists, the shortest path connecting them on the original graph G, denoted as
(vi,v;)g. Then we define the inter-cluster length error &, as

Yo D lwivy)g —H

v; €Cp v; ECk

v YD vy

v; €Ch v; ECk

& (8)

The inter-cluster length error compares the aggregated path length with the average path lenght be-
tween two clusters. Clearly, as the size of clusters increases and as a consequence does the simplification,
aggregation can introduce huge errors if a single path is considered. Consider Figure [I1] and the three
paths connecting cluster A and B: it becomes clear that if one compares #** with either path 1 (red) or
path 2 (green), the error introduced is big. With respect to path 3 (blue) however, the error is quite small
and thus the approximation correct. In general, an opportune definition of the aggregated length allows
to maintain the error with respect to the average path between two clusters limited. The error introduced
depends drastically not only on the size but also on the shape of the cluster: clusters with symmetric shapes
are more likely to have regular distribution of path lengths and thus &, can be maintained small. With
the calculation of travel time in mind, we also define the aggregated path length for cluster which are not
adjacent. Consider two clusters Cp, Cp4+; not adjacent, we define the aggregated path length as

€h<—>h+i — €h<—>h+1 + €h+1<—>h+2 L+ £h+i71<—>h+i (9)

namely we consider half of the length for departure/arrival clusters and the full length for clusters which
are completely crossed during the path. Consider Figure [12| and two possible aggregated paths (green and
red), connecting the origin/destination clusters Co, Cp. We have

éﬁ)(—)O — ¢DeH + pHeM +€M<—>P +£P<—>O
€5<—>O — ¢beC +€C<—>B +€B<—>E +£E<—>I +£I<—>O

Clearly, for origin/destination clusters which are not adjacent, there might be multiple aggregated paths
connecting the two and thus multiple aggregated path length: we define the set of aggregated paths con-
necting Cp, Cr as Lpek- In general, depending on which real path we want to compare our approximation
with, we could choose the aggregated path that passes through the clusters which contains the sections of
the real path. However, being this calculation really tedious and heavy, for non adjacent clusters we define

the aggregated path length as
(R = min {hF) (10)

1€LL ok

It is important to stress that the choice of cluster parameters we introduced is light in terms of com-
putational load: being our aim to exploit this clusters in a real time scenario, computing for instance the
average path length (which ideally would lead to &, = 0), for huge graphs is not feasible. Our choice in-
stead, based only on geographic distribution of nodes allows to calculate these parameters in a time-window
compatible with real-time applications. In fact, the complexity of calculating these parameters is linear
with the number of nodes O(]V|), where |V| is the cardinality of vertexes set. As mentioned in previous
sections, the main comparison between original and clustered traffic network is based on traveling time
calculation. In particular, we will compared the travel time between clusters with the average travel time
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Figure 11: Two adjacent clusters and 3 different paths: in red the longest path 1, in green the shortest path 2, in
blue path 3 close to the centers of mass.

Figure 12: Example of clustered path: considering two origin/destination clusters, Co, Cp we have two possible
paths in the clustered graph, one in green, one in red.

between origin/destination section chosen inside the departure/arrival clusters. It is worth recalling that
from our point of view, if two clusters are adjacent, the travel time to go from one to another and vice versa
is the same and it is unique.

Following the definition of the distance between two adjacent clusters (4), we define the cluster-to-cluster
travel time as

h—k k—h
Th<—>lc — ¢ ¢

(11)

namely, we consider the sum of the travel time to go from the center of mass of clusters Cy,, Cy. to the boarder

2Uh 2'Uk
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of the cluster, moving along the line connecting the two center of masses, respectively at the cluster average
speeds v, vg. Consider Figure[I2]and suppose that we are interested in the travel time between the adjacent
clusters C4, Cg then we have

A—B B—A
TA<—>B — ¢ ¢

204 2uR

with 475 and ¢824 as in (5).
When two clusters Cp,, Cp1; are not adjacent, we define the traveling time as

Th<—>h+z — Th<—>h+1 + 7_h—&-1<—>h+2 +. Th+z—1<—>h+z
ph—h+1 oht1—h ph1—h42 pht2—ht1 phti—1—h+i phti—hti—1
- 2vp, 2V 41 2Up41 2V 42 o 2Up 41 2Up 41

namely we consider half of the length for departure/arrival clusters and the full length for clusters which
are completely crossed during the path.

Consider again the example in Figure [12| and suppose we are interested in the origin/destination travel
times between clusters Co, Cp: to the two options that passes through clusters Cy, Cpr, Cp (in green)
and another passing through Cc, Cp, Cg, Cr (in red). corresponds two possible travel times 7.°© TbD‘_)O.
Similarly to the case of aggregated length for non-adjacent clusters, we define the aggregated travel time as

h<k : h«k
TN = min {70 (12)
where T is the set of possible aggregated travel time between the two clusters. It is worth stressing
again that this choice is really conservative but allows to compute aggregated travel time uniquely without
considering detailed physical path. In the following Section we will indeed show that all these simplification
have a limited impact on the estimation of travel time from an area to another. The following definition
explains how we compare in details our aggregated travel time with the ones on the original graph.

Definition 3. For each couple of adjacent clusters Cp,, Cy, consider all the nodes v; € Cp,, v; € Ci,. For each
couple v;, v; consider, if it exists, the shortest path connecting them on the original graph G, denoted as
T(vi,v;)g. Then we define the inter-cluster travel time error &, as

S0 Ir(vivg)g — T

v;€Ch v;ECY

> Twinvye

v; €Cp v; ECk

gTij = (13)

As a matter of fact, for large aggregation rates AR, there are several interesting paths which could
lie inside a unique cluster. In order to take into account for these paths, we define also an intra-cluster
aggregated travel time as

RO _ s RO
7" = min {7; 14
min {7/} (14)
where T is the set of all possible travel times inside cluster h and each Tiho depends on a intra-cluster
length

hO — \/cos(9 — goh)fip + sin(f — goh)fis .

Clearly, the minimal value coincides with the secondary length £, of the cluster 2 (namely for 6 = o5, + 7),
namely the shortest distance to cross the cluster.
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Definition 4. For a given cluster Cy, consider all the nodes v;,v; € Cj, which are not neighbors. For each
couple v;, v; consider, if it exists, the shortest path connecting them on the original graph G, denoted as
7(vi,vj)g. Then we define the intra-cluster travel time error £, as

Y Ir(viv)g -7

v;,vj ECp

> 7(vivy)e

Vi,V eCp

&, = (15)

This choice of the intra-cluster aggregated travle time is motivated by the fact that, even though we
neglect all trivial paths (namely paths which only include two adjacent sections), in our framework possible
intra-cluster paths can be really short. More sophisticated choices could be made but we remark again that
we are trying to simplify as much as possible the complexity of the overall architecture.

More in general, in terms of macroscopic traffic evolution, one could define a cutoff for the minimal
length of the paths to be considered and thus restrict the analysis only to paths which play an important
role into the traffic evolution. If short paths were neglected, a more accurate choice would coincide with the
average of all possible 77O,

4. Travel Time Computation and Results

In order to validate our approach we wanted to compare our aggregated travel time with the travel
time calculated over the original graph. To this end, we have selected eleven points of interest of the road
network (see Figure which represent the entry and exit points to the city network and some locations
inside the city. The selection of this set of these points, labeled POZ, aims to cover the most important and
typical traffic flows in the urban network of Grenoble. The urban targets are for instance the train station,
the university campus and Grand Place (commercial area), while the entry/exit point to the city are the
highways A41, A48 and A480. Thanks to this selection, we will be able to analyze the travel time evolution
for typical paths that stay inside the urban area (typical citizens users) but also paths that cross the urban
network (commercial transportation, commuters).

X
Fontaine * *
Train station Campus

. Grenoble Martin. X 8
Pariset d'Heree Gieres

* f
Grand Place &

* Eybens
Cours Jean Jaures,

*
A480

Figure 13: Selected points of interest of Grenoble area.
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As describe in Section 3, our clustering is dynamic and thus during the day these points of interest will
belong to different clusters or potentially lie in the same. Thus when calculating the evolution of travel times
we will select the shortest travel time path in function of the traffic evolution. The comparison we present
in the following relies on Definition 3-4 and in particular on the travel time errors (13)-(15) between the
computation over the original graph and the aggregated graph. As mentioned before, these definitions are
disadvantageous with many extents: for instance, since in the aggregated graph we chose the shortest travel-
time path, this path could be substantially different from the one in the original network. Furthermore, in
case two points of interest lie inside the same clusters, we will compare our estimate with the average of all
the possible paths inside the clusters, namely we will consider a lot of paths which are not meaningful from
a macroscopic perspective. Nevertheless we will show that even with high aggregation rate (AR = 95%) we
are able to keep the error limited (around 25%).

4.1. Ewvolution of the Clusters

The first aspect to be analyzed is the evolution of clusters during the evolution of traffic. As already
explained in previous sections, the aggregation we perform is dynamic and thus is fundamental to understand
how and why clusters changes. As a matter of fact, the more we aggregate the more stable the clusters: this
behavior is actually expected by the definition of the clustering procedure since by increasing the cut-off we
move towards a scale-free distribution.

AR-80% _ [/ v

L ]
< e

08:00 \ : 13:00 \ i 17:00

Figure 14: Clustering evolution along the day for AR = 80% and AR = 95%. Different colors mean different
fluidity, where green represents high fluidity and red low fluidity. The fluidity is defined for each clusters as the ratio
between the actual average speed and the historic average speed.

As shown in R. Albert and A. L. Barabasi | (2002), scale-free graphs are more resilient and robust to
edges attacks. During the evolution of the traffic, the change of speed in a section such that the condition
(2) is met or not can be seen as an attack that erase one of the edges in the graph G4. In the context
of traffic, a similar analysis has been performed in [D. Li et al. | (2015), where the authors analyzed the
sensitivity of a traffic network by means of percolation theory.

By increasing the cut-offs of the clustering procedure (and thus the aggregation rate AR) we obtain
clusters that are more stable at the price of simplifying/loosing detailed information. In Figure [14] we show
3 samples of the evolution of the clusters during the day for two different aggregation rate, at three crucial
moments of the day, namely 08h00, 13h00 and 17h00. We can clearly observe that, for AR = 80% the
clusters changes drastically with the traffic evolution and while a repetitive pattern can be observed over a
daily basis, it is much harder to find a stable structure in the clusters organization. On the other hand for
AR = 95% the clusters are stable along the day and only little and marginal variation can be observed.
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4.2. Result for AR = 80% and AR = 95%
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Figure 15: Travel time comparison between the aggregated graph and the detailed graph: evolution over the day,
between 07h00 and 19h00, with the aggregated travel time (in red), the average of all the travel times in the detailed
graph (in yellow) and the variance of these travel times (black line). Best and worst travel time per origin/destination
are displayed for AR = 80% and AR = 95% respectively in the upper and lower line of the image.

In terms of travel time calculation, we expect the error introduced by clustering to grow linearly with
the aggregation rate. As a matter of fact however, this error does not grow linearly with the aggregation
rate and thus an opportune compromise has to be defined between the desired simplification and precision
we want to keep. A comparison can be observed in Figure [L5| where we considered two origin/destination
paths for each of the two cases AR = 80% and AR = 95%: in particular we chose the path where we commit
the smallest error (from A41 to Meylan in AR = 80%, from A41 to Grand Place in AR = 95%) and the one
where we commit the largest error (from A41 to Eybens in AR = 80%, from A41 to Gare in AR = 95%):
the comparison is between the travel time calculated in the aggregated graph (red), the average of all the
possible paths connecting the sections in the origin/destination clusters (yellow) and their variance (black).
The aggregation were performed with e 1] = ey = 4km/h and ef3 4 = 2km/h to obtain AR = 85% and
with ep1] = ejg) = 10km/h and e[3 4y = 6km/h to obtain AR = 95%. Furthermore, the results presented in
the following consider the time interval between 07h00 and 19h00, where TomTom data are more accurate
and reliable.

It becomes immediately clear that the error between the aggregated travel time and the average of the
traveling times between the two clusters defined in is over the day acceptable in both cases (between
8% and 27% for AR = 80%, between 10% and 34% for AR = 95%) while the variance depends strongly
on the aggregation rate selection. In particular, with AR = 95%, the variance becomes in the worst case
more than 250% of aggregated travel time. It is however interesting to notice that both aggregation rates
preserve the traffic evolution over the day with a congestion peak early in the morning and another milder
peak late in the evening.
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Trade-off between Aggregation and Travel Time Computation
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Figure 16: Evolution of the global inter-cluster travel time error £ in function of the aggregation rate AR: both
values are in percentage.

An important aspect to be observed is that in case of AR = 80%, the worst case error is mainly a
underestimation of the travel time while for AR = 95% the worst case error is clearly an overestimation
of the traveling time. The former is due to the fact that, by aggregation, we approximate real paths with
projections of clusters dimension: thus, as long as the simplification is not too high, we calculate paths which
in general are much shorter than the real ones. The latter mainly comes from the size of clusters which,
for really high aggregation rate, produces potentially really high aggregated length. As a consequence, even
origin-destination clusters which are close might have aggregated path lengths that are really long. We want
to stress that this is however a natural price to pay for the huge simplification introduced.

Another aspect that is interesting to observe is the evolution of the variance during the day. In particular,
during rush hours (especially in the morning), travel time is really sensitive to the particular path chosen and
thus the aggregated travel time can only aim to be correct in the average but the variance will be potentially
important. On the other hand, during the day, when traffic smooths down, the variance is notably smaller
until 18/19 p. m. when the second traffic peak is observed.

4.8. General Results

More in general, in order to compare the travel time calculation for different aggregation rate AR, we
define a global error metric, namely a global inter-cluster travel time error

> Ir(wivy)g — 7K
SG _ Z v; €Ch v;ECk (16)

¢
Ch.CioPOT > r(wivy)g

v; €Ch v; EC

where the notation Cp,Cyr, O POZ means pairs of clusters containing pairs of points of interests. This global
travel time error can be computed over different time windows, thus in order to obtain a big picture point
of view we considered time windows of one week. This definition allows to estimate the evolution of the
travel time error for increasing aggregation rate and the values, calculated over an entire week of datas, are
reported in Figure As a matter of fact, even when the aggregation rate is 95%, the global error is limited
to 25% which with a certain extent is an astonishing result. Figure shows also that the relationship
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between the aggregation and the error introduced is not linear, thus it is necessary to carefully choose the
aggregation cut-off to obtain the desired trade-off between AR and £S.
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Figure 17: Travel time comparison between the aggregated graph and the detailed graph: evolution over a week,
each day between 07h00 and 19h00, with the aggregated travel time (in red), the average of all the travel times in
the detailed graph (in yellow) and the variance of these travel times (black line). Best and worst travel time per
origin/destination are displayed for AR = 80% and AR = 95% respectively in the upper and lower line of the image.

In Figure[I7] details about the evolution of the best and worst aggregated path over the week are shown.
Both for aggregation rate AR = 80% and AR = 95%, the best case error is below 10% while the worst case in
respectively £80 = 27% and £2° = 36%. Daily repetitive patterns can be observed, with congestion forming
early in the morning and later in the afternoon: a particular event (namely a snowy day), can be observed
on Friday morning resulting in a wide-spread congestion. Both displayed examples suggests however that
there is the possibility to predict with a certain accuracy the travel time between different areas as long
as the traffic evolution follows its natural behavior. Days with special events, accidents, adverse weather
conditions, can be easily recognized even in the aggregated graph.

4.4. Complexity reduction

An interesting advantage of our architecture is the reduction of computation time to calculate huge
numbers of origin/destination travel time. For different values of AR we thus compare the computation
time for 250.000 (randomly chosen) paths in the original graph and the aggregated graph. Obviously, the
algorithm to find the shortest path is the same for both cases, namely the Dijkstra’s algorithm (see
Fredman and R. E. Tarjan | (1984)).

The result we present have been obtained with commercially available platforms and software: thus the
absolute values of the values obtained might vary depending on the particular hardware setting available.
As a reference, we obtained (roughly) 55 minutes of calculation time over the original graph. As it can
be observed with the blue plot in Figure the computation time reduces almost linearly with respect
to the aggregation rate. Already for AR = 60%, using the aggregated graph allows to save 50% of time:
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for the aggregation rates we considered in previous simulations (namely AR = 80% and AR = 95%), the
computation time save ranges between 75% and 90%. In practical cases, this computation time gain has to
find an opportune trade-off with respect to the precision required: in red we plot the error &, relative to
the 1000 paths chosen. As already remarked previously, the error in travel time computation is not linear
with respect to AR and thus, depending on the desired accuracy and the time constraints, the compromise
between these to aspects have to be clearly defined.
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Figure 18: Trade off between reduction of complexity and precision in the calculation. For different AR, in red
we plot the £F while in blue we represent the gain in terms of computation time for calculating the shortest paths
between 250.000 couples origin/destination.

It is also worth remarking that the gain in computation time is independent from the number of paths
considered. As a matter of fact, the complexity of the Dijkstra’s algorithm can be expressed as (’)(|€ | +
[V[log(|V])), where [V| and |€]| are the cardinality of the vertexes and edges set respectively. After the
aggregation both the set of vertexes and edges is highly reduced: we can thus express the complexity of our
approach as

O(IV]) + O(I€] + [Vllog(|V])) (17)

where where W| and |f:' | are the cardinality of the vertexes and edges sets of the aggregated graph respectively.
The first term in is relative to the complexity of the aggregation algorithm (and thus depends on the
original graph vertexes [V|) while the second term is the complexity of the Dijkstra’s algorithm over the
reduced graph. As a matter of fact, [V| and |€| cardinalities vary along the day according to the aggregation
and thus it is not possible to give an exact expression of the complexity reduction. However, guided by the
intuition, we know that both the set of vertexes |V| and the set of edges |£| in the reduced graph are much
smaller than the one of the original graph. Thus, we can conclude that in the average, the complexity of our
architecture (namely aggregation plus travel times calculation over the reduced graph) is computationally
much more convenient than computing over the original graph.
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4.5. Discussion of the Result

The result presented in this sections all display that it is possible to reduce the complexity of the traffic
network while preserving a fairly accurate description of traffic evolution. On one hand, we obtained that
by setting the aggregation rate AR = 95% we introduce a global travel time error £ = 25% which in turn
implies that the accuracy of multi-origin multi-destination travel time calculation does not require a dense
and granular set of information. In other words, if we are interested in understanding traffic evolution from a
macroscopic point of view (namely traffic patterns between one zone and another or inside a zone), we need
much less information than the ones that are actually available. On the other hands, if we are interested in
precision in travel time calculations, namely we seek a small global travel time error £ with also a small
variance, there is the possibility to trade-off between these factors and the aggregation rate: as a matter of
fact, with a aggregation rate AR = 80% we are capable of keeping the error £S = 15%.

Another interesting and promising element emerging from this analysis is that aggregated traffic evolution
presents typical daily patterns. It can be observed that aggregation evolves similarly between similar days
(working and not-working day), namely presenting the same congested areas for different moments of the
day. Similarly, special events like strikes, adverse weather conditions and accidents in crucial arterial roads
can be easily distinguished from the normal behavior of the network. This suggests that a travel-time
prediction in a aggregated fashion might be possible: prediction over the aggregated graph would reduce
enormously the computation, necessary parameters, measures and would be much more robust to small
variations from the nominal behavior recorded in the past. An approach similar to the one proposed in |A.
Ladino et al. | (2017) could allow to identify typical aggregated travel time patterns which describes normal
and exceptional behavior of the traffic evolution and the prediction would be based on a matching between
the historical data and the present time.

5. Conclusion

In this paper we considered aggregation as a mean to simplify the complexity of a large scale traffic
networks. By aggregating neighbor sections which have a similar speed up to a cut-off parameter, we
showed that it is possible to reduce drastically the size of the network while preserving the most important
information. By defining a set of properties based on the shape each cluster, we showed that the error
introduced by the simplification in the calculation of traveling time is absolutely acceptable: reductions in
the order of 95% introduce error which in the average are less than 25%.

Clearly the approach we propose reduces the granularity of the data and the precision of calculus, namely
over an exact path we can commit huge errors. However, if an average traveling time between two zones
is considered, then aggregation allows to simplify the problem while preserving a sufficient accuracy. This
allows to consider the traffic evolution from an aggregated point of view and simplifies the analysis of complex
traffic patterns over days and weeks.

As already mentioned before, the natural extension of this work is to exploit the proposed technique
to predict travel times: the idea we aim to pursue is to define typical patterns for aggregated travel time
and compare the present traffic status with those historic clusters. Then, by merging the actual state with
the patterns defined, it would be possible to predict the evolution of the aggregated travel time. Another
possibility would be to exploit the aggregation in order to reconstruct density by zones: indeed in classic
large scale frameworks, density sensors are much more sparse then velocity sensors. Thus density has to be
reconstructed from velocity.
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